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Abstract

Regression models for size-and-shape analysis are developed, where the model
is specified in the Euclidean space of the landmark coordinates. Statistical
models in this space (which is known as the top space or ambient space) are
often easier for practitioners to understand than alternative models in the
quotient space of size-and-shapes. We consider a Bayesian linear size-and-
shape regression model in which the response variable is given by labelled
configuration matrix, and the covariates represent quantities such as gender
and age. It is important to parameterize the model so that it is identifiable,
and we use the LQ decomposition in the intercept term in the model for this
purpose. Gamma priors for the inverse variance of the error term, matrix
Fisher priors for the random rotation matrix, and flat priors for the regression
coefficients are used. Markov chain Monte Carlo algorithms are used for
sampling from the posterior distribution, in particular by using combinations
of Metropolis-Hastings updates and a Gibbs sampler. The proposed Bayesian
methodology is illustrated with an application to forensic facial data in three
dimensions, where we investigate the main changes in growth by describing
relative movements of landmarks for each gender over time.
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1 Introduction

Bayesian linear regression analysis has been extensively studied for var-
ious types of response variables and covariates, where prior distributions
are specified for the parameters in the classical regression model and sta-
tistical inference is carried out using the joint posterior distribution of the
parameters (Gelman et al., 2013).

We wish to explore regression models for landmark data, where the
location and orientation of the objects can be ignored. Such objects can
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be represented as points in the size-and-shape space (Dryden and Mardia,
2016, Chapter 5), which is defined as the space of landmark co-ordinates af-
ter rotation and translation information has been removed (Kendall, 1989).
The shape space on the other hand (Dryden and Mardia, 2016, Chapter 4)
is the space of landmark co-ordinates after rotation, translation and scale
information has been removed (Kendall, 1986). Throughout this paper we
will concentrate on size-and-shape rather than shape.

The size-and-shape space is a quotient space, where location and rota-
tion are quotiented out by using least squares optimization. However, the
geometry of the size-and-shape quotient space is complicated (Kendall et al.,
1999), and it can be difficult for a practitioner to understand the meaning
of statistical models formulated in the quotient space.

An alternative approach is to specify a statistical model in the Euclidean
space of the landmark co-ordinates and then integrate out the unwanted
location and rotation information by considering the marginal distribution
of size-and-shape. In this case, the space in which the statistical model is
specified is called the top space in differential geometry, and also known
as the ambient space by some authors (Cheng et al., 2016). A top space
modelling approach has the advantage that the model is often easier to
understand than a quotient space model, and relatively standard inference
methods can be used. We shall develop a Bayesian linear model in the space
of the Euclidean landmark co-ordinates, and carry out statistical inference
using Markov chain Monte Carlo (MCMC) algorithms. Care needs to be
taken with identifiability of parameters in the model, and this issue often
arises in high-dimensional object data (Dryden, 2014).

We consider a Bayesian regression model with response given by the
size-and-shape of landmarks with real-valued covariates. A wide variety of
regression problems on non-Euclidean spaces have been considered in previ-
ous work, and a summary of some approaches is given by Dryden and Mardia
(2016, Section 13.4). Some approaches include directional data regression
(Mardia, 1975; Mardia and Jupp, 2000; Presnell et al., 1998), tangent space
regression models (Kent et al., 2001; Bowman, 2008; Faraway, 2004), growth
curve models (Goodall and Lange, 1989), geodesic regression (Le and Kume,
2000; Hotz et al., 2010), principal geodesic analysis (Fletcher et al., 2004;
Fletcher, 2013), geodesic PCA (Huckemann et al., 2010; Kenobi et al., 2010),
principal nested spheres (Jung et al., 2012), intrinsic regression (Davis et al.,
2007; Shi et al., 2009; Hinkle et al., 2014; Cornea et al., 2017), sphere-on-
sphere regression (Rosenthal et al., 2014, 2017; Di Marzio et al., 2018),
unrolling and unwrapping (Jupp and Kent, 1987; Kume et al., 2007), mani-
fold splines (Su et al., 2012) and many applications (e.g. Machado and Leite,
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2006; Zhu et al., 2009; Samir et al., 2012; Yuan et al., 2012; Piras et al.,
2014).

The remainder of this paper is organized as follows. In Section 2 we
describe the Bayesian linear size-and-shape regression model, including the
prior and posterior distributions. In Section 3, methods for Bayesian in-
ference for the coefficients and model selection are presented. Finally an
application to forensic facial data is given in Section 4.

2 Bayesian Linear Size-and-Shape Regression Model

2.1. Linear Model Consider a random sample of n configurations of k
labelled landmarks in m dimensions, where each configuration is represented
by a k × m matrix Yi ∈ R

k×m, k > m, i = 1, . . . , n. We are interested
only in the size-and-shapes of Yi after removing translation and rotation,
but preserving scale information (Dryden and Mardia, 2016, Chapter 5).
In addition we have real valued covariates xij , j = 1, . . . , p, corresponding
to each configuration and without loss of generality we assume that each
covariate is centred, i.e.

∑
i xij = 0. Categorical variables with g levels can

be represented by g − 1 binary indicator variables in the standard way. We
write xi = (1, xi1, . . . , xip)

� as a (p+1)-dimensional column vector containing
the p covariates and 1 for the intercept. We aim to predict the size-and-shape
of Yi using the covariates, and explore the relationship between Yi and xi,
i = 1, . . . , n.

Suppose that Yi are modelled with a probability distribution with con-
ditional mean function μ(xi) given covariates xi and subject to an arbitrary
unknown rotation Λi ∈ SO(m), where SO(m) is the group of special orthog-
onal matrices that satisfy ΛiΛ

�
i = Λ�

i Λi = Im and det(Λi) = 1, and where
Im is the m×m identity matrix. So we have the conditional mean

E[Yi|xi] = μ(xi)Λi, i = 1, . . . , n.

Including a noise term we have the model

Yi = μ(xi)Λi + εi,

where εi are assumed to be i.i.d. random matrix normal variables of dimen-
sion k ×m (Gupta and Nagar, 1999, Chapter 2). In this paper we consider
the conditional mean function μ(xi) to be linear so that the following linear
regression model is of interest,

Yi =

⎛

⎝α0 +

p∑

j=1

αjxij

⎞

⎠Λi + εi, (2.1)
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where α0, αj ∈ R
k×m, j = 1, . . . , p, are k×m regression parameter matrices,

the errors are matrix normal

εi
i.i.d.∼ MNk×m

(
0, σ2Im, Ik

)
,

and so

vec(εi)
i.i.d.∼ Nkm

(
vec(0), σ2Im ⊗ Ik

)
,

where vec(A) denotes the vectorization of the matrix A (i.e. stacking columns)
and ⊗ denotes the Kronecker product. The model (2.1) is not identifiable
since the rotation effect from Λi dictates the coefficients {α0, αj}. We can
make the model identifiable using an LQ decomposition of α0. In particular
we write α0 = β0Q0, where Q0 ∈ SO(m) and β0 is lower triangular (i.e. has
zero entries above the leading diagonal). Therefore the model (2.1) can be
rewritten as

Yi = μ(xi)Λi + εi

=

⎛

⎝β0 +

p∑

j=1

βjxij

⎞

⎠Γi + εi

= XiβΓi + εi, (2.2)

where Xi = x�
i ⊗ Ik ∈ R

k×k(p+1) is a k× k(p+1) matrix, β =
[
β�
0 β�

1 · · ·
β�
p

]� ∈ R
k(p+1)×m is a k(p + 1) × m matrix of regression parameters and

Γi ∈ SO(m). In the following we describe a Bayesian approach to estimate
μ(xi) given deterministic covariates xi.

2.2. Likelihood It follows from the matrix normality of εi that Yi ∼
MNk×m

(
XiβΓi, σ

2Im, Ik
)
, therefore the probability density function of Yi is

given by

f(Yi | β,Γi, σ
2) =

1

(2πσ2)km/2
exp

(

− 1

2σ2
tr
[
(Yi −XiβΓi)

�(Yi −XiβΓi)
])

and the likelihood is given by

f(Y1, . . . , Yn, | β,Γ1, . . . ,Γn, σ
2)

=
1

(2πσ2)nkm/2
exp

(

− 1

2σ2

n∑

i=1

tr
[
(Yi −XiβΓi)

�(Yi −XiβΓi)
]
)

.

2.3. Prior and Posterior We shall concentrate on the m = 3 dimen-
sional case and it is then helpful to adopt a particular parameterization
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of the rotation matrices. We can represent the three dimensional rotation
matrix using the ZXZ-convention where

Γ(θ1, θ2, θ3) =

⎡
⎣

cos θ3 sin θ3 0
− sin θ3 cos θ3 0
0 0 1

⎤
⎦
⎡
⎣

1 0 0
0 cos θ2 sin θ2
0 − sin θ2 cos θ2

⎤
⎦
⎡
⎣

cos θ1 sin θ1 0
− sin θ1 cos θ1 0
0 0 1

⎤
⎦ ,

0 ≤ θ1, θ3 < 2π and 0 ≤ θ2 < π (Landau and Lifschitz, 1976). If we assume
a uniform prior, then using these co-ordinates the density of the uniform
distribution on SO(m) is

g(θ1, θ2, θ3) =
1

2π

(1

2
sin θ2

) 1

2π
∝ sin θ2. (2.3)

We consider the following priors for parameters (κ,Γi, β), where κ =
1/σ2. Assume that κ follows a Gamma distribution with shape parameter
a and scale parameter b. We consider the prior for the rotation matrix to
be the matrix Fisher distribution (Mardia and Jupp, 2000, p.89) and F0 is
a 3 × 3 parameter matrix of that so that p(Γi;F0) ∝ exp{tr(F�

0 Γi)} sin θi2
and sin θi2 is due to the uniform measure. The regression parameters β are
taken to be uniform and all the parameters are independent, i.e.

κ ∼ Gamma(a, b) ;

Γi ∼ matrix Fisher(F0), i = 1, . . . , n ;

p(β | Γ1, . . . ,Γn, κ) ∝ 1,

independently. Then the joint posterior density for (β,Γ1, . . . ,Γn, κ) is given
by

p(β,Γ1, . . . ,Γn, κ | Y1, . . . , Yn)

∝ exp

(
n∑

i=1

tr(F�
0 Γi)

)[
n∏

i=1

sin θi2

]

κa+3nk/2−1 exp
(
−κ

b

)

× exp

(

−1

2
κ

n∑

i=1

tr
[
(Yi −XiβΓi)

�(Yi −XiβΓi)
]
)

.

The conditional posterior for (κ | Γ1, . . . ,Γn, β, Y1, . . . , Yn) is

κ | Γ1, . . . ,Γn, β, Y1, . . . , Yn ∼ Gam

⎛
⎜⎜⎝a+

3nk

2
,

1

1
b
+ 1

2

∑n
i=1 tr

[(
Yi−XiβΓi

)�(
Yi−XiβΓi

)]

⎞
⎟⎟⎠ .
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The conditional posterior for (β | Γ1, . . . ,Γn, κ, Y1, . . . , Yn) is

vec(β�)(−0) |Γ1, . . . ,Γn, κ, Y1, . . . , Yn ∼ N3k(p+1)−3

(
vec(ξ�)(−0), (Ω⊗Σ)(−0)

)
,

where

Σ =
1

κ
I3,

Ω =

(
n∑

i=1

X�
i Xi

)−1

,

ξ =

(
n∑

i=1

X�
i Xi

)−1 n∑

i=1

X�
i YiΓ

�
i ,

and

vec(β�)=

⎡

⎢
⎢
⎢
⎣

vec(β�
0 )

vec(β�
1 )

...
vec(β�

p )

⎤

⎥
⎥
⎥
⎦
, vec(ξ�)=

⎡

⎢
⎢
⎢
⎣

vec(ξ�0 )
vec(ξ�1 )
...
vec(ξ�p )

⎤

⎥
⎥
⎥
⎦

with size

⎡

⎢
⎢
⎢
⎣

3k × 1
3k × 1
...
3k × 1

⎤

⎥
⎥
⎥
⎦
,

Ω⊗Σ is a 3k(p+1)×3k(p+1) covariance matrix, and (−0) stands for removing
2th, 3th, 6th elements of vec(β�) and vec(ξ�), and also removing those three
rows and columns of Ω⊗Σ. Hence for each vec(β�

0 )
(−0), vec(β�

1 ), . . . , vec(β
�
p )

of length 3k−3, 3k, . . . , 3k, we can use the following conditional distribution
of a partitioned multivariate normal distribution

vec(β�
0 )

(−0) | Γ1, . . . ,Γn, κ, Y1, . . . , Yn, vec(β
�
1 ), . . . , vec(β

�
p ),

vec(β�
j ) | Γ1, . . . ,Γn, κ, Y1, . . . , Yn, vec(β

�
0 )

(−0), vec(β�
−j), j = 1, . . . , p.

The conditional posterior for (Γ1, . . . ,Γn | κ, β, Y1, . . . , Yn) is proportional to

exp

(
n∑

i=1

tr
[
(F0 + κβ�X�

i Yi)
�Γi

]
)[

n∏

i=1

sin θi2

]

.

Hence for a specific ith observation, using independence the conditional pos-
terior for Γi is proportional to

Γi | Γ−i, κ, β, Y1, . . . , Yn ∝ exp
(
tr
[
F�
i Γi

])
sin θi2,

where
Fi = F0 + κβ�X�

i Yi, i = 1, . . . , n.
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Let us drop the observation index i for a moment then

tr(F�Γ) = C1 cos θ1 + S1 sin θ1 +R1

= C2 cos θ2 + S2 sin θ2 +R2

= C3 cos θ3 + S3 sin θ3 +R3,

where

C1 = F11 cos θ3 − F21 sin θ3 + F12 sin θ3 cos θ2 + F22 cos θ3 cos θ2 − F32 sin θ2,

S1 = −F11 sin θ3 cos θ2 − F21 cos θ3 cos θ2 + F31 sin θ2 + F12 cos θ3 − F22 sin θ3,

C2 = −F11 sin θ3 sin θ1 − F21 cos θ3 sin θ1 + F12 sin θ3 cos θ1 + F22 cos θ3 cos θ1 + F33,

S2 = F31 sin θ1 + F13 sin θ3 + F23 cos θ3 − F32 cos θ1,

C3 = F11 cos θ1 − F21 cos θ2 sin θ1 + F12 sin θ1 + F22 cos θ2 cos θ1 + F23 sin θ2,

S3 = −F11 cos θ2 sin θ1 − F21 cos θ1 + F12 cos θ2 cos θ1 − F22 sin θ1 + F13 sin θ2,

and R1, R2, R3 are remainder terms independent of each Euler angle. Hence
for the ith observation, the conditional distributions for θi1 and θi3 are von
Mises distributions (Green and Mardia, 2006). Since

θi2 | θi1, θi3,Γ−i, κ, β, Y1, . . . , Yn ∝ exp (Ci2 cos θi2 + Si2 sin θi2) sin θi2,

we use a Metropolis-Hastings update for θi2. Hence for posterior sampling
by MCMC we use Gibbs sampler for (κ, β, θi1, θi3), and Metropolis-Hastings
algorithm for θi2.

Remark. (Helmertized size-and-shape). Let Y H
i = HYi be Helmertized

size-and-shapes, where H is the Helmert sub-matrix (Dryden and Mardia,
2016, p.49-50). It is often useful to work with Y H

i as this takes care of the lo-
cation invariance for size-and-shapes, and reduces the number of parameters
appropriately.

Condition. (Identifiability). Consider the Helmertized model

Y H
i =

⎛

⎝β0 +

p∑

j=1

βjxij

⎞

⎠Γi + εi,

where βj , j = 0, 1, . . . , p, are (k − 1) × 3 matrices. Let G be the number of
distinct sets of covariate tuples in (x1, . . . ,xn), then for k ≥ 4

p1 = G{3(k − 1)− 3} = G(3k − 6)

is the number of regression parameters that can be identifiable. Let

p2 = {3(k− 1)− 3}+ p{3(k− 1)} = (3k− 6)+ p(3k− 3) = 3k(p+1)− 6− 3p
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be the number of parameters in regression model. Then all p2 parameters
in regression model are identifiable if p1 ≥ p2.

This identifiability condition indicates that the stability of estimation
depends on how many distinct tuples of covariates are used. If p1 < p2
then MCMC draws of parameters can be away from the true values due to
non-identifiability, or we may need a long number iterations if p1 = p2.

3 Inference and Model Selection

3.1. Inference for the Coefficients After the posterior sample {β(t)
j , j =

0, . . . , p, t = 1, . . . , T} is obtained from T iterations of the MCMC algorithm
after burn-in, we can carry out inference for β. Marginal 100(1−α)% credible
intervals for βj , j = 0, . . . , p, are given by

[
βj,α/2, βj,1−α/2

]
,

where βj,P denotes the quantile at probability P based on order statistics

from the sample after burn-in. Since β
(t)
j is a matrix we define the matrix

quantile as an element-wise quantile.
An alternative approach based on marginal Gaussian distributions for βj

is [
β̂j − zα/2 · ŝd(βj), β̂j + zα/2 · ŝd(βj)

]
,

where

β̂j =
1

T

T∑

t=1

β
(t)
j ,

ŝd(βj) =

√
√
√
√ 1

T − 1

T∑

t=1

(
β
(t)
j − β̂j

)
◦
(
β
(t)
j − β̂j

)
,

and ◦ is the Hadamard product defined by (X ◦Y )i,j = (X)i,j · (Y )i,j for two
matrices X and Y of the same dimension.

3.2. Model Selection We now present measures for model selection. For
convenience write Θ = (β,Γ1, . . . ,Γn, σ

2) and let L(Y |Θ) =
∏n

i=1 f(Yi|Θ) be
the likelihood function. Define the deviance as D(Θ) = −2 log

(
L(Y | Θ)

)
,

then the deviance information criterion (DIC) is defined by penalizing the
deviance by the effective number of parameters, pD (Spiegelhalter et al.,
2002; Gelman et al., 2013, p.172), i.e.

DIC = D + pD

= D(Θ) + 2pD,
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where D = E[D(Θ)] is the posterior expected deviance and Θ is the posterior
mean of Θ. In practice the posterior expectations are obtained from the
arithmetic means of the relevant terms from a MCMC algorithm after burn-

in. The effective number of parameters can be estimated by either p
(1)
D =

D −D(Θ) (Spiegelhalter et al., 2002) or p
(2)
D = 1

2var
(
D(Θ)

)
(Gelman et al.,

2013, p.173).
The Watanabe-Akaike information criterion or widely available informa-

tion criterion (WAIC) (Watanabe, 2010; Gelman et al., 2013, p.173) is a fully
Bayesian criterion based on the log pointwise posterior predictive density ad-
justed by the effective number of parameters, pWAIC, to avoid overfitting and
is defined by

WAIC = −2

{
n∑

i=1

log
(
E
[
f
(
Yi | β,Γi, σ

2
)])

+ pWAIC

}

,

where f(Yi|β,Γi, σ
2) is the probability density function of Yi, and again we

have two possible estimates of the effective number of parameters:

pWAIC1 = 2
n∑

i=1

(
log
(
E
[
f
(
Yi | β,Γi, σ

2
)])

− E
[
log f
(
Yi | β,Γi, σ

2
)])

,

pWAIC2 =

n∑

i=1

var
(
log f
(
Yi | β,Γi, σ

2
))

.

The Akaike information criterion (AIC) (Akaike, 1973) and the Bayesian
information criterion (BIC) (Schwarz, 1978) are defined by

AIC = −2 log
(
L(Y | Θmle)

)
+ 2K,

BIC = −2 log
(
L(Y | Θmle)

)
+K logn,

where Θmle is the sample point where the log-likelihood function is max-
imised after burn-in and K is the number of parameters, so that K =
3(k − 1)p − 3 + n + 1. It is well known that AIC is minimax-rate opti-
mal in estimating the regression function (Barron et al., 1999; Yang, 2005),
and BIC is consistent in model selection (Shao, 1997; Yang, 2005). Note
that the model which has smaller DIC, WAIC, AIC or BIC provides a better
model.
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4 Application to Forensic Facial Data

4.1. Data Description Facial features play an important role in forensic
science including in criminal investigations where CCTV evidence is com-
monly used. A study was carried out into using face landmarks for identi-
fication, and was reported by Evison and Bruegge (2010). Clearly age and
gender are expected to be important covariates when describing the size and
shape of the face landmark configurations, and so we develop some Bayesian
regression models to explore the relationship. A set of 3D facial images was
captured by a Geometrix FaceVision FV802 Series Biometric camera and
then 30 anthropometric landmarks in 3D were selected by trained observers.
The volunteers in the study were primarily scanned at the Magma Science
Adventure Centre, Rotherham, UK. Evison and Bruegge (2010, Chapter 3)
give full details of the project and provide discussion about the selection of
the 30 landmarks. Many of the face landmark sets were recorded twice, ei-
ther with different observers or the same observer. In total we have 3248 face
landmark configurations from 1964 volunteers, in particular 956 faces from
627 females and 2292 faces from 1337 males. The landmark positions and
descriptions are described in Table 1 following Evison and Bruegge (2010).

Table 1: Landmark information (Evison and Bruegge, 2010)
No. Landmark Label No. Landmark Label

1 Glabella g 16 Highest point
of columella
prime left

c’ l

2 Sublabiale sl 17 Highest point
of columella
prime right

c’ r

3 Pogonion pg 18 Labiale superius ls
4 Endocanthion left en l 19 Labiale inferius li
5 Endocanthion right en r 20 Stomion sto
6 Exocanthion left ex l 21 Cheilion left ch l
7 Exocanthion right ex r 22 Cheilion right ch r
8 Center point of pupil left p l 23 Superaurale left sa l
9 Center point of pupil right p r 24 Superaurale right sa r
10 Palpebrale inferius left pi l 25 Subaurale left sba l
11 Palpebrale inferius right pi r 26 Subaurale right sba r
12 Subnasion se 27 Postaurale left pa l
13 Alare left al l 28 Postaurale right pa r
14 Pronasale prn 29 Otobasion inferius left obi l
15 Alare right al r 30 Otobasion inferius right obi r
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Our main interest here involves investigating the relation between age and
the size and shape of the faces for each gender.

As would be expected on average male faces are larger and wider than
female faces as shown in Fig. 1a, where the main growth direction corre-
sponds to the first shape principal component’s direction indicated by black
lines in Fig. 1b,c. See Dryden and Mardia (2016, Section 7.7-7.8) for a sum-
mary of principal components analysis in shape and size-and-shape analysis,
which has been implemented in R functions procGPA() and shapepca() in

(a) Front view of size-and-shape configu-
rations.

(b) Female (c) Male

Figure 1: a Front view of size-and-shape configurations. b, c Mean (red)
and 3 PCs direction in +3 · sd (black: PC1, red: PC2, green: PC3)
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the package shapes (Dryden, 2017). In order to measure the size of the face
landmark configuration, we use the centroid size of a configuration X given
by

S(X) = ‖HX‖,

where H is the Helmert submatrix (Dryden and Mardia, 2016, p.49) and
‖X‖ =

√
trace(X�X). We see that the centroid size is closely related to

the first size-and-shape principal component (PC) as seen in Fig. 2 and
the correlation coefficient between the centroid size and the first size-and-
shape principal component score is -0.959 and 0.954 for female and male,
respectively. Note that the signs of the PC loadings are arbitrary, and here
PC1 and PC3 have different signs for females and males.

4.2. Models and Implementation Recall from Section 2.1 that the in-
tercept matrix β0 is lower triangular using an LQ decomposition for model
identifiability, and the procedure is more stable if the landmarks in the first
three positions are well separated. Hence in this application we re-ordered
the landmarks as (1, 3, 30, 2, 4, 5, ..., 28, 29). Note that the inference is invari-
ant to a re-ordering of the landmarks, and so in theory such a re-ordering
should make no difference in our modelling. However, in computational im-
plementation it is best to avoid having the first three landmarks too close
together as otherwise some numerical instabilities can appear due to the
standardisation via the LQ decomposition. The proposed re-ordering leads
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(b) Male

Figure 2: Centroid size and size-and-shape PC1
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to stable results, which would in practice be equivalent to any other re-
ordering with well separated landmarks in the first three positions.

For each gender we use the following three Helmertized models, where
the Helmertizing takes care of the location invariance:

M1 : Y H
i = {β0 + β1agei}Γi + εi,

M2 : Y H
i =

{
β0 + β1agei + β2age

2
i

}
Γi + εi

M3 : Y H
i =

{
β0 + β1agei + β2age

3
i

}
Γi + εi,

where Y H
i = HYi, i = 1, . . . , n. We consider a weakly informative conjugate

prior κ so that a = 0.001 and b = 1000 (Spiegelhalter et al., 1994, 2003), and
the hyperparameter F0 in the prior distribution for the rotation parameters
is taken as a 3 × 3 matrix of zeroes. For the MCMC algorithm we set the
initial value of β to 0, Γi, i = 1, . . . , n, to 3 × 3 identity matrices, and κ to
a random draw from Gamma(a, b). The Gibbs samplers of Section 2.3 are
used for updating (κ, β, θ1, θ3) and in order to update θ2 via the Metropolis-
Hastings algorithm we use a normal distribution with standard deviation
σθ2 = 0.3 as the proposal distribution. To obtain a centred predicted face
configuration we pre-multiply each fitted value Ŷi by C, for example for M2:

CŶi =
{
H�β̂0 +H�β̂1agei +H�β̂2age

2
i

}
Γ̂i,

where C = Ik− 1
k1k1

�
k , Ik is the k×k identity matrix, 1k is the column vector

of k ones, β̂j = 1
T

∑T
t=1 β

(t)
j , Γ̂i =

1
T

∑T
t=1 Γ

(t)
i are the arithmetic means of

the MCMC sample of T iterations for βj and Γi after burn-in, and in our
faces application we have k = 30 landmarks.

4.3. Results We run the MCMC chain for 200,000 iterations with 100,000
iterations of burn-in. The Metropolis-Hastings acceptance rate for θ2 is
around 3.72% for female and 3.83% for male data. The posterior variance
for females is smaller than that for males as the posterior mean estimates
for κ are larger than those for males in Table 2.

For the three models considered, model M2 is generally the best model
for both female and male groups since M2 outperforms the others in terms
of the model selection statistics DIC, WAIC and AIC in Table 3 (except that
M1 has the smallest BIC for females). We now investigate the structure of
the models of the fitted size-and-shapes of the face landmarks versus age and
gender.

We display the results from the fitted regression models M1, M2, M3
for each gender in Fig. 3, which shows the individual face landmark data
registered by generalized Procrustes size-and-shape analysis (Dryden and
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Table 2: Estimates for κ and acceptance rate for θ2
Model Posterior mean κ 95% cred.int. κ Acceptance rate θ2
Female M1 0.1124 (0.1115, 0.1133) 3.73%

M2 0.1127 (0.1118, 0.1136) 3.72%
M3 0.1127 (0.1117, 0.1136) 3.72%

Male M1 0.0911 (0.0906, 0.0916) 3.85%
M2 0.0925 (0.0920, 0.0930) 3.83%
M3 0.0924 (0.0919, 0.0929) 3.83%

Mardia, 2016, p.143) in light grey and viewed from the front projection
of the face. The fitted configurations can be arbitrarily rotated, and in
order to compare the fitted configurations over age with the size-and-shapes
of the Procrustes registered data, we apply ordinary Procrustes analysis
to translate and rotate the fitted faces from the model (in red) onto the
Procrustes mean size-and-shape of the data. The fitted faces are indicated
by a red curved line from the fitted face at age 15 through to the fitted face
at age 80 (which is identified with a black dot).

The fitted models for the females and males show important differences
in Fig. 3. In particular it is noticeable that the amount and direction of
facial growth as age increases differ between females and males. For model
M1, the males’ fitted face linearly grows as age increases but the change is
different for females as age increases. In some areas such as the eyes and
ears, the face grows quicker later for females. The growth direction of the
ears of females is relatively wider than that for males. The credible intervals
for age for eight landmarks on the ears (landmarks 23 – 30), indicated by

Table 3: Model selection statistics. Note that the best model for each line
is indicated in bold
Statistics Female Male

M1 M2 M3 M1 M2 M3

# of parameters 1128 1215 1215 2464 2551 2551
Maximum
log-
likelihood

−208753 −208635 −208649 −521561 −520026 −520187

DIC 420986 420837 420881 1050933 1047960 1048246
WAIC1 415056 414899 414944 1036202 1033334 1033605
WAIC2 416164 416020 416067 1038860 1035994 1036264
AIC 419763 419699 419727 1048050 1045155 1045475
BIC 425248 425607 425636 1062187 1059790 1060111
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(a) Female M1 (b) Male M1

(c) Female M2 (d) Male M2

(e) Female M3 (f) Male M3

Figure 3: Front view. Light grey: Procrustes registered face data. Fitted
values versus age: red lines. Credible interval for β̂1: red lines’ thickness.
The thickness is proportional to the length of credible interval. Black dots:
the fitted landmarks at age 80
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red line thickness, are relatively longer than the others for both the females
and males. On the other hand, the credible intervals for the eight landmarks
on the eyes (landmarks 4 – 11) are relatively shorter. For models M2 and
M3, it is notable that the growth direction of the four landmarks on the
bottom of the ears (landmarks 29, 30, 25 and 26) is different for females and
males, where the females’ ears grow wider than the males’. The results of

(a) Female: ear, top left. (b) Female: ear, top
right.

(c) Male: ear, top left. (d) Male: ear, top right.

(e) Female: ear, bottom
left.

(f) Female: ear, bottom
right.

(g) Male: ear, bottom left. (h) Male: ear, bottom
right.

(i) Female: lips. (j) Male: lips.

Figure 4: Ears and lip (M2)
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models M2 and M3 are more similar to each other than M1 for both females
and males. This observation can be inferred from Table 3 showing smaller
differences in the model selection criteria for M2 versus M3 compared to M1
versus M2.

From now on we focus on the result of the model M2. Figure 4 shows
magnified ears and lips. The main features that are apparent from Fig. 4 are
that as the faces become older the ears become larger and the lips become
less full (i.e. thinner). Some of the curves have turning points where the
behaviour is different before and after the turning point. The age at the
turning point of the predicted curves can be different depending on the
landmark position. We mark blue points to indicate age 37 for female and
age 52 for male, and a black dot for age 80. Note that the predicted red
points were obtained at equal age intervals. The speed of facial growth
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Figure 5: Length of credible interval (M2)
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varies over age, for example for the top of the ears of females, a and b, the
upper parts of the top ears grow slowly for young women but those parts
grow rapidly for older women. For the lower parts of the top of the ears,
the speed of growth starts slowly and then becomes faster after age 37. For
men in c and d, a similar pattern to the lower parts of the top of the ears
appears with the turning age 52. For the bottom of the ears and lips, e –
j females and males show opposite results in growing speed, where females
grow rapidly as age increases, however males grow slowly as age increases.

From Fig. 5a and b the outer parts of the face have more posterior
variability which is shown in the length of the credible intervals for both
ears (landmarks 23 to 30). In contrast near the eyes (landmarks 4 – 11), the
lengths of credibility intervals are short. When faces grow as age increases
for both females and males, the variability near both ears is larger as shown
in c, d, e and f.

In Fig. 6 we see that the predicted centroid size for females is monotoni-
cally increasing. On the other hand male faces grow in size until age 40 then
this stops, and so we can see important differences here between the genders.
Of course Fig. 6 also illustrates the wide amount of individual variability in
face data, and our model is just a first step in modelling average face shape.
There is considerably more work required in modelling individual or sub-
group face data, although our methodology provides a useful framework in
which to develop these ideas.

Figure 6: A scatter plot of age versus centroid size of raw configurations as
dots and the centroid size of predicted configurations as red lines (M2)
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