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The Fredkin spin chain serves as an interesting theoretical example of a quantum Hamiltonian
whose ground state exhibits a phase transition between three distinct phases, one of which violates
the area law. Here we consider a classical stochastic version of the Fredkin model, which can be
thought of as a simple exclusion process subject to additional kinetic constraints, and study its
classical stochastic dynamics. The ground state phase transition of the quantum chain implies an
equilibrium phase transition in the stochastic problem, whose properties we quantify in terms of
numerical matrix product states (MPS). The stochastic model displays slow dynamics, including
power law decaying autocorrelation functions and hierarchical relaxation processes due to exponen-
tial localization. Like in other kinetically constrained models, the Fredkin chain has a rich structure
in its dynamical large deviations - which we compute accurately via numerical MPS - including an
active-inactive phase transition, and a hierarchy of trajectory phases connected to particular equi-
librium states of the model. We also propose, via its height field representation, a generalization
of the Fredkin model to two dimensions in terms of constrained dimer coverings of the honeycomb
lattice.

I. INTRODUCTION

The Fredkin spin chain [1, 2] is a one-dimensional lat-
tice model with local three-body interactions, whereby
hardcore particles can hop to adjacent sites if allowed
by constraints involving next to nearest neighbors. This
model has been of interest in the quantum many-body
community over the last few years for a number of rea-
sons. In its original formulation [1, 2], the Fredkin chain
can be expressed exactly as an equal superposition of all
Dyck paths, i.e. random walk (RW) excursions, with ap-
propriate endpoints, with an entanglement entropy which
scales logarithmically in system size, thus violating the
area law [1–4]. Furthermore, the model has slow unitary
evolution [5–8] due to dynamical “jamming”. With the
addition of particular potential energy terms the model
features a ground state phase transition between states
of bounded and extensive entanglement entropy [9, 10].
These interesting properties have brought about further
studies into generalized Fredkin models [11], including
versions which present “quantum scars” [12].

Dynamical constraints, such as those present in the
Fredkin model, are responsible more generally for many
interesting phenomena in many-body dynamics. A strik-
ing example of this are the kinetically constrained mod-
els (KCMs) of structural glasses [13, 14] - simple lat-
tice models equipped with local dynamical constraints,
leading to slow relaxation and dynamical heterogeneity
[15, 16]. Such models can also be considered as systems
under closed unitary [17–20] and open dissipative [21–
23] quantum dynamics. A recent example of these is the
quantum PXP model [24, 25] of Rydberg atoms in optical
lattices under blockade conditions, which has been shown
to exhibit non-thermal eigenstates (often called quantum
scars [26]). Another area where dynamical constraints
lead to interesting non-equilibrium dynamics is in deter-
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FIG. 1. Fredkin spin chains. (a) The local stochastic tran-
sition rates for neighboring occupied and unoccupied sites,
given by all choices of their neighbors. The fourth transition
is not allowed. (b) The disallowed configuration change in
the height representation. The “troughs” (· · · 0011 · · · ) are
locally immobile. (c) An example configuration in the chosen
symmetry sector. The top shows the RW representation of
the height field, which must always satisfy h > 0. The middle
is the corresponding particle representation. The bottom is
in terms of Dyck words, where opening “(” must always be
matched with a closing “)”.

ministic cellular automata [27–44] (for a review see [45]).
Recently, cellular automata circuits have been also used
to study Fredkin-like systems [46, 47], revealing a new
“universality class” of hydrodynamics. While the con-
nection of the Fredkin quantum spin chain to stochastic
dynamics has been previously mentioned [48], it has not
yet been extensively explored (other than briefly in [49]).
Here we provide such systematic study of both typical
dynamics and rare fluctuations.

Classically, the Fredkin model resembles the simple ex-
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clusion process (or SEP, for reviews see [50, 51]). Like
the SEP, it describes particles hopping stochastically to
neighboring empty lattice sites with at most one parti-
cle per site. The key difference is the presence of fur-
ther local kinetic constraints to motion. These, together
with specific boundary conditions, specifically that of an
open segment with fixed boundaries, restrict the dimen-
sionality of the state space. For example, for a length
N = 2M chain half filled with M particles the dimen-
sionality is the Catalan number CN = 1

M+1

(
2M
M

)
rather

than the binomial coefficient
(
2M
M

)
. Although the dif-

ference in configurational entropy is not extensive, this
constrained state space plays an important role in the
dynamics, as we explain below.

SEPs and KCMs display interesting dynamical prop-
erties which can be studied with large deviation (LD)
methods (for reviews see [52–55]). A central result in
the dynamics of these systems is the existence of phase
transitions in the space of trajectories, indicated by sin-
gularities in the LD functions that quantify the dynam-
ical fluctuations in the long time limit, both in terms of
time-integrated currents [56–59], or dynamical activities
[60–64]. In the case of the Fredkin model, a preliminary
study [49] indicated that it also displays LD transitions.
Here we make this finding concrete by studying LD func-
tions using matrix product states.

The paper is organized as follows. In Sec. II we start
by defining the model and reviewing its basic proper-
ties. We highlight its relationship to Catalan combina-
torics and RW excursions [65]. In Sec. III we consider
the equilibrium states which follow from the properties
of the ground state of the quantum problem [1, 9]. We
study the properties of the equilibrium phases in detail
by means of numerical DMRG [66]. An interesting obser-
vation is that there are three distinct equilibrium phases,
and a transition between them, despite the fact that this
is a one-dimensional system with local dynamical rules.
This apparent contradiction with the Landau principle is
a consequence of the constrained configuration space of
the model. In Sec. IV we study the relaxation dynamics.
As in the case of the quantum model [8], the stochastic
Fredkin spin chain exhibits slow dynamics. We provide
evidence for power law decaying autocorrelations, and
for a pattern of hierarchical relaxation when quenched
from extremal initial states into the different equilibrium
phases. In Sec. V we study the large deviations statistics
of dynamical observables by means of numerical MPS.
As in other constrained models, the phase transitions at
the LD level underpin the slow dynamics and fluctuations
seen in typical relaxation trajectories. We reveal the exis-
tence of an active-inactive transition, as in other KCMs,
but also a hierarchy of trajectory transitions connected
to hierarchical relaxation dynamics. In Sec. VI we specu-
late on a possible generalization of the Fredkin model to
a two-dimensional setting defined in terms of fully packed
dimers on the honeycomb lattice (that is, rhombus cov-
erings of the plane). We give our conclusions in Sec. VII.

II. MODEL

The Fredkin model is defined in terms of particles
hopping on a lattice of N sites with binary occupation,
nj = 0 (for empty or down) or 1 (for occupied or up)
with j = 1, · · · , N . The system evolves under stochastic
continuous-time Markov dynamics with generator

W =

N−2∑
i=2

fi
{
c
[
σ+
i σ
−
i+1 − (1− ni)ni+1

]
+(1− c)

[
σ−i σ

+
i+1 − ni(1− ni+1)

]}
, (1)

where σ±i are Pauli creation and annihilation operators
on site i. The factor in curly brackets in each term is
the same as the local generator of the asymmetric SEP
(ASEP) [50, 51], with rates for hops to the left or right
given by c and 1−c, respectively. What distinguishes the
Fredkin model from the ASEP is the kinetic constraint

fi = ni−1 + (1− ni+2), (2)

which means that hopping between sites i and i+1 is not
allowed if ni−1 = 0 and ni+2 = 1, see Fig. 1(a) [67]. In
Eq. (1) we are considering open boundary conditions on
a segment [1, N ] with no injection/ejection of particles at
the boundaries. The fixed sites at the edges, which are
not acted on by the generator, we fix to be n1 = 1 and
nN = 0.

Note that at c = 1/2, Eq. (1) is equivalent to the quan-
tum Hamiltonian of the original Fredkin model defined
in Ref. [1], up to a minus sign and boundary terms. For
c 6= 1/2 the generator Eq. (1) obeys detailed balance
despite the asymmetry in the hopping rates [68], and un-
der a similarity transformation (see below) it becomes
equivalent to the “deformed” Fredkin model of Ref. [9].
This means that for all values of c we expect to find an
equilibrium stationary state of W.

The model discussed here has various symmetries. The
most obvious one is the conservation of the total number
or particles (or occupied sites): M =

∑
i ni. This prop-

erty is shared with the SEP. The constraint Eq. (2) gives
rise to a further subdivision of each subspace of fixed
M , which is most easily understood by a representation
of the allowed moves in terms of matched brackets [1].
In this representation, particles and holes correspond to
opening and closing parentheses, and the dynamics re-
spects normal matching rules. Thus the move

· · · 0101 · · · ←→ · · · 0011 · · · (3)

· · · )()(· · · ←→ · · · ))((· · · (4)

is forbidden because both sides cannot simultaneously
be matched configurations [this forbidden transition is
shown in Fig. 1(b)]. Thus a complete specification of
a subspace of allowed configurations involves specifying
the M pairs of matched brackets, a unmatched open-
ing brackets (particles) and b unmatched closing brackets
(holes) for a total N = 2M + a+ b
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FIG. 2. Equilibrium properties of the Fredkin model. (a) The average area (scaled by maximum area) 〈A〉 /Am as a
function of c for various systems sizes N ∈ [20, 400]. The dashed line shows the extrapolated value for N → ∞. (b) The
average area (symbols) for c = 0.4 (red / dark grey), c = 0.5 (blue / medium grey) and c = 0.6 (green / light grey). The lines
show the power laws 〈N〉 ∼ N−α with α = 1, 1.5, 2 respectively. (c, d) The spin occupation 〈n〉i and height profiles 〈hi〉 for
each equilibrium phase with a system size N = 60. (e) The average dynamical activity (per unit time and system size) as a
function of c for various systems sizes N ∈ [20, 400]. The dashed line shows the extrapolated value for N →∞. All results are
calculated using numerical DMRG.

For concreteness, here we will focus on the case of half-
filling by fully matched particles and holes i.e. M = N/2
a = b = 0. In this case the accumulated number of
particles starting from the left is never smaller than the
accumulated number of holes (that is, the sector that is
dynamically connected to having all particles to the left
and all holes to the right, see below), cf. [1]. We call this
sector D.

It is convenient to represent a configuration x = n1:N
also in terms of a height field defined as

hi(x) =

i∑
j=1

Zj = hi−1(x) + Zi (5)

with boundary condition h0 = 0, and where Zi = 2ni−1.
For all configurations x ∈ D we have hi(x) ≥ 0 for all i.
If we think of the space direction as “time” and a particle
(hole) representing a step up (down), then D is the space
of all paths that correspond to random walk excursions
[65], that is, random paths that return to the origin while
never crossing the horizontal axis. (In contrast, for the
SEP in the height representation at half-filling, the space
of dynamically connected configurations is that of ran-
dom walk bridges, which are also constrained to return to
the origin but can cross the horizontal axis.). Excursions
are also known as Dyck paths. An example configuration
is shown in Fig. 1(c) with each of the representations.

III. EQUILIBRIUM STATICS

To determine the equilibrium properties of the model
we need to find the state |ss〉 annihilated by Eq. (1). Let
us consider as an observable the area under the height

profile of a configuration x,

A(x) =

N∑
i=1

hi(x) =

N∑
i=1

(N + 1− i)Zi. (6)

It is then easy to see that the the stationary state to the
dynamics Eq. (1) is given by [9]

|ss〉 = Nc
∑
x∈D

(
c

1− c

) 1
2A(x)

|x〉 , (7)

with Nc a c-dependent normalization constant to make
〈− |ss〉 = 1, where 〈−| =

∑
x∈D 〈x| is called the flat state.

The connection to RW excursions means that this
probability distribution is related to the Airy function
[65, 69]. The properties of the stationary state at ar-
bitrary c can also be understood from the properties of
the ground state of the corresponding quantum model
[1, 9]. That is, if we perform a similarity transforma-
tion of Eq. (1) (cf. the ASEP with the same boundary
conditions, e.g. [70])

H = −P−1/2 WP1/2, (8)

where P1/2 is the diagonal matrix of the square root of
configuration probabilities,

〈x|P1/2|x〉 = N 1/2
c

(
c

1− c

) 1
4A(x)

. (9)

we get the Hamiltonian

H = −
N−2∑
i=2

fi

[√
c(1− c)

(
σ+
i σ
−
i+1 + σ−i σ

+
i+1

)
(10)

− c(1− ni)ni+1 − (1− c)ni(1− ni+1)
]
,
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whose ground state is |ψ〉 = P1/2
∑
x∈D |x〉. The trans-

formation to a Hermitian form shows that, despite the
asymmetric hopping when c 6= 1/2, the Fredkin model
obeys detailed balance and consequently the stationary
state Eq. (7) is an equilibrium one.

The properties of the ground state of Eq. (10) are well
understood from previous studies [10, 11]. Here we re-
state them from the point of view of the equilibrium
state of the stochastic model, using matrix product states
(MPS, see reviews e.g. Refs. [71–73]).

A. Exact equilibrium MPS at c = 1/2

From the connection to RW excursions at c = 1/2 the
equilibrium state |ss〉 can be written exactly as an MPS

|ss〉 =
∑
{n1:N}

(i|B(1)
n1
· · ·B(N)

nN
|f) |n0:1〉 (11)

where B
(j)
n are site dependent tensors, and (i| and |f)

appropriate boundary vectors in the auxiliary (or bond)
space of the MPS (we use rounded brackets to distinguish
them from vectors in configuration space).

Consider first the slightly simpler problem of the sym-
metric SEP (SSEP), whose generator is given by an op-
erator like Eq. (1) but without a constraint, fi = 1. If we
consider the same boundary conditions as for the Fredkin
model, but with extra terms in Eq. (1) that allow parti-
cle hops between sites j = 1, 2 and N − 1, N (no longer
prevented in the absence of a constraint), then the SSEP
configurations at half-filling are those of RW bridges. If
the height field hj describes the position of the RW af-
ter step j, the exact transition probabilities at step j for
generating bridges of N steps are:

T br
j (h→ h± 1) =

1

2

(
1∓ h

N + 1− j

)
(12)

for |h| ≤ N+1−j, or zero otherwise. (These are obtained
from the naive symmetric RW transition probabilities via
a Doob transform, see e.g. [74].) The equilibrium MPS
for the SSEP is then given by the (2N + 1) × (2N + 1)
matrices

B
(j),SSEP
0 =

N∑
h=−N

|h)(h− 1|T br
j (h→ h− 1) (13)

B
(j),SSEP
1 =

N∑
h=−N

|h)(h+ 1|T br
j (h→ h+ 1) (14)

with boundaries (i| = (0| and |f) = |0). It is easy to see

that the matrices above satisfy B
(j),SSEP
0 B

(j+1),SSEP
1 −

B
(j),SSEP
1 B

(j+1),SSEP
0 = 0 for all j, which means that the

MPS Eq. (11) with tensors Eqs. (13) and (14) is annihi-
lated by the SSEP generator.

The construction for the equilibrium state of the
stochastic Fredkin chain at c = 1/2 is similar, but the rel-
evant paths are RW excursions. In this case the “Doob”

transition probabilities that guarantee an excursion are
(cf. e.g. [74])

T ex
j (h→ h± 1) =


1
2

(
1 + 1

h+1

)(
1− h

N+1−j

)
1
2

(
1− 1

h+1

)(
1 + h+2

N+1−j

) (15)

for 0 ≤ h ≤ N + 1 − j, or zero otherwise. The corre-
sponding matrices have now bond dimension N + 1 and
read

B
(j)
0 =

N∑
h=0

|h)(h− 1|T ex
j (h→ h− 1) (16)

B
(j)
1 =

N∑
h=0

|h)(h+ 1|T ex
j (h→ h+ 1) (17)

with the same boundary vectors (i| = (0| and
|f) = |0). The relevant relations in this case

are B
(j−1)
1 B

(j)
0 B

(j+1)
1 − B

(j−1)
1 B

(j)
1 B

(j+1)
0 = 0 and

B
(j−1)
0 B

(j)
1 B

(j+1)
0 −B(j−1)

1 B
(j)
0 B

(j+1)
0 = 0 for all j. Given

these, one can show that the MPS Eq. (11) with tensors
Eqs. (16) and (17) is annihilated by the Fredkin gener-
ator Eq. (1). In fact, the MPS is annihilated by every
local term in the spatial sum that defines Eq. (1), so
that W can be said to be a parent generator (cf. parent
Hamiltonian [73]) of the MPS Eq. (11).

Note that from the definition of the tensors B
(j)
n above

in terms of transition probabilities, the MPS is in “right
canonical” form, and Eq. (11) therefore satisfies 〈− |ss〉 =
1. Away from c = 1/2 we can also write Eq. (7) as an
MPS if we reweigh the coefficients in Eqs. (16) and (17)
as

T ex
j (h→ h± 1)→

(
c

1− c

)− 1
2 (h±1)

T ex
j (h→ h± 1) .

These reweighed coefficients are not transition probabil-
ities in the height (they do not add up to one), meaning
that the resulting MPS is not in canonical form. Finding
the normalization Nc in this case is non-trivial.

B. Equilibrium phase diagram from numerical
MPS

To overcome the difficulty above, in order to study
the equilibrium properties for all c we resort to numer-
ical MPS approximations. This we implement with the
ITensor library [75], and make use of the density matrix
renormalization group (DMRG) [66, 76, 77] to find the
leading eigenvector of Eq. (10). We employ an adaptive
bond dimension, which is at most D = 2000 with a trun-
cation cutoff error ε = 10−12.

By looking at various observables at stationarity, it
becomes clear that there are three distinct equilibrium
phases in the Fredkin model: (i) c < 0.5, (ii) c = 0.5
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and (iii) c > 0.5. We denote the expectation value of
an observable O with respect to the equilibrium state as
〈O〉, with

〈O〉 = 〈−|O|ss〉 = 〈ψ|O|ψ〉 . (18)

The appropriate order parameter to characterize the
equilibrium phases is the average area 〈A〉. In Fig. 2(a)
we show 〈A〉 as a function of c for a range of system sizes
N ∈ [20, 400]. For c < 1/2 the area becomes minimal,
while for c > 1/2, the area is maximal. If we consider the
area as a function of system size N we find that 〈A〉 grows
as a power law 〈N〉 ∼ N−α, as shown in Fig. 2(b). This
reveals three distinct behaviors: the exponent α takes
the values α = 1, 3/2 and 2 for c < 1/2, c = 1/2 and
c > 1/2, respectively [9].

For each phase, we show the average of the spatial oc-
cupation profile, 〈ni〉, and the average height field, 〈hi〉,
in Figs. 2(c,d), respectively. For c < 1/2, the parti-
cles take an anti-ferromagnetic arrangement, Fig. 2(c)
(red circles), thus minimizing the height and therefore
the area, Fig. 2(d) (red circles). We sometimes refer to
this as the flat phase (in analogy with interacting dimers
[78, 79]).

At c = 1/2, all configurations occur with equal proba-
bility, cf. Eq. (7). In terms of the RW representation of
configurations this corresponds to the set of RW excur-
sions. The average occupation, Fig. 2(c) (blue squares)
interpolates between 1 and 0, and in the thermodynamic
limit, N → ∞, the average occupation density in the
bulk is 1/2 [11]. In turn, the average height field takes
a semi-circular form, Fig. 2(d) (blue squares). Note that
this a phase of large fluctuations and this average height
field is not representative of typical sample profiles. This
is in contrast to the other two phases which are expo-
nentially dominated by extremal area configurations, cf.
Eq. (7).

For c > 1/2, the particles (holes) localize to the left
(right) edge of the system [10], with a sharp change in
average occupation, Fig. 2(c) (green triangles), and with
an average height profile in the shape of a tent (with
a rounded top, a finite residue of the fluctuations of the
c = 1/2 phase), Fig. 2(d) (green triangles). This behavior
is similar of that seen in the ASEP in an open segment
with fixed boundaries. Simple arguments (see Appendix
VII) give the profile [10]

〈nj〉 =
1

exp ((j −N/2)/λ) + 1
(19)

with an inverse localization length λ,

λ = ln

(
c

1− c

)−1
. (20)

We sometimes refer to the c > 1/2 phase as the tilted
phase (also in analogy with interacting dimers [78, 79]).

An observable which will be of importance later is the
dynamical activity 〈k〉, which measures the average num-
ber of configuration changes per unit time in stochas-
tic trajectories [61, 62, 80]. At equilibrium, it can be

FIG. 3. Localization in the Fredkin chain. (a) The
occupation profile 〈ni〉 of the steady state for c > 0.5 and
N = 20. The occupations exhibit an exponential decay for
i > N/2. (b) The average domain wall occupations 〈nDW

i 〉
for c = 0.75 and N = 20. We see the same exponential decay
of domain wall density as we move away from the centre of
the lattice. Crosses show the measured results from DMRG,
and the line shows the same but with the mean field approx-
imation 〈nini+1〉 ≈ 〈ni〉 〈ni+1〉. (c) The localization length λ
as a function of c. The line shows the result from the theory,
Eq. (20), and the blue circles and red crosses the numerically
extracted lengths from the occupation and DW profiles, re-
spectively.

measured as the average escape rate, 〈k〉 = 〈−|R|ss〉,
where R is the diagonal part of Eq. (1). We show this
in Fig. 2(e) as a function of c for various system sizes
N ∈ [20, 400]. It is immediately clear that the dynamical
activity scales with system size (up to small finite size
effects) for c ≤ 1/2 where occupation is spread out in
equilibrium, cf. Fig. 2(c), leading to less constrained and
therefore more dynamics throughout the entire system.
Conversely, the activity for c > 1/2 is sub-extensive in
system size as expected due to the much more inactive
conditions given to the localization of the equilibrium
state, cf. Fig. 2(c): motion is limited to the center of
the lattice (the tip of the “tent”) where particle hops are
not restricted by exclusion. By fitting the activity with
a linear form 〈k〉 = a + bN , one can extrapolate to infi-
nite size to determine 〈k〉 /N in the thermodynamic limit.
We show this as the black dashed line, peaking around
c ≈ 0.36. The differences in the “active” (c ≤ 1/2) and
“inactive” (c > 1/2) dynamics are directly related to the
dynamical large deviations in Sec. IV.
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FIG. 4. Stochastic trajectories and dynamics. (a) Representative trajectories with initial states sampled from equilibrium
for c = 0.4 (top), c = 0.5 (middle) and, c = 0.6 (bottom) respectively, for system size N = 100 and time t = 103. (b) The
autocorrelation functions Eq. (22) for each of the three distinct equilibrium phases. At large times, the auto-correlator for c = 0.5
decays as the power law t−0.464 (from size N = 100). (c) The same autocorrelation functions plotted on a double-log ordinate
scale. For small times they show exponential decay in the three phases. For large times they take a stretched-exponential form
for c < 1/2 and c > 1/2. (d) The numerically estimated timescales Eq. (23) as a function of c (for N = 40, 100 and 400). (e)
Example trajectories after a quench from the initial state 1010 · · · 1010 for c = 0.5 (left) and c = 0.6 (on a logarithmic time
scale). The former relaxes to equilibrium quickly, whilst the latter shows hierarchical relaxation (both panels for N = 100 and
t = 105). (f) The area (scaled by system size) 〈A〉 /N after the same quench, for various system sizes N ∈ [20, 100] and c = 0.6.
The dashed line shows log t. All data is obtained using continuous-time Monte Carlo.

C. Localization of the tilted phase

The equilibrium state for c > 1/2 is exponentially dom-
inated by maximal area configurations, that is, configu-
rations in which particles cluster towards the left edge
of the system, and holes cluster at the right edge. Fig-
ure 3(a) shows the average occupation profile 〈ni〉 for
various c > 1/2: for sites beyond the halfway point,
i > N/2, we observe an exponential decay of the average
occupation, 〈ni〉 ∼ e−i/λ. [Note that the same occurs
for the density of holes, 1 − 〈nN+1−i〉, coming from the
right, due to fact the generator Eq. (1) is invariant under
i→ N + 1− i and |0〉 ↔ |1〉.]

This localization can be further characterized by the
density of domain walls (DWs)

〈nDW
i 〉 = 〈ni(1− ni+1)〉+ 〈(1− ni)ni+1〉 . (21)

This is shown in Fig. 3(b): the DW density is close
to 1 at the centre of the lattice, and decays exponen-
tially when moving away from it in both directions,

〈nDW
i 〉 ∼ e−|

N
2 −i|/λ. As we discuss further in the next

sections, exponential localization of DWs at the centre
of the lattice has important implications for the dynam-
ics in the tilted phase: particle hops can only occur when
there are domain walls, and thus activity is exponentially
suppressed away from to midpoint, and is sub-extensive

in system size, cf. Fig. 2(e).
The localization length λ decreases with increasing c.

We show this in Fig. 3(c) for both particle and DW den-
sities. The agreement with the theoretical prediction
Eq. (20) is excellent.

IV. TYPICAL DYNAMICS

A. Dynamics in equilibrium

Figure 4(a) shows representative trajectories in the sta-
tionary dynamics of each of the three equilibrium phases
(with the initial states sampled from equilibrium). The
largest fluctuations occur for c = 0.5. Dynamics in equi-
librium can be quantified through the (density) autocor-
relation function

C(t) =
1

N

N∑
i=1

〈ni(0)ni(t)〉 − 〈ni〉2

〈ni〉 − 〈ni〉2
, (22)

which provides a measure of the memory of a initial con-
figuration after time t in an equilibrium trajectory. We
show C(t) for the three equilibrium phases in Figs. 4(b,c).
It is apparent from Fig. 4(b) that for c = 1/2 the auto-
correlation decays asymptotically as a power law, with
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a numerically extracted exponent of just under a half.
This power law decay can also be observed for interme-
diate times at c > 1/2 [corresponding to fluctuations of
the top of the “tent”, cf. Fig. 2(d)], with this intermedi-
ate regime becoming longer as c gets closer to 1/2. While
at short times decay is exponential, see Fig. 4(c), for long
times relaxation is stretched exponential in both the flat
and tilted phases. These are signatures of slow dynamics.

We can extract a timescale for relaxation of correla-
tions from C(t) from its integral,

τeq =

∫ ∞
0

C(t)dt. (23)

This is shown in Fig. 4(d) for a range of c. This equilib-
rium timescale spikes at c = 1/2, as expected from the
slow law decay of C(t). Notice that the spike is less sharp
for smaller system sizes due to the finite size effects from
the boundaries.

B. Relaxation towards equilibrium

Also of significance is the relaxation towards the equi-
librium state when starting from non-equilibrium con-
ditions. We explore this behavior by considering dy-
namics following from an initial state of minimal area,
x0 = 1010 · · · 1010, corresponding to a quench from deep
in the flat phase (c0 & 0) to finite c > 0. When c < 1/2,
equilibrium is achieved quickly as the initial state is not
far from typical states in the flat phase. Interesting non-
equilibrium dynamics occurs when quenching to c = 1/2
or to the tilted phase at c > 1/2. In Fig. 4(e) we show
two relaxation trajectories, one for c = 1/2 (left) and
another for c = 0.6 (right). The system size is N = 100
and the overall time of trajectories t = 105 (note that
the time axis is shown on a logarithmic scale). For the
case of a quench to c = 1/2, after a slow early regime,
equilibrium is reached in reasonable times.

For a quench to c > 1/2, we observe a slow hierarchi-
cal relaxation, with a progressive coarsening of clusters
of particles and holes. The target state is a tilted one, cf.
Figs. 2(d), and in the height representation this hierar-
chical process is the merging of smaller tents in the pro-
file into larger ones. Due to the constraint, Eq. (2), local
configurations of · · · 0011 · · · , corresponding to troughs in
the height field, are locally trapped, and require particles
from the right edge of clusters to diffuse away to allow
clusters to merge. This process is exponentially scarce in
the separation distance, as occupations are exponentially
localized, cf. Sec. III C.

The time to complete each stage of relaxation in the
tilted phases grows exponentially with the stage. This
hierarchy is evident in the growth of the average area nor-
malized by system size, 〈A(t)〉 /N , as shown in Fig. 4(f),
where we see the area increasing logarithmically in time.
This reveals the hierarchical nature of the relaxation pro-
cess: while smaller systems may have relaxed to equilib-

rium, larger systems require the merging of larger clus-
ters, and so the growth of the area continues.

V. DYNAMICAL LARGE DEVIATIONS

We now study the statistical properties of the stochas-
tic trajectories ωt = x0:t of the Fredkin model, in partic-
ular the LD statistics of dynamical observables.

If K(ωt) is a trajectory observable, the probability of
it taking a value K is

Pt(K) =
∑
ωt

π(ωt)δ[K(ωt)−K], (24)

where π(ωt) is the probability of the trajectory ωt being
realized under the stochastic dynamics. For a dynami-
cal observable K that is time-extensive, in the long-time
limit, the probability of K obeys a LD principle [52–55]

Pt(K) � e−tϕ(K/t) (25)

where the function ϕ(k) is called the LD rate function.
The above asymptotic equality holds as long as the spec-
tral gap is non-vanishing (which it is in the Fredkin model
for finite size N [2]). A LD principle also holds for the
moment generating function (MGF)

Zt(s) =
∑
K

Pt(K) e−sK =
∑
ωt

π(ωt) e
−sK(ωt) � etθ(s)

where θ(s) is the scaled cumulant generating function
(SCGF) whose derivatives at s = 0 give the cumulants
of K, scaled by time [52]. In analogy with what occurs
in equilibrium thermodynamics, the rate function and
SCGF are related by a Legendre transform

θ(s) = −min
k

[sk + ϕ(k)] (26)

We consider as observable K the dynamical activity.
Its SCGF is given by largest eigenvalue of the tilted gen-
erator, Ws, which for the Fredkin model reads

Ws =

N−2∑
i=2

fi
{
c
[
e−sσ+

i σ
−
i+1 − (1− ni)ni+1

]
(27)

+(1− c)
[
e−sσ−i σ

+
i+1 − ni(1− ni+1)

]}
,

with s being counting field, s. As Ws is in general non-
Hermitian, the leading eigenvalue θ(s) has right and left
eigenvectors |rs〉 and 〈ls|.

We can write the generator in a Hermitian form with
the same similarity transformation as before, Eq. (8),

Hs = −
N−2∑
i=2

fi

[
e−s
√
c(1− c)

(
σ+
i σ
−
i+1 + σ−i σ

+
i+1

)
(28)

− c(1− ni)ni+1 − (1− c)ni(1− ni+1)
]
,
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FIG. 5. Finite size scaling of dynamical LD transitions. The dynamical LD statistics for each equilibrium phase. The
top (middle) row of (a-d) shows c = 0.4 (c = 0.5) with N ∈ [20, 400] obtained via DMRG and the bottom row shows c = 0.9
obtained through ED. (a) The SCGF θ(s) as a function of s. The upper and middle panels are scaled by system size, with
dotted lines showing the value for s→∞ and the dashed line showing the linear response prediction (see the main text). (b)
The average dynamic activity k(s) as a function of s. The top and bottom panels are shown on log-log scales, whereas the
middle one is shown in linear scale. The dashed lines in the bottom panel correspond to integer multiples of k(0). (c) The
dynamical susceptibility χ(s) = θ′′(s) as a function of s. (d) The LD rate function scaled by system size ϕ(k)/N as a function
of activity k. The black dashed lines show a Poisson distribution with mean k(0)/N in the thermodynamic limit N → ∞,
extrapolated from finite-size DMRG data. (e) We estimate the critical point as a function of system size from the peaks of
the dynamical susceptibility for c = 0.4, 0.5 in the top panel. The dashed lines shows a fitted power law sc ∼ N−α, with the
bottom panel showing the obtained α for various c.

with ground state Hs |ψs〉 = −θ(s) |ψs〉, related to the
leading eigenvectors of Ws by

|ψs〉 =
∑
x

√
ls(x)rs(x) |x〉 , (29)

where ls(x) = 〈ls|x〉 and rs(x) = 〈x|rs〉.

A. Active-inactive trajectory transitions at c ≤ 1/2

From the ground state of Eq. (28) we can study statis-
tical properties of the trajectory ensemble of the Fredkin
model for long-time trajectories. We do this by means
of numerical tensor networks along the lines of similar
recent work in KCMs [81–86]. Figure 5 shows the LD
statistics obtained numerically. The top row gives this
for the flat phase at c = 0.4, and the middle row for the
c = 1/2 phase. These results are for system sizes in the
range N ∈ [20, 400] obtained using DMRG.

Column (a) of Fig. 5 shows the SCGF as a function
of s = 0 for a range of sizes. For small s & 0, the

SCGF follows linear response (LR), θ(s) ≈ −sk(0), where
k(s) = −θ′(s) is the average dynamical activity in the
ensemble tilted by s, shown in column (b). The LR pre-
diction is shown by the dashed black line for N → ∞,
calculated by fitting the dynamical activity for finite sizes
at s = 0 with a power law and extrapolating. Notice that
at some sc(N) > 0, which becomes smaller for increasing
N , the behavior deviates from LR to one which no longer
scales with N (this is most apparent for c < 1/2). The
step in the average activity, Fig. 5(b, top and centre), in-
dicates a phase transition between dynamical phases of
high and low activity. The change in activity tends to
a discontinuity with increasing size, indicative of a first-
order transition.

The point sc(N) at which the crossover occurs at finite
size can be estimated from the peak in the corresponding
dynamical susceptibility, χ(s) = θ′′(s), shown in column
(c) of Fig. 5. As the system size is increased, the crossover
point shifts towards s = 0 and becomes sharper. The
change in dynamics can be seen in the broadening of the
LD rate function ϕ(k) around the equilibrium average,
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FIG. 6. Structural properties of the LDs. We show observables for each equilibrium phase with (a) c = 0.2, (b) c = 0.5
and (c) c = 0.9. The top row shows the average occupations 〈ni〉s for site i (with differing system sizes and ranges of s). The
middle row shows the area scaled by system size 〈A〉s /N for s < 0. Finally, we show the area scaled by system size squared
〈A〉s /N

2 for s > 0 in the bottom row.

shown in column (d) of Fig. 5. The rate functions show
the characteristic Maxwell construct of a first-order tran-
sition between two phases, and active one with large k
and an inactive one with vanishing k.

For c ≤ 1/2, the location of the crossover can be fit by
a power law sc(N) ∼ N−α. The upper panel of column
(e) in Fig. 5 shows this for c = 0.4 and c = 1/2. The
lower panel of column (e) shows the dynamical exponents
α as a function of c. When c is far from 1/2, we have
approximately α ≈ 1.2. The exponent increases quickly
as we approach c = 1/2, to around α ≈ 2.5, a value
similar to that found in other exclusion processes [84].
It could be that for values close to (but not equal to)
c = 1/2, the measured exponent would be lower if we
accounted for larger system sizes.

B. Dynamical phases for c > 1/2

Obtaining accurate estimates of θ(s) for c > 1/2 at
large system sizes is difficult due to a proliferation of dy-
namical phases. In particular, it is hard for DMRG to
converge to the correct phase due to a large density of
states. For this reason, for c > 1/2 we limit our studies to
system sizesN = 6, 12, 18 with large c = 0.9� 1/2 which
allows us to effectively study the hierarchy of dynamical
phases using exact diagonalization (ED) [87]. The bot-
tom row of Fig. 5 shows these results.

Since the typical dynamics (s = 0) of the tilted c > 1/2
phase is itself inactive, cf. Fig. 2(e), we expect transitions
to the active phase to occur at s < 0 for finite size sys-
tems. In fact, column (b) of Fig. 5 shows several points

where the behavior of the SCGF changes. The number
of these points seems to increase with system size. In
each case, this change in behavior corresponds to tran-
sitions in the dynamics. At each of these points we see
a sharp drop in the activity, this becoming sharper with
increasing N . The values at which the activity plateaus
are multiple integers of the equilibrium activity, k(s = 0),
and are shown by the black dashed lines. With the lim-
ited range of sizes accessible via ED it is not possible to
do a finite-size scaling analysis as we did for c < 1/2.
From the systems studied we observe that the first away
from equilibrium inactive behavior happens at increas-
ing s (that is, getting closer to 0) for increasing N , which
shows in the flattening of the rate function, see bottom
panel in Fig. 5(d).

C. Structural properties of the dynamical large
deviations

The difference in the behavior of the various dynamical
phases also manifests in the structural properties of the
configurations visited by the trajectories. The eigenvec-
tor |ψs〉 obtained from either DMRG and ED contains the
probability amplitudes for each configuration, making it
easily to calculate averages of configuration observables
O(x) in the tilted ensemble [88],

〈O〉s = 〈Ls| O |Rs〉 =
∑
x

O(x)ψs(x)2 (30)

In Fig. 6 we show the local occupations 〈ni〉s (top pan-
els), and the average area 〈A〉s (middle and bottom pan-
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FIG. 7. Extreme active limit. (a) The rescaled SCGF

θ̃/N (purple circles) and the area 〈A〉−∞ /N as functions of

N measured via DMRG. We fit both as a+ bN−1 allowing us
to extrapolate the value in the thermodynamic limit N →∞
(see main text). (b) The occupation profiles 〈ni〉−∞ for N =
40.

els), for (a) c = 0.2, (b) c = 1/2 and (c) c = 0.9. It is clear
that the limit of large activity (s < 0 with |s| large) par-
ticles spread out in order to maximize the activity. This
is evident by the average area 〈A〉s, which scales linearly
with system size N , resembling the structures associated
with the equilibrium flat phase for c < 1/2. Thus, the
active phase for all values of c is also a structurally flat
one. Conversely, in the inactive limit for all values of c
(large s > 0) particles cluster at the left edge of the sys-
tem and maximize the area, which scales as N2. Thus,
irrespective of the equilibrium static phase, the inactive
phase of the dynamics is structurally “tilted”.

Interestingly, we observe very sharp transitions for
c 6= 1/2 even at smaller sizes - this is unusual when com-
pared to other constrained models [81, 84]. This could
be due to the sharp transition in activity at equilibrium,
cf. Fig. 2. Indeed, for c > 1/2 we notice sharp structural
changes at the location of the sharp points of Fig. 5. It
is clear that the corresponding structures are related to
the assembly of excited states at equilibrium (s = 0) ob-
tained by joining multiple ground states of smaller system
sizes (compare to what occurs in the excited states of the
quantum East model [19]). Of course this makes sense,
as despite the scarcity of the configurations associated
with these states, they have large lifetimes (as discussed
in Sec. III) with impactful consequences on the relaxation
behavior.

D. Limits of maximal and minimal activity

The limit of maximum activity is that at s → −∞.
As the tilting in Ws grows exponentially with −s for
negative s, we rescale the SCGF as

θ̃ = lim
s→−∞

esθ(s)√
c(1− c)

, (31)

when taking the limit. In this limit only the off-diagonal
part of the generator (or equivalently the Hamiltonian)

remains, and therefore the (rescaled) eigenvalue θ̃ co-
incides with the (similarly rescaled scaled) dynamical
activity. We show this in Fig. 7(a) as a function of
N ∈ [10, 400] (circles, shown divided by N), and fit it
with the function of aN + b (cyan dashed line, shown
divided by N). By extrapolating to infinity, we find that

lim
N→∞

θ̃/N ≈ 0.691. (32)

The average area 〈A〉−∞, see Fig. 7(a) (squares, shown
divided by N) can also be fit by a linear in N function
(blue dashed, shown divided by N). Extrapolating to
infinite size we get

lim
N→∞

〈A〉s /N ≈ 0.835. (33)

Notice that the area scales linearly with system size, and
is similar to the equilibrium states found for c < 1/2.
This is further seen from the average occupations 〈ni〉−∞,
see Fig. 7(b), showing the antiferromagnetic pattern of
the flat equilibrium phase.

The opposite limit of s → ∞ gives the most inactive
state. In this limit only the diagonal escape rate part
of Eq. (27) (or Eq. (28)) remains and each configura-
tion x ∈ D is an eigenstate. The configurations with the
smallest escape rates dominate. Depending on c and N ,
this is either the maximal area (i.e., fully tilted) configu-
ration, 1111 · · · 0000, which has escape rate R = 2(1− c),
or the minimal area configuration 1010 · · · 1010, which
has escape rate R = c(N − 2). The latter dominates if
N > 2c−1, and the former dominates if N < 2c−1 (with
degeneracy at N = 2c−1).

VI. POSSIBLE TWO-DIMENSIONAL
GENERALIZATION

The height representation of the Fredkin model sug-
gest several possible generalizations to two dimensions
by analogy with dimer coverings. One possibility is the
following.

Consider a fully packed dimer covering of the honey-
comb lattice, see Fig. 8(a), where each link connecting
any two neighboring sites of the lattice is occupied by
a dimer. Such coverings have a height representation in
terms of a height field hi,j , which becomes apparent in
the equivalent rhombus tiling of the plane, see Fig. 8(b):
from some origin (0, 0) where h0,0 = 0, the height of a
site is computed by moving along the edges of the rhombi
with ∆h at each step according to Fig. 8(c). For exam-
ple, in the covering of Fig. 8(b) the two initial and fi-
nal sites connected by the path with the arrows differ in
height by ∆h = 2. For fully packed dimer configurations
(also called “perfect tilings”) it is easy to verify that any
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FIG. 8. Two-dimensional generalization of the Fredkin model. (a) Dimer covering of the honeycomb lattice. (b)
Equivalent rhombus tiling of the plane. (c) Definition of the height field: given a tiling, moving along the edges of the rhombi
the heigh increases of decreases by one unit as shown. For example, the path in (b) shows that the start and end points have
a height difference of +2. (d) The elementary local moves that preserve the “perfect tiling” character (i.e., no tiling defects,
or no monomers in the dimer representation) are rotations of a triplet of tiles forming an elementary hexagon. These are the
dimer/tiler equivalent of the particle-hole exchange in the SEP. These moves change the height field of the central site by
three units. (e-g) Constrained moves: requiring the presence of the extra tile guarantees that the height of the central site
(indicated by the filled circle) never goes below the lowest height of the arrangement (indicated by the open circle). These are
the two-dimensional equivalents of the allowed moves in the Fredkin chain, see Fig. 1(a).

path that connects two sites gives the same height dif-
ference and the height field is uniquely defined. Honey-
comb dimer coverings (rhombus tilings) therefore define
surfaces in two dimensions. In a configuration with an
equal amount of the three kind of tiles the height field is
pinned at zero at the boundaries (for example in three
sites at angles of 2π/3 within a hexagonal region). This is
a two-dimensional version of the one-dimensional height
field from a lattice of particles and holes at half filling
which is bound to return to the origin.

In the one-dimensional case the elementary local move
that preserves the filling fraction is to exchange a particle
with an adjacent hole. The analogous move for a rhom-
bus tiling is shown in Fig. 8(d) and corresponds to rotat-
ing a triplet of tiles forming an elementary hexagon. This
move changes the height of the central site by ∆h = ±3.
In order to prevent the height field from becoming neg-
ative, which is the defining property of the dynamics of
the Fredkin model, transitions like those of Fig. 8(d) have
to be constrained, cf. Fig. 1(a). Figures 8(e-g) show the
corresponding allowed transition in the two-dimensional
case: the exchange of tiles is only possible if either of
the extra green/blue/red tile as in arrangement (e/f/g),
respectively, is present, and not allowed otherwise. This
constraint implies that in the transition the height of the
site at the centre of the hexagon cannot go below that of
the site indicated by a circle. With this dynamical rules it
is guaranteed that the height field of the dimer/rhombus
arrangement never becomes negative at any point, a two
dimensional version of the RW excursions that define the

configurations of the Fredkin model. Furthermore, giv-
ing different rates to the forward and backward moves in
Figs. 8(e-g) should lead to flat and tilted phases weighted
by the volume under the surface.

VII. CONCLUSIONS

Here we have provided a detailed study of the statics
and dynamics of the stochastic Fredkin model. Despite
being one-dimensional and having local transition rules,
this model displays phase transitions between three dis-
tinct equilibrium phases. This is a consequence of the
constraints in the dynamics which restrict the state space
to that of random walk excursions, with these static tran-
sitions controlled by the asymmetry in the particle hop-
ping rates. Two of these phases are ordered, one being
flat and another one tilted (in terms of the heigh field rep-
resentation), with an intermediate disordered and fluctu-
ating phase. This phase behavior is in some ways rem-
iniscent of interacting two-dimensional dimer coverings
[78, 79, 89].

The constraints in the local transitions of the Fred-
kin model lead to a rich dynamics, both in equilibrium
and in the relaxation after a quench. This richness can
be seen as a consequence of a non-trivial phase struc-
ture of the ensemble of stochastic trajectories. Using nu-
merical matrix product states with DMRG, we compute
the large deviations of the dynamical activity and show
the existence of active-inactive space-time phase transi-



12

tions, something that is also observed in other KCMs.
The overall picture is one where the static phases extend
into dynamical ones, with the flat phase being also a dy-
namical active phase, and the tilted phase a dynamical
inactive one, with first order transitions between them.

There are many possible continuations of the work
here. One is to go beyond one-dimension. As an initial
step we proposed a two-dimensional generalization of the
Fredkin model: by focusing on the fact that Fredkin con-
figurations are random walk excursions, we proposed a
two-dimensional model in terms of packed dimers on the
honeycomb lattice with constraints in the the dynamics
which enforce configurations to be “excursion surfaces”.
It will be interesting to study this and similar stochastic
models in future work. Another interesting area of explo-
ration would be to study the Hamiltonian Eq. (28) under
unitary dynamics, in analogy with recent work that stud-
ied other quantum KCMs. As occurs with the quantum
East model [19], we expect the constraints in Fredkin
models to provide mechanisms for localization and non-
thermal eigenstates. We hope to report on this in the
near future.
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THE DENSITY PROFILE FOR c > 1/2

Simple statistical mechanical considerations can be
used to compute the density profile for c > 1/2 in the
thermodynamic limit. Recall that the probability of a
configuration x is weighted by a factor that depends on
the area A(x) under the path

P (x) ∝
(

c

1− c

) 1
2A(x)

= exp (−βA(x))

where β ≡ 1
2 log[(1− c)/c]. The entropy associated with

a configuration is just the sum of the binary entropies

S(x) = −
∑
i

[ni log ni + (1− ni) log(1− ni)] .

After writing the area as

A(x) =
N∑
i=j

hj(x) =

N∑
i=j

(N + 1− j)Zj (34)

(Zi = 2ni − 1) we arrive at the ‘free energy’

N∑
j=1

[(ξ − j)Zj ]− β−1S

where ξ is a Lagrange multiplier introduced to fix the
overall particle number

∑
j nj . Extremizing the free en-

ergy gives

Zj = tanh (β [ξ − j]) .

Thus Zj has a domain wall profile with a location ξ that
is determined by the particle number (ξ = N/2 for half
filling), and a width

λ ≡ (2β)−1 =

[
ln

(
c

1− c

)]−1
.
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[81] M. C. Bañuls and J. P. Garrahan, Phys. Rev. Lett. 123,
200601 (2019).

[82] P. Helms, U. Ray, and G. K.-L. Chan, Phys. Rev. E 100,
022101 (2019).

[83] P. Helms and G. K.-L. Chan, Phys. Rev. Lett. 125,
140601 (2020).

[84] L. Causer, I. Lesanovsky, M. C. Bañuls, and J. P. Gar-
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