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We study the total molecular electronic energy and its Kohn–Sham components within
the framework of magnetic-field density-functional theory (BDFT), an alternative to current-
dependent density-functional theory (CDFT) for molecules in the presence of magnetic
fields. For a selection of closed-shell dia- and paramagnetic molecules, we investigate the
dependence of the total electronic energy and its Kohn–Sham components on the magnetic
field. Results obtained from commonly used density-functional approximations are compared
with those obtained from Lieb optimizations based on magnetic-field dependent relaxed coupled-
cluster singles-and-doubles (CCSD) and second-order Møller–Plesset (MP2) densities. We
show that popular approximate exchange–correlation functionals at the generalized-gradient-
approximation (GGA), meta-GGA, and hybrid levels of theory provide a good qualitative
description of the electronic energy and its Kohn–Sham components in a magnetic field—in
particular, for the diamagnetic molecules. The performance of Hartree–Fock theory, MP2 theory,
CCSD theory and BDFT with different exchange–correlation functionals is compared with
coupled-cluster singles-doubles-perturbative-triples (CCSD(T)) theory for the perpendicular
component of the magnetizability. Generalizations of the TPSS meta-GGA functional to
systems in a magnetic field work well—the cTPSS functional, in particular, with a current-
corrected kinetic-energy density, performs excellently, providing an accurate and balanced
treatment of dia- and paramagnetic systems and outperforming MP2 theory.

Keywords: electron correlation, density-functional theory, current density-functional theory,
magnetic-field density-functional theory, coupled-cluster theory, molecular magnetic
properties, strong magnetic fields

1. Introduction

Kohn–Sham density-functional theory (DFT) is the most widely used method in
quantum chemistry today. Over the last thirty years, a large number of density-
functional approximations (DFAs) have been developed, leading to a good balance
between accuracy and computational cost of DFT for a broad range of chemical
applications [1]. However, DFT for molecules in a magnetic field has received much
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less attention. As a result, little is known about the universal density functional in
the presence of a magnetic field and the behaviour of existing DFAs for molecular
magnetic properties is not fully satisfactory.

There are two main approaches to DFT in a magnetic field. The best known
approach is perhaps current-density-functional theory (CDFT), where the effects of
the field are described by introducing a dependence on the current density into the
universal density functional [2–5]. Alternatively, in magnetic-field DFT (BDFT),
the effects of the field are described by introducing an explicit field dependence
into the universal functional [6]. In Ref. [7], we presented a common framework for
the two approaches, relating the density functionals of CDFT and BDFT and their
Kohn–Sham decompositions to each other within the four-way correspondence of
convex analysis, which was used further in Ref. [8]. Furthermore, comparisons of
BDFT adiabatic-connection curves of H2 and LiH calculated using some popular
DFAs with accurate curves calculated using field-dependent implementations of
full-configuration-interaction (FCI) theory [9] and coupled-cluster-doubles (CCD)
theory [10, 11] indicated that the main deficiency of the DFAs is present already in
the absence of a magnetic field.

In this work, we extend our study of BDFT to a broader range of molecules,
including larger molecules and closed-shell paramagnetic molecules, taking advantage
of recent field-dependent implementations of relaxed densities from second-order
Møller–Plesset (MP2) perturbation theory [12] and coupled-cluster singles-and-
doubles (CCSD) theory [10, 13]. We assess the quality of several DFAs by comparing
the field dependence of the total electronic energy and its Kohn–Sham components
with CCSD and MP2 theories. The weak-field regime is assessed by comparing
magnetizabilities calculated at the coupled-cluster singles-doubles-perturbative-
triples (CCSD(T)) level of theory with those obtained using approximate exchange–
correlation functionals. We conclude by studying the field dependence of the BDFT
universal density functional for fixed densities.

After a discussion of BDFT in Section 2, DFAs in Section 3, and computational
details in Section 4, we present and discuss our results in Section 5. Concluding
remarks and directions for future work are given in Section 6.

2. Magnetic-field density-functional theory

In the presence of a magnetic field B represented by a vector potential A such that

B = ∇×A, (1)

the spin-free electronic Hamiltonian of an N -electron molecular system in an external
scalar potential v is given by

Hλ(v,A) = T (A) + λW +

N∑
i=1

v(ri), (2)

where T (A) and W are the kinetic-energy and two-electron repulsion operators,
respectively:

T (A) =
1

2

N∑
i=1

|−i∇i + A(ri)|2 , W =
∑
i>j

r−1
ij . (3)
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The two-electron operator is scaled by the interaction-strength parameter λ, which
is equal to one for the physical interacting system and zero for the noninteracting
system. The N -electron ground-state energy is obtained from the Rayleigh–Ritz
variation principle

Eλ(v,B) = inf
γ

tr γHλ(v,A), (4)

where the minimization is over N -electron ensemble states γ—that is, over convex
combinations of pure N -electron states |Ψi〉〈Ψi| of a finite kinetic energy:

γ =
∑
i

ci|Ψi〉〈Ψi|, ci ≥ 0,
∑
i

ci = 1. (5)

The Hamiltonian Hλ(v,A) in Eq. (2) is not uniquely defined since the magnetic field
B determines the vector potential A only up to a gauge transformation. Nevertheless,
the ground-state energy Eλ(v,B) in Eq. (4) is well defined since, for each expectation
value tr γHλ(v,A), a gauge transformation A→ A′ is precisely compensated for by
a gauge transformation γ → γ′ such that tr γ′Hλ(v,A′) = tr γHλ(v,A). We do not
attempt to characterize the set of admissible potentials v in Eq. (4) but note that
the ground-state energy is well defined as an infimum even in those cases where a
ground state (i.e., a minimizer) does not exist.

The ground-state energy Eλ(v,B) is concave and continuous in v for a fixed B.
It can therefore be represented by a density functional Fλ(ρ,B) that is convex in ρ
for fixed B in the manner [6, 7]

Eλ(v,B) = inf
ρ

[Fλ(ρ,B) + (v|ρ)] , (6)

Fλ(ρ,B) = sup
v

[Eλ(v,B)− (v|ρ)] , (7)

where (v|ρ) =
∫
v(r)ρ(r)dr. In the following, we refer to Eqs. (6) and (7) as the

Hohenberg–Kohn and Lieb variation principles, respectively. Alternatively, the
density functional may be expressed in the constrained-search manner

Fλ(ρ,B) = inf
γ 7→ρ

tr γHλ(0,A) (8)

where a minimizer has been proven to exist for A = 0 [14]. Note that the BDFT
universal density functional is gauge invariant, depending on B rather than A.

Assuming that a minimizer γρ,Aλ exists for all λ ∈ [0, 1] in Eq. (8), we establish in
the usual manner the adiabatic connection

Fλ(ρ,B) = Ts(ρ,B) +

∫ λ

0
Wµ(ρ,B) dµ, (9)

where Ts(ρ,B) is the non-interacting (mechanical) kinetic energy and Wµ(ρ,B) the
adiabatic-connection integrand in the presence of a magnetic field,

Ts(ρ,B) = F0(ρ,B) = tr γρ,A0 T (A), (10)

Wλ(ρ,B) = F ′λ(ρ,B) = tr γρ,Aλ W. (11)

Both quantities depend explicitly on B rather than A and are therefore gauge
invariant. Introducing in the usual manner the Hartree functional J , the exchange
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functional Ex, and the correlation functional Ec,

J(ρ) =

∫∫
ρ(r1)ρ(r2)r−1

12 dr1dr2, (12)

Ex(ρ,B) =W0(ρ,B)− J(ρ), (13)

Ec,λ(ρ,B) =

∫ λ

0
Wµ(ρ,B)dµ− λEx(ρ,B)− λJ(ρ) (14)

we arrive at the Kohn–Sham decomposition of the BDFT universal density functional

Fλ(ρ,B) = Ts(ρ,B) + λJ(ρ) + λEx(ρ,B) + Ec,λ(ρ,B), (15)

where all terms are gauge invariant. Often, the exchange and correlation func-
tionals are combined into a single field-dependent exchange–correlation functional
Exc,λ(ρ,B) = λEx(ρ,B) + Ec,λ(ρ,B). While many approximations to the field-free
exchange–correlation functional have been developed over the years, there have
been only a few attempts at modelling its field dependence, mostly based on the
original work by Vignale and coworkers [2, 15]. However, none of these functionals
have proved successful for molecular properties [16–18].

Substituting the Kohn–Sham-decomposed density functional Eq.(15) into the
Hohenberg–Kohn variation principle and assuming that a minimizing ground-state
density ρ exists for the scalar potential v and magnetic field B, we obtain the
Kohn–Sham decomposition of the ground-state energy

Eλ(v,B) = Ts(ρ,B) + (v|ρ) + λJ(ρ) + λEx(ρ,B) + Ec,λ(ρ,B) (16)

where again each term is gauge invariant.
We do not treat CDFT in detail here, referring instead to Refs. [2–4, 7, 8] for

CDFT and its connection to BDFT. However, we note that the reparametrized
energy functional [4]

Eλ(u,A) = Eλ(u− 1
2A

2,A) (17)

is concave in both variables, unlike Eλ(v,A), which is concave only in v. Invoking the
theory of convex conjugation, we may then establish the CDFT Hohenberg–Kohn
and Lieb variation principles in the usual manner

Eλ(u,A) = inf
ρ,jp

[Gλ(ρ, jp) + (u|ρ) + (A|jp)] , (18)

Gλ(ρ, jp) = sup
u,A

[Eλ(u,A)− (u|ρ)− (A|jp)] , (19)

where the CDFT density functional Gλ(ρ, jp) is convex in both the density ρ and
the paramagnetic current density jp.

3. Density-functional approximations

In this study, we compare accurate results obtained using the CCSD and MP2
models with results obtained using DFAs from four rungs of Jacob’s ladder: the
SVWN5 local density approximation (LDA), the PBE and BLYP generalized-
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gradient-approximation (GGA) functionals, the B3LYP hybrid functional, and the
TPSS meta-GGA (mGGA) functional.

3.1. meta-GGA functionals in a magnetic field

Given that meta-GGA functionals depend on the kinetic-energy density, we must
ensure gauge invariance in the presence of a magnetic field. Following Maximoff
and Scuseria [19], we work with the physical (mechanical) kinetic-energy density
τMS to ensure gauge invariance

τMS(r) =
1

2

nocc∑
i=1

|πφi(r)|2 , π = −i∇ + A, (20)

where π is the mechanical momentum operator. Since τMS depends explicitly on
the vector potential and therefore on the magnetic field, this approach is well suited
to BDFT. An alternative generalization of the kinetic-energy density to systems in
a magnetic field, suited to CDFT, was proposed by Dobson [20],

τD(r) = τcan(r)−
j2
p(r)

2ρ(r)
, (21)

with the canonical kinetic-energy density τcan(r) = 1
2

∑nocc

i=1 |pφi(r)|2 and the canoni-
cal momentum p = −i∇. The τMS and τD functionals are both valid gauge-invariant
generalizations of the field-free kinetic-energy density to systems with a magnetic
field. However, when used with the TPSS meta-GGA functional, only τD extends
the iso-orbital indicator of the field-free functional in a rigorous way [21]. In this
work, we denote results obtained with the kinetic-energy density Eq. (20) and the
TPSS functional by aTPSS, whilst those obtained with the kinetic-energy density
Eq. (21) are denoted by cTPSS. This definition of cTPSS is the same as that intro-
duced by Bates and Furche in Ref. [22], and calculations using this form have also
been performed for atoms in strong magnetic fields previously by Zhu, Zhang and
Trickey [23]. For further details on the implementation of DFT in a non-perturbative
manner with London atomic orbitals, see Refs. [5, 18].

3.2. meta-GGA Kohn–Sham matrix elements

When evaluating the Kohn–Sham matrix contributions for the aTPSS and cTPSS
functionals, we follow the standard practice of using derivatives of the exchange–
correlation functional with respect to the one-particle reduced density matrix.
This procedure avoids complexities associated with evaluating optimized effective
potentials [24, 25] and yields non-multiplicative, orbital specific potentials. This
‘functional-derivatives-with-respect-to-orbitals’ (FDO) approach [26] is common
practice for meta-GGA functionals.

We first express the quantities entering Eqs. (20) and (21) in the atomic-orbital
basis as

τMS(r) = 1
2

∑
ba

(πχb(r)) ·Dba(πχb(r))∗, (22)

τcan(r) = 1
2

∑
ba

(pχb(r)) ·Dba(pχa(r))∗, (23)
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and

ρ(r) =
∑

ab
χb(r)Dabχ

∗
a(r), jp(r) = i

2

∑
ab
χb(r)Dab∇χ∗a(r) + c.c. (24)

where χa are the complex London atomic orbitals and the Dba elements of the
density matrix. Introducing the aTPSS and cTPSS exchange–correlation potentials

va
xc(r) =

δF a
xc(τMS, ρ)

δρ(r)
, ηa

xc =
δF a

xc(τMS, ρ)

δτMS(r)
, (25)

vc
xc(r) =

δF c
xc(τD, jp, ρ)

δρ(r)
, ηc

xc =
δF c

xc(τD, jp, ρ)

δτD(r)
, Ac

xc =
δF c

xc(τD, jp, ρ)

δjp(r)
, (26)

where superscripts ‘a’ and ‘c’ denote aTPSS and cTPSS, respectively, we obtain
the following contributions to the Kohn–Sham matrix for the two functionals:

(F a
xc)ab =

(
va

xc

∣∣∣ ∂ρ
∂Dba

)
+
(
ηa

xc

∣∣∣ ∂τMS

∂Dba

)
=
〈
χa
∣∣va

xc + 1
2π · η

a
xcπ
∣∣χb〉 , (27)

(F c
xc)ab =

(
vc

xc

∣∣∣ ∂ρ
∂Dba

)
+
(
Ac

xc

∣∣∣ ∂jp∂Dba

)
+
(
ηc

xc

∣∣∣∂τcan∂Dba

)
=
〈
χa
∣∣vc

xc + 1
2{p,A

c
xc}+ 1

2p · ηc
xcp
∣∣χb〉 . (28)

For the aTPSS functional, the term containing ηa
xc can be decomposed as 1

2π ·η
a
xcπ =

1
2p · ηa

xcp + 1
2{p,Aη

a
xc}+ 1

2η
a
xcA

2, where Aηa
xc is an effective vector potential that

modifies terms linear in p.
Two remarks are in order. First, our BDFT Kohn–Sham implementation is based

on the use of London atomic orbitals with the external magnetic field A explicitly
retained; see Eq. (8) of Ref. [6]. Hence, we do not attempt to further reduce the
BDFT equations to a purely real form as proposed in Eq. (12) of Ref. [6]. Second,
we note that the optimization of the aTPSS and cTPSS functionals with respect to
the density matrix blurs the distinction between the BDFT and CDFT frameworks,
since the functionals lacks a non-trivial dependence on either the external field or
the vorticity—see Section 2.5 in Ref. [7] for further discussion.

4. Computational details

We have studied He, H2, He2, Be, H2O, HF, Ne, N2, CO, NH3, BH, CH+, AlH,
BeH−, and SiH+ with CCSD theory and benzene C6H6 and pyrrole C4H5N with
MP2 theory. All systems except BH, CH+, SiH+, and AlH are diamagnetic. BeH− is
a borderline case, being globally (slightly) diamagnetic, at least when treated at the
coupled-cluster level, but it does have more pronounced paramagnetic components
of the magnetizability perpendicular to the bond axis. For previous studies of these
paramagnetic systems we refer the reader to work by Fowler and Steiner [27] and
Sauer et al. [28].

For H2 and He2, we used bond lengths 1.4a0 and 5.7a0, respectively (approximate
equilibrium distances). The CCSD(T)/cc-pVTZ geometries of H2O, HF, N2, CO, and
NH3 are taken from Refs. [29] and [30], whereas the cc-pVTZ+sp/RAS-MRCISD
bond lengths of BH and CH+ are from Ref. [31]. The AlH bond distance was
optimized at the MP2/aug-cc-pVTZ level yielding 2.07982a0. For BeH− and SiH+,
the geometries were optimized at the CCSD(T) level in the uncontracted Cartesian
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aug-cc-pVTZ basis giving bond distances of 2.68283a0 and 2.85101a0, respectively.
For benzene, we used CC and CH bond lengths of 2.6353a0 and 2.0504a0, respectively,
corresponding to the optimized MP2/6-31G* geometry. For pyrrole, we used the
MP2/cc-pVTZ geometry from Ref. [32].

All atomic and molecular calculations reported in this paper are for field strengths
between 0 and about 7000 Tesla (0 ≤ B/B0 ≤ 0.03, 1B0 ≈ 235, 000 T). This range
provides valuable information about the behaviour of energy components, while
staying well below field strengths that induce level crossings in the fully interacting
or non-interacting systems. Moreover, these field strengths can be studied confidently
without the need for field-dependent, anisotropic basis sets [33]. The direction of
the magnetic field vector was chosen perpendicular to the molecular axis or plane.
In NH3, the field is directed along the symmetry axis away from the nitrogen atom.

The reference data for the magnetizabilities at the HF, MP2, CCSD, and CCSD(T)
levels of theory was generated using the CFOUR program package [34] as described
in Ref. [35]. The density-functional calculations were performed using the QUEST

program [36] and all other calculations were performed using the LONDON quantum-
chemistry software [37, 38]. In all calculations, London atomic orbitals [39] were
employed to ensure gauge-origin independence. Unless otherwise stated, we have used
the uncontracted aug-cc-pVTZ basis of Dunning and coworkers [40, 41], denoted as
unc-aug-cc-pVTZ, in Cartesian rather than spherical-harmonic form.

To obtain Ts(ρ,B) for the wave-function methods, we performed Lieb optimiza-
tions [7, 42, 43] at λ = 0 where the reference density ρ is a relaxed CCSD [13] or
MP2 [12] density calculated with λ = 1 in the field B. The Kohn–Sham compo-
nents J(ρ) and (v|ρ) were obtained from the same CCSD (MP2) densities whereas
Exc(ρ,B) was obtained by subtracting Ts(ρ,B)+J(ρ)+(v|ρ) from the CCSD (MP2)
ground-state energy in Eq. (16) at λ = 1.

5. Results and discussion

In Section 5.1, we discuss the field dependence of the total energy and the Kohn–
Sham components, comparing CCSD (MP2) curves with aTPSS curves. Next, in
Section 5.2, we discuss magnetizabilities, comparing CCSD(T) values with other
wave-function models and several DFAs. Finally, in Section 5.3, we examine the
field dependence of the BDFT density functionals for a fixed density.

5.1. Field dependence of the total energy and its Kohn–Sham components

We consider diamagnetic atoms and molecules first, in Section 5.1.1, followed by a
discussion of closed-shell paramagnetic molecules in Section 5.1.2.

5.1.1. Diamagnetic atoms and molecules

In Figure 1, the changes in the total electronic energy and its Kohn–Sham
components are shown as functions of field strength relative to their respective
zero-field values for the diamagnetic systems He, He2, H2, Be, NH3, H2O, HF, Ne,
N2, CO, C6H6 (benzene), and C4H5N (pyrrole). Each plot contains two sets of
curves: the full lines correspond to MP2 theory for benzene and pyrrole and to
CCSD theory for all other systems; the dotted lines correspond to BDFT with
the aTPSS functional for all systems. No CCSD data is available for benzene
and pyrrole but, for all other molecules, the MP2 curves (not shown here) are
almost indistinguishable from the CCSD curves on the scale of the plots. For the
two-electron systems He and H2, the CCSD model corresponds to the FCI model.
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Figure 1. The total energy and Kohn–Sham components for diamagnetic atoms and molecules relative to
their zero-field values as a function of the magnetic field strength. The full curves have been calculated using
CCSD theory except for benzene and pyrrole, for which MP2 theory has been used. All calculations have
been carried out with the unc-aug-cc-pVTZ basis, at zero-field equilibrium geometry in a perpendicular
orientation to the field.
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All diamagnetic systems show a similar characteristic behaviour. As the field is
applied, the noninteracting kinetic energy Ts(ρ,B) (blue curve) increases because
of the induced precessional motion. At the same time, the applied field confines
the charge density, giving a more negative nuclear-attraction energy (v|ρ) (yellow
curve), which is partly offset by an increase in the Hartree energy J(ρ) (green
curve). As a result, the total Coulomb energy J(ρ) + (v|ρ) is lowered in the field.
The exchange–correlation energy (red curve) also becomes more negative in the
field but it is less affected than the other Kohn–Sham terms. Since all molecules in
Figure 1 are diamagnetic, the total energy (purple curve) increases in all cases.

What differs considerably between the various systems in Figure 1 is the extent
to which the increase in the kinetic energy is offset by the lowering of the total
Coulomb energy. For many systems, the net increase in the electronic energy is
about one half of the increase in the kinetic energy; for other systems, it is closer
to one quarter (e.g., CO and N2).

Bearing in mind the relatively small changes observed in the exchange–correlation
energy in the magnetic field, we would expect DFAs to give a reasonably good
description of the same systems in the field. Indeed, the behaviour of the aTPSS
functional vis-a-vis CCSD/MP2 theory is good—for all systems, the field dependence
of the total energy and its Kohn–Sham components is accurately reproduced by the
aTPSS functional. All DFAs considered in this work (LDA, BLYP, B3LYP, aTPSS,
and cTPSS) behave in a similar manner.

5.1.2. Paramagnetic molecules

Unlike for diamagnetic molecules, the electronic structure of closed-shell param-
agnetic molecules undergoes dramatic changes when an external field is applied.
As explained in Ref. [44], closed-shell paramagnetism arises when the zero-field
ground state couples with low-lying excited states in the presence of the field,
lowering the ground-state energy. The correct description of closed-shell paramag-
netism is therefore a more difficult task than the correct description of closed-shell
diamagnetism.

In Figure 2, we have plotted the changes in total electronic energy and its Kohn–
Sham components against the magnetic field strength relative to their respective
zero-field values for the closed-shell paramagnetic molecules BH, CH+, and AlH. To
the left, we compare the CCSD and MP2 curves; to the right, we compare CCSD
and aTPSS curves. Unlike for the diamagnetic molecules, there are relatively large
differences between the CCSD and MP2 curves and even larger differences between
the CCSD and aTPSS curves—in particular, for AlH.

The behaviour of the neutral molecules BH and AlH in Figure 2 is opposite to that
of the (neutral) diamagnetic molecules in Figure 1: the noninteracting kinetic energy
and the Hartree energy decrease in the field, while the nuclear-attraction energy and
the exchange–correlation energy increase. The CH+ molecule behaves differently in
that the lowering of the noninteracting kinetic energy in the field is accompanied by
an increase in the Hartree energy and a decrease in the nuclear-attraction energy.
This unexpected behaviour is perhaps related to the compact electronic structure
of the positively charged CH+ molecule.

Whereas the exchange–correlation energy of diamagnetic molecules is lowered
slightly with increasing field strength, it increases strongly for all paramagnetic
molecules, reflecting the dramatic changes that occur in paramagnetic molecules
with the application of a field. Since the changes in the exchange–correlation energy
are as large as or even larger than the changes in the total energy (but in the
opposite direction), the performance of the DFAs for paramagnetic molecules varies
more widely than for diamagnetic molecules.
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Figure 2. The total energy and its Kohn–Sham components for paramagnetic molecules relative to the
zero-field values as a function of the magnetic field strength; CCSD and MP2 curves to the left; CCSD
and aTPSS curves to the right. All calculations have been carried out with the unc-aug-cc-pVTZ basis, at
zero-field equilibrium geometry in a perpendicular orientation to the field.

5.2. Magnetizabilities

The curves of the total energy and its Kohn–Sham components in Figures 1 and 2
show a quadratic dependence on the magnetic field strength. For the field strengths
considered here, therefore, the field dependence of the total electronic energy should
be accurately described by the magnetizability, which by definition is equal to minus
the second derivative of the total energy with respect to the magnetic field at zero
field. For a given electronic-structure method, we may then quantify the behaviour
of the total energy and the Kohn–Sham components in the low-field regime (here
up to about 7000 T) by examining the error in the calculated magnetizability.

The quality of calculated magnetizabilities has been subject of several studies
before—particularly relevant are the coupled-cluster study of Gauss et al. from
2007 [35], the DFT and coupled-cluster benchmark study of Lutnæs et al. from
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2009 [29], and the MP2 benchmark study of Loibl and Schütz from 2014 [45]. Our
study differs from these by including paramagnetic as well as diamagnetic molecules
and by considering meta-GGA functionals, recently identified as well suited to
calculations in a magnetic field [5, 7].

Table 1 contains the magnetizabilities calculated at the Hartree–Fock (HF), all-
electron MP2, CCSD, and CCSD(T) levels of theory in the unc-aug-cc-pVTZ
and spherical-harmonic aug-cc-pCV5Z basis sets. The magnetizabilities of the
diamagnetic molecules are reasonably well converged in the unc-aug-cc-pVTZ basis,
the largest difference between the TZ and 5Z values being 0.4 · 10−30 JT−2 for the
HF model and 1.7 · 10−30 JT−2 for the CCSD model. Correlation effects beyond
the CCSD level are of the same order of magnitude and in most cases opposite
in sign, leading to rather small errors between the magnetizabilities obtained at
the CCSD/unc-aug-cc-pVTZ level as compared to the CCSD(T)/aug-cc-pCV5Z
reference numbers (see column ‘diff’ in Table 1). For the paramagnetic molecules,
the basis-set effects and the contribution from triple excitations are larger, leading
to deviations of up to 17.2 · 10−30 JT−2 (in the perpendicular component of SiH+).

As discussed in Section 5.1.2, the perpendicular component of the magnetizability
tensor, ξxx, is in general most sensitive to the correlation treatment and the basis-set
quality. We therefore focus on this component in the following, assessing the errors
of each method relative to the CCSD(T)/aug-cc-pCV5Z data in Table 1. We note
that this magnetizability component corresponds to minus the second derivative at
zero field of the curves plotted in Figures 1 and 2.

In Table 2, we have, for different models in the unc-aug-cc-pCVTZ basis, listed the
mean error (ME), mean absolute error (MAE), mean percentage error (MPE), and
mean absolute percentage error (MAPE) in the calculated ξxx relative to all-electron
CCSD(T)/aug-cc-pCV5Z values. The same errors are illustrated in Figure 3. For the
DFAs considered in this work, we have confirmed that use of the larger unc-aug-cc-
pVQZ basis does not significantly affect the results; the largest differences are 0.2 ·
10−30 JT−2 and 3.8·10−30 JT−2 for the dia- and paramagnetic molecules, respectively.
Recalling the different behaviour for the dia- and paramagnetic molecules noted
in Section 5.1, we have presented errors also separately for dia- and paramagnetic
molecules in Table 2 and highlighted the data points corresponding to paramagnetic
molecules by red circles in Figure 3.

From Table 2 and Figure 3, we see that the best overall performance is that of
CCSD theory and the cTPSS functional, whereas LDA gives the poorest performance.
The good performance of the cTPSS functional is striking: it is the only method that
gives similar errors for the dia- and paramagnetic molecules—all other methods give
errors that are one or two orders of magnitude larger for the paramagnetic molecules.
The modest performance of MP2 theory is consistent with the observations by Loibl
and Schütz [45]. Regarding the CCSD method, we observe that the basis-set and
correlation errors are of the same order of magnitude.

Focusing on the diamagnetic molecules, we note that the mean absolute percentage
errors range from 0.3% for the CCSD model to 4.5% for LDA. For the other DFAs,
the mean absolute errors are 2.3% to 3.3%, compared with 2.3% and 1.8% for
the HF and MP2 models, respectively. The CCSD model clearly performs best,
with mean and mean absolute errors of −0.3 · 10−30 JT−2 and 0.4 · 10−30 JT−2,
respectively, about one order of magnitude smaller than for the other methods.

Considering the paramagnetic molecules, the cTPSS functional gives a mean
absolute percentage error of 1%, compared with 4.9% for CCSD. Errors for the
other methods are an order of magnitude larger, the largest being 31.7% for LDA.
Except for CCSD and aTPSS, all methods overestimate ξxx for these molecules.

Regarding the cTPSS functional, we have previously observed that it performs

11



June 12, 2018 Molecular Physics paper

Table 1. Total magnetizabilities and components (xx, yy, and zz, where the zz-component corresponds to the

parallel orientation) in units of 10−30 J T−2, calculated at the HF, MP2, CCSD, and CCSD(T) levels of theory

in the Cartesian unc-aug-cc-pVTZ and contracted spherical aug-cc-pCV5Z basis sets.

unc-aug-cc-pVTZ aug-cc-pCV5Z diff*

HF MP2 CCSD CCSD(T) HF MP2 CCSD CCSD(T)
Diamagnetic molecules:
He total -31.2 -31.3 -31.5 - -31.2 -31.3 -31.4 - 0.0
Be total -227.8 -220.0 -214.3 -214.1 -227.8 -219.4 -214.0 -213.8 0.5
Ne total -123.4 -126.9 -126.0 -126.4 -123.3 -126.4 -125.5 -125.9 0.1
H2 xx = yy -69.2 -68.7 -68.5 - -69.2 -68.6 -68.4 - 0.1

zz -61.4 -60.6 -60.3 - -61.3 -60.4 -60.1 - 0.2
total -66.6 -66.0 -65.8 - -66.6 -65.9 -65.6 - 0.2

He2 xx = yy -62.3 -62.6 -62.9 -62.9 -62.3 -62.5 -62.8 -62.8 0.1
zz -62.3 -62.7 -62.9 -62.9 -62.3 -62.6 -62.8 -62.8 0.1

total -62.3 -62.7 -62.9 -62.9 -62.3 -62.5 -62.8 -62.8 0.1
N2 xx = yy -151.8 -166.0 -159.5 -159.3 -151.6 -164.5 -158.4 -158.1 1.5

zz -304.9 -301.1 -301.3 -301.7 -304.9 -300.0 -300.3 -300.6 0.7
total -202.8 -211.0 -206.8 -206.8 -202.7 -209.7 -205.7 -205.6 1.2

CO xx = yy -157.1 -172.9 -166.2 -166.4 -156.6 -170.8 -164.4 -164.5 1.6
zz -300.0 -303.5 -301.3 -301.9 -299.8 -302.3 -300.0 -300.6 0.7

total -204.7 -216.4 -211.2 -211.5 -204.4 -214.6 -209.6 -209.9 1.3
HF xx = yy -175.6 -181.6 -179.4 -180.1 -175.5 -180.8 -178.5 -179.3 0.1

zz -166.9 -172.8 -170.8 -171.6 -166.8 -172.1 -170.0 -170.7 0.1
total -172.7 -178.7 -176.5 -177.3 -172.6 -177.9 -175.7 -176.5 0.1

H2O xx -233.1 -240.1 -236.3 -237.3 -232.9 -239.1 -235.4 -236.4 -0.1
yy -228.9 -236.6 -233.1 -234.1 -228.7 -235.6 -232.0 -233.1 0.0
zz -231.8 -239.6 -236.0 -237.1 -232.0 -238.9 -235.2 -236.3 -0.3

total -231.3 -238.8 -235.1 -236.2 -231.2 -237.9 -234.2 -235.2 -0.1
CH4 total -313.9 -321.7 -317.0 -318.0 -313.6 -320.8 -316.2 -317.5 -0.5
NH3 xx = zz -293.1 -300.6 -295.9 -297.0 -292.9 -299.6 -294.9 -296.1 -0.2

yy -276.7 -284.0 -279.3 -280.3 -276.4 -283.0 -276.4 -279.4 -0.2
total -287.6 -295.1 -290.3 -291.5 -287.4 -294.0 -288.8 -290.5 -0.2

Paramagnetic molecules:
BH xx = yy 560.4 498.5 405.5 413.8 560.2 506.7 411.2 418.7 13.2

zz -198.2 -197.6 -196.2 -196.6 -198.1 -196.8 -195.6 -196.0 0.2
total 307.5 266.5 204.9 210.4 307.4 272.2 208.9 213.8 8.8

CH+ xx = yy 834.0 665.3 533.6 540.9 833.3 678.5 540.9 546.7 13.0
zz -113.9 -113.9 -113.8 -113.9 -113.8 -113.5 -113.4 -113.6 0.2

total 518.0 405.6 317.8 322.6 517.6 414.5 322.8 326.6 8.8
AlH xx = yy 282.6 270.1 229.0 237.2 277.3 273.1 233.5 239.8 10.7

zz -365.9 -363.2 -362.6 -363.2 -365.3 -358.2 -358.5 -358.9 3.7
total 66.4 59.0 31.8 37.1 63.1 62.6 36.2 40.2 8.4

SiH+ xx = yy 272.6 262.9 230.7 242.6 271.1 267.6 237.5 247.9 17.2
zz -249.0 -249.0 -249.0 -249.2 -248.7 -246.9 -247.0 -247.3 1.7

total 98.7 92.2 70.8 78.6 97.8 96.1 76.0 82.9 12.0
BeH− xx = yy 328.3 301.5 231.1 247.9 321.6 297.8 229.7 246.8 15.7

zz -601.8 -594.6 -577.5 -580.2 -609.8 -602.3 -585.3 -588.4 -10.9
total 18.3 2.8 -38.4 -28.1 11.1 -2.2 -42.0 -31.6 6.8

∗ Difference between magnetizabilities of our best estimate (CCSD(T)/aug-cc-pCV5Z) and CCSD/unc-aug-cc-pVTZ level of theory.

Table 2. Error measures for the perpendicular component of the magnetizability tensor, ξxx relative to the

CCSD(T)/aug-cc-pCV5Z data, in units of 10−30 JT−2 for ME and MAE. All calculations have been carried out

for the indicated method with the unc-aug-cc-pVTZ basis.

HF MP2 CCSD cTPSS aTPSS B3LYP BLYP PBE LDA
Total ME 37.1 16.3 −4.6 0.4 −13.4 21.8 15.2 22.7 46.7

MAE 38.9 21.1 4.7 3.7 15.3 24.3 19.2 26.4 53.8
MPE 8.6 6.3 −1.3 −0.3 −2.7 7.1 6.6 8.0 16.5

MAPE 8.4 5.6 1.7 1.9 5.6 6.9 6.4 8.0 13.0
Dia. ME 1.4 −3.5 −0.3 1.2 −1.0 −0.7 −2.1 −1.1 −3.7

MAE 4.1 3.5 0.4 3.5 3.8 2.9 3.6 4.3 6.5
MPE −0.9 1.8 0.2 −0.4 0.9 0.9 2.0 1.3 2.9

MAPE 2.3 1.8 0.3 2.3 2.6 2.3 2.8 3.3 4.5
Para. ME 115.6 59.7 −14.0 −1.4 −40.6 71.4 53.5 75.1 157.7

MAE 115.6 59.7 14.0 4.1 40.6 71.4 53.5 75.1 157.7
MPE 29.4 16.3 −4.7 −0.1 −10.6 20.7 16.8 22.8 46.6

MAPE 21.8 13.8 4.9 1.0 12.4 17.1 14.3 18.4 31.7
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Figure 3. Box–whisker plot of the mean percentage error in the initial curvature ξxx = d2E/dB2
x

∣∣
B=0

with the indicated method with unc-aug-cc-pVTZ basis set, relative to CCSD(T)/aug-cc-pCV5Z. The
individual data points are shown as open circles; black circles correspond to the diamagnetic molecules and
red to the paramagnetic molecules. Coloured boxes span the range between the 25% and 75% quantiles. The
end fences of the whiskers correspond to the minimum and maximum errors for each functional considered.
The mean percentage error is marked by a thick horizontal line.

well in magnetic fields—providing, for example, a good description of paramagnetic
bonding in strong magnetic fields [5]. A good description of paramagnetic bonding
depends on the ability of the model to describe the response of the electronic
structure to the applied magnetic field. In closed-shell paramagnetic molecules, the
paramagnetic response of the wave function is larger than in diamagnetic molecules
and must be accurately described to obtain a reasonable accuracy in the calculated
magnetizability. It is therefore tempting to speculate that the cTPSS functional
provides a more reasonable description of the response of the electronic structure
to the applied magnetic field in comparison with the other DFAs, but other factors
may be important and we cannot exclude the possibility of a systematic error
cancellation between dia- and paramagnetic contributions to the magnetizability.

5.3. Field-dependence of the universal density functional

We now consider the dependence of the BDFT density functional Fλ(ρ,B) on the
magnetic field B for a fixed density ρ. We examine first the simple situation where
ρ is a v-representable density whose external potential v is such that the field-free
Hamiltonian Hλ(v,0) is rotationally symmetric about some axis. For simplicity, we
align the z-axis of the coordinate system to this symmetry axis. For vanishing and
parallel magnetic fields, the corresponding canonical angular-momentum component,
Lz = xpy − ypz, is quantized and commutes with the Hamiltonian

[Hλ(v,0), Lz] = 0. (29)

If the ground state ofHλ(v,0) is non-degenerate, it has vanishing angular momentum
mz = 〈Lz〉 = 0. The same wave function is then ground state of Hλ(v,0) and
Hλ(v − 1

2A
2,A) = H(v,0) + 1

2BzLz in some Bz-interval around zero field. If
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the ground state is degenerate, the ground states at Bz < 0 and Bz > 0 are
related by time reversal symmetry, their angular momenta mz differing only by a
sign. In both cases, the same density ρ is a ground-state density of Hλ(v,0) and
Hλ(v− 1

2A
2,A) = Hλ(v,0)+ 1

2BzLz in some Bz-interval around zero field. It follows

that v and v − 1
2A

2 are maximizing potentials in the Lieb variation principles for
Fλ(v,0) and Fλ(v,B), respectively:

Fλ(ρ,0) = max
v′

(
Eλ(v′,0)− (v′|ρ)

)
= Eλ(v,0)− (v|, ρ), (30)

Fλ(ρ,B) = max
v′

(
Eλ(v′,B)− (v′|ρ)

)
= Eλ(v − 1

2A
2,B)− (v − 1

2A
2|ρ). (31)

Comparing Eqs. (30) and (31) and noting that Eλ(v− 1
2A

2,A) = Eλ(v,0)− 1
2 |Bzmz|,

we arrive at the following simple expression for the field variation of the universal
density functional for a fixed density:

∆Fλ(ρ,B) = Fλ(ρ,B)− Fλ(ρ,0) = 1
2(A2|ρ)− 1

2 |Bzmz|, (32)

assuming that the potential v associated with ρ is such that the Hamiltonian
commutes with the angular-momentum operator in the field direction. The field
dependence consists of a simple quadratic diamagnetic term and a linear param-
agnetic term. Note that we have the same dependence at all interaction strengths.
These results are illustrated in Figure 4 for the beryllium and neon atoms.

Let us now consider the more general situation, with no conditions on the density.
Performing the Kohn–Sham decomposition of the density functional, we obtain

Fλ(ρ,B) = Ts(ρ,B) + λJ(ρ) + Exc,λ(ρ,B), (33)

where the Hartree term does not depend explicitly on the field, yielding

∆Fλ(ρ,B) = ∆Ts(ρ,B) + ∆Exc,λ(ρ,B). (34)

In general, the field dependence of Fλ(ρ,B) is dominated by the field dependence
of the noninteracting kinetic energy, the exchange–correlation energy making a
smaller contribution. We have not been able to calculate the field dependence of
F1(ρ,B) for a fixed ρ directly, being unable to converge the Lieb maximization
for the interacting systems for λ > 0. On the other hand, by solving the Lieb
variation principle for λ = 0, we have been able to study the field dependence of
the noninteracting kinetic energy and of the exchange energy (using Eq. (13)).

In Figure 5, we have plotted Ex(ρ,B) for a selection of atoms and molecules
evaluated as a function of the field strength for the field-free ground-state density.
For He, Be, and Ne, the exchange energy is unaffected by the magnetic field since
the wave function remains fixed, for reasons discussed earlier. The H2 molecule is
a single-orbital system with Ex(ρ,B) = −1

2J(ρ), again leading to an unaffected
exchange energy. We observe that, also for LiH and H2O, the exchange-energy
remains essentially constant up to 0.03B0. In contrast, benzene and pyrrole show a
more pronounced, though still small field dependence. For these systems Ex(ρ,B)
increases as the perpendicular field strength increases. The paramagnetic molecules
show a much stronger dependence of Ex(ρ,B) on the applied field, exhibiting a
decreasing quadratic behaviour in the exchange, opposite to that for benzene and
pyrrole.
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Figure 4. BDFT density functional and its Kohn–Sham energy components relative to the zero-field values
as a function of the magnetic field strength for Ne and Be. All functionals were evaluated at the zero-field
ground-state density at the CCSD level using the unc-aug-cc-pVTZ basis set.
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Figure 5. BDFT exchange energy relative to the zero-field values as a function of the magnetic field
strength. All calculations have been carried out at fixed zero-field density, with an uncontracted cc-pVTZ
basis for benzene and pyrrole and the unc-aug-cc-pVTZ basis for the other molecules. For AlH, benzene
and pyrrole, the calculations have been performed at the MP2 level, whereas, for the remaining molecules,
calculations have been performed at the CCSD level.

6. Conclusions

Within the framework of BDFT, we have examined the field dependence of the
total energy and its Kohn–Sham components as a function of the magnetic field
strength for a number of popular DFAs at the GGA, meta-GGA and hybrid levels
of theory. For diamagnetic molecules, the field dependence of the total energy
and the Kohn–Sham components is modelled well by all functionals, even those
that neglect the field dependence of the exchange–correlation functional altogether.
The reason for this good behaviour is that the electronic structure of diamagnetic
molecules is only weakly perturbed by an applied magnetic field. By contrast,
the electronic structure of closed-shell paramagnetic molecules is strongly affected
by an applied magnetic field, making their accurate description more difficult.
For such molecules, the performance is in general poorer, also for the HF, MP2,
and CCSD wave-function methods. Nevertheless, the paramagnetic molecules are
correctly identified by all methods considered here. Moreover, all DFAs provide
a qualitatively correct field dependence of the Kohn–Sham components also for
these difficult systems. The performance of the cTPSS functional is impressive: It
performs equally well for dia- and paramagnetic molecules, outperforming MP2
theory for the closed-shell paramagnetic molecules considered here. At present,
the reason for the good performance of the cTPSS functional is not known and it
may arise from error cancellation. We note however, that we have also previously
observed that it performs well in magnetic fields—providing, for example, a good
description of paramagnetic bonding in strong magnetic fields [5].

In BDFT, the performance of a DFA in a magnetic field is determined both by the
density dependence and the field dependence of the exchange–correlation functional.
We have therefore also studied Fλ(ρ,B) as a function of B for a fixed density ρ. For
atoms, where the Hamiltonian commutes with the angular-momentum operator in
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the field direction, the exchange–correlation energy is unaffected by the magnetic
field. For other systems, indications are that the field dependence is small. Even
for closed-shell paramagnetic molecules, paramagnetism is driven by kinetic energy,
with a much smaller contribution from the exchange–correlation functional.
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