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a b s t r a c t 

Discoveries on the genetics of resource acquisition efficiency are limited by the ability to measure plant 

roots in sufficient number and adequate genotypic variability. This paper presents a root phenotyping 

study that explores ways to combine live imaging and computer algorithms for model-based extraction 

of root growth parameters. The study is based on a subset of barley Recombinant Chromosome Sub- 

stitution Lines (RCSLs) and a combinatorial approach was designed for fast identification of the regions 

of the genome that contribute the most to variations in root system architecture (RSA). Results showed 

there was a strong genotypic variation in root growth parameters within the set of genotypes studied. 

The chromosomal regions associated with primary root growth differed from the regions of the genome 

associated with changes in lateral root growth. The concepts presented here are discussed in the context 

of identifying root QTL and its potential to assist breeding for novel crops with improved root systems. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 1 

Profitability in modern agriculture relies heavily on the sup- 2 

ply of water and fertiliser to maximise crop yield ( Boserup, 2005 ). 3 

The current agro-economic model is now under increased scrutiny 4 

not only because of the damage it causes to the environment 5 

( Secchi et al., 2007 ), but also because of its possible vulnerabil- 6 

ity to climate changes ( Letter et al., 2003 ) and the increasing cost 7 

and scarcity of some of the mineral compounds used in fertilis- 8 

ers ( White et al., 2012 ). Reducing the dependency of modern agri- 9 

culture on water and fertilisers is a major undertaking, and it has 10 

been proposed that breeding programs should now focus on the 11 

development of crop varieties that are more efficient at capturing 12 

the soil resources ( Lynch, 2011 ). 13 

To date, the genetic improvement of crops for improved re- 

source acquisition efficiency has proved challenging. A plant ac- 

quires water and mineral elements from the soil through a sys- 
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tem of interconnected roots, the arrangement of which we refer to 

as the Root System Architecture (RSA). The RSA is a complex ob- 

ject for breeders and geneticists to comprehend and utilize. The 

length and topological arrangement of roots within the RSA is dy- 

namic because growth and lifetime of individual roots is controlled 

by a combination of developmental, physiological and environmen- 

tal signals perceived by the plant ( Bingham et al., 2010; Forde and 

Lorenzo, 2001; Wilkinson and Davies, 2002 ). The development of 

RSAs is also very stochastic ( Forde, 2009 ) and statistical charac- 

teri zation of root traits and growth parameters usually requires 

large replication numbers ( Adu et al., 2014 ), observations in soil 

are destructive and labour intensive ( do Rosario et al., 20 0 0 ), and 

in vivo measurement techniques are partial ( Nagel et al., 2012 ). 

Some progress has been achieved in the understanding of genetic 14 

control of RSA and its potential for breeding. For example recently, 15 

a QTL controlling root growth angle in rice, Deeper Rooting 1 16 

( DRO1 ), has been characterised and cloned ( Arai-Sanoh et al., 2014; 17 

Uga et al., 2013 ). Nevertheless, major constraints for genetic stud- 18 

ies in RSA persist. Because root traits are greatly affected by the 19 

environment, their heritabilities in many cases are low compared 20 

to shoot traits ( Courtois et al., 2009 ). Although genotypic variabil- 21 

ity is found for root traits in controlled conditions, and QTLs have 22 

been identified, very few have been translated and used routinely 23 

in breeding ( de Dorlodot et al., 2007; Sandhu and Kumar, 2017 ). 24 
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List of symbols and notations 

Growth model 

x,y Spatial coordinates (cm) 

α Root angle 

t time (d) 

e Elongation rate (cm · d 

−1 ) 

b r Branching rate ( d 

−1 ) 

b a Branching angle 

g Gravitropic rate ( d 

−1 ) 

n Total root number 

l Total root length (cm) 

ρa Root tip density ( c m 

−2 ) 

ρl Root length density ( c m 

−1 ) 

T Time delay for lateral root initiation (d) 

^ Direct estimate of a model parameter on data 
() Number in superscript and in parentheses indicate 

the root branching order 

Genetic analysis 

G 

i genetic make-up of the i th genotype 

g i 
k 

value of the k th introgression of the i th genotype. 

The value is 0 if the k th marker is that of the elite 

line and 1 if the marker is that of the exotic line. 

ϕ 

i phenotype of the i th genotype represented as a 

scalar value, for example a root growth parameter 

b k the genetic effect of the k th introgression 

D 

1 , 2 
k 

positive contribution to the score of the k th intro- 

gression determined from two subgroups of geno- 

types U 1 and U 2 

E k negative contribution to the score of the k th intro- 

gression 

δ12 
k 

genetic difference factor that indicates when two 

subgroups of genotypes ( U 1 and U 2 ) segregates at 

loci k 

γ r 
k 

genetic difference factor that indicates when a sub- 

group of genotype ( U r ) has variation at loci k 

QTLs should generally be validated in field conditions before us- 25 

ing a marker assisted selection (MAS, Comas et al., 2013 ) but root 26 

traits measured in vivo are not always directly related to field per- 27 

formance. Hence, root QTL studies face limitations that need to be 28 

overcome through improved approaches able to dissect the genetic 29 

control of relevant RSA parameters for the development of more 30 

efficient crops. 31 

There is great hope that technological development in root phe- 32 

notyping systems could overcome some of these challenges. Tradi- 33 

tionally, root phenotyping is achieved in the field using either soil 34 

coring or shovelomics. Soil columns are extracted from the field, 35 

roots contained in the soil columns are washed, and usually im- 36 

age analysis software is used to measure total root length in the 37 

sample ( Watt et al., 2005 ). More recent shovelomics methodology 38 

relies on field measurement of the crown roots of the plant to de- 39 

scribe parameters such as root gravitropism ( Trachsel et al., 2011 ). 40 

These methods provide root data grown in their natural environ- 41 

ment, but the measurements are destructive and time consuming. 42 

Non-destructive methods are a preferable approach to study roots 43 

( Downie et al., 2015 ). Mini-rhizotron tubes can be placed in the 44 

soil to observe roots in situ in undisturbed soils ( Cai et al., 2016; 45 

Rewald and Ephrath, 2012 ); Laboratory-based rhizotron boxes al- 46 

low part of the root system to be observed through glass windows 47 

( Nagel et al., 2012 ) with monitoring of root growth for long peri- 48 

ods of time and image acquisition can be automated; X-ray com- 49 

puted tomography allows in situ imaging of soil cores of a range of 50 

size ( Mooney et al., 2012 ), and various artificial media systems for 51 

phenotyping are being developed ( Clark et al., 2011; Downie et al., 52 

2012; Topp et al., 2013 ). 53 

Techniques to analyse the data produced by phenotyping sys- 54 

tems are not advancing at a comparable rate. What appears to be 55 

a limiting factor is the ability to process data, derive quantitative 56 

information on the growth and developmental processes of plant 57 

roots and understand how these are genetically controlled. In this 58 

paper, we propose a new framework where processing of pheno- 59 

typic data is tailored to the genetic material, here a set of barley 60 

Recombinant Chromosome Substitution Lines (RCSLs, Matus et al., 61 

2003 ). We produced data using germination paper phenotyping 62 

system commonly used in the community ( Gioia et al., 2017; Le 63 

Marié et al., 2014; Thomas et al., 2016 ), and developed mathemat- 64 

ical modelling techniques to obtain chromosomal regions that are 65 

related to changes in the dynamic root growth parameters. 66 

2. Material and methods 67 

2.1. Plant material 68 

Five barley genotypes were chosen from a set of Recombinant 69 

Chromosome Substitution Lines (RCSLs, Fig. 1 ). The RCSLs were de- 70 

rived from an initial cross between a cultivated parent (cv. Harring- 71 

ton) and a naturally drought tolerant wild donor from the Fertile 72 

Crescent as described previously ( Matus et al., 2003 ). Selection of 73 

the sub-set of genotypes was based on a previous assessment of 74 

the impact of drought on yield across two growing seasons dur- 75 

ing field trials (De La Fuente Canto et al, unpublished). Contrast- Q4 
76 

ing lines were selected: OSU044 and OSU048 showed a poor to 77 

moderate but stable yield across water treatments (stable RCSLs); 78 

OSU144 and OSU052 produced large yield potential in favourable 79 

conditions, but under drought their yield was significantly reduced 80 

(sensitive RCSLs); and finally, cv Harrington was chosen as con- 81 

trol elite variety for the RCSLs and OSU060 as a line whose per- 82 

formance was intermediate and similar to the performance of cv. 83 

Harrington. 84 

2.2. Experimental system 85 

Plants were grown in a controlled environment in a 2D pouch 86 

and wick system ( Hund et al., 2009; Liao et al., 2001 ). To avoid 87 

contamination during experiments, seeds with uniform size were 88 

surface sterilized by a vapour-phase sterilisation method using 89 

100 ml sodium hypochlorite 4.5% and 5 ml concentrated HCl. The 90 

seeds were placed in opened Falcon tubes and treated for an 91 

hour with chlorine fumes inside a desiccator jar placed in a fume 92 

hood. Sterilised seeds were sown on 10 × 10 cm germination pa- 93 

per (Anchor Paper, St. Paul, MN, USA) moistened with sterile dis- 94 

tilled water, placed in Petri dishes and maintained vertically in a 95 

Qualicool TM cooled incubator for two days at 20 °C with no light. 96 

The equipment used for the experiments, e.g. buckets, plates and 97 

acetate sheets, was thoroughly washed first in bleach and sub- 98 

sequently in ethanol. Three days after sowing (DAS), seedlings 99 

of similar size were transferred to large sheets of germination 100 

paper (29. 7 × 52 cm) pre-soaked with the nutrient solution, de- 101 

scribed below. Seedlings were held on the germination paper be- 102 

tween an A3 size clear-Perspex plate and a 240 μm thick acetate Q5 
103 

sheet. 104 

Each germinated seed was placed in a slit at the top of the 105 

germination paper and glued to the plate with a drop of diluted 106 

Solvite wallpaper paste (Henkel Limited, Winsford Cheshire, UK). 107 

The germination paper was placed between a plate and an acetate 108 

sheet and held with two foldback clips attached on the sides and 109 

a clip hanger at the top. Each sample was then wrapped in alu- 110 

minium foil to protect the roots from light and suspended into 111 
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Fig. 1. The root phenotyping study. A) Diagram of the pouch-and-wick experimental setup used to grow barley seedlings under controlled conditions. (1) Each bucket 

contained two experimental replicates (12 seedlings, one per plate). (2) Lighting consisted of fluorescent tube light placed at 29 cm above the buckets and (3) a Canon EOS 

550D camera was used for image acquisition. The camera was placed on a tripod with a remote shutter-release attached. (4) An artists’easel was used to hold the samples 

at a reference position and (5) the clip hangers used to hold the samples on the easel were fitted with a barcode. (6) Roots grew on A3 size clear-Perspex plate and acetate 

sheet with blue germination paper in between. Each plate was wrapped in foil and (7) seedlings were attached in a slit on top of the germination paper. (8) The nutrient 

solution was aerated with a pneumatic pump and 10 cm of the germination paper was submerged in nutrient solution. B) Picture of the experiment in the growth room. C) 

Diagram of the data processing framework. The raw phenotyping data consisted of images taken every two days for 15 days after sowing. The images were analysed using 

a series of steps including registration for aligning data with a reference image, stacking, tracing and exporting the pixel ROI data to files. Pixel ROI data were then used 

to generate root density distribution maps for primary and lateral roots. This was done using kernel-based density distribution methods combined with a centering of the 

data with respect to the midpoint of the horizontal plane (position of the slit on the germination paper). D) Graphical representation of the genotypes of the 5 RCSLs used 

in the study and cv. Harrington. Dark red areas indicate the introgressions from the wild parent and light grey areas indicate the modern background. Missing marker data 

are indicated in light blue. Each chromosome is oriented with the short arm from the left. (For interpretation of the references to colour in this figure legend, the reader is 

referred to the web version of this article). 

plastic boxes (60 cm × 68 cm × 46.5 cm) containing 30 L of nutri- 112 

ent solution into which only approximately 10 cm of the germina- 113 

tion paper was submerged ( Fig. 1 ). The nutrient solution was con- 114 

stantly aerated with a pneumatic pump and changed every four 115 

days. 116 

The same nutrient solution was used to soak the germina- 117 

tion paper and to fill in the plastic containers. The nutrient so- 118 

lution was prepared with deionized water and contained 300 mM 119 

NH 4 Cl, 400 mM Ca(NO 3 ) 2 , 400 mM KNO 3 , 300 mM MgSO 4, 100 mM 120 

FeEDTA, 1 M KH 2 PO 4 , 6 mM MnCl 2 , 23 mM H 3 BO 3 , 0.6 mM ZnCl 2 , 121 

1.6 mM CuSO 4 , 1 mM Na 2 MoO 4 , 1 mM CoCl 2 . The pH was adjusted 122 

to 5.5 at the start of the experiment using NaOH and the nu- 123 

trient solution was replaced every four days. Eight replicates of 124 

each genotype were distributed in four plastic boxes, two complete 125 

replicates per box. Plants were grown for 15 days in a growth room 126 

under a 16/8 h day/night cycle at a constant temperature of 15 °C 127 

and 60% relative humidity approximately. Average light intensity 128 

during the day hours was 80 μmol m 

−2 s −1 at plant height. 129 

2.3. Phenotyping system 130 

2.3.1. Image acquisition 131 

Pictures of each plate were taken every two days from day 2 to 132 

day 16 of the experiment with a Canon EOS 550D camera fixed on 133 

a tripod set on autofocus mode at a distance of 1 m from the ger- 134 

mination paper. The plate was hung in an easel with a 1 m working 135 

distance. The aluminium foil and acetate sheet were removed for 136 

taking pictures and, before putting them back, the germination pa- 137 

per was sprayed with approximately 1 ml of the nutrient solution 138 

to ensure a homogeneous diffusion of the nutrients in the root sys- 139 

tem growing media and avoid mineral deficiency towards the end 140 

of the experiment. 141 

2.3.2. Harvest 142 

After the last image, 18 day-old seedlings were removed 143 

from the plates. Shoots were excised from the roots and fresh 144 

weight of the shoots was recorded. Roots were detached from the 145 
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germination paper and stored at room temperature in 50% ethanol 146 

until scanning. A reference picture of the final root system was 147 

acquired in high resolution (400dpi) using an Epson Expression 148 

10,0 0 0XL professional DIN A3 scanner (Seiko Epson Corporation, 149 

Japan). Analysis of scanner images were performed with WinRHIZO 150 

(Regent Instruments, Quebec, Canada) to collect data on average 151 

root diameter and total root length at harvest. Shoots and roots 152 

were dried at 60 °C for 72 h before determining dry weight (DW). 153 

2.3.3. Image processing 154 

Image data were analysed through manual tracing of individual 155 

root trajectory using a liyama ProLite T2735MSC touch screen and 156 

Fiji software ( Schindelin et al., 2012 ). Raw images were first trans- 157 

formed into 8-bit grayscale images. For each genotype, the elon- 158 

gation rate of seminal and lateral roots as well as the branching 159 

rate of seminal roots were analysed on two time-steps, from day 2 160 

to day 10 and from day 10 to day 16 of growth. Tracing was ob- 161 

tained using the freehand tool for several reasons. Automated trac- 162 

ing tool requires manual adjustment due to variation in the back- 163 

ground or difficulty to detect small roots ( Leitner et al., 2014; Lobet 164 

et al., 2011; Pound et al., 2013 ), and the majority of lateral roots 165 

were too short to gain benefit from automation. Also, the analy- 166 

sis does not require topology but just length distribution and the 167 

time gained by automated tracing is offset by the requirement to 168 

connect seminal roots with laterals. ROI (Region Of Interest) files 169 

produced for seminal and lateral roots of all the replicates for each 170 

genotype were then processed by a custom macro so that the pixel 171 

coordinates of all roots in the images were exported in text files. 172 

Tracking of individual roots in coarse time lapse automati- 173 

cally is not easy, and often not possible when roots are grown in 174 

soil. We propose, instead, to determine growth parameters directly 175 

from changes in total root length and total root numbers during 176 

the course of the experiments. Such estimates can be obtained be- 177 

cause in the absence of mortality there is a direct relationship be- 178 

tween elongation rate, branching rate, total number of roots and 179 

total root length. The relationship was proposed by Hackett and 180 

Rose (1972) and it can be transformed to derive root growth pa- 181 

rameters: 182 

e ( 0 ) ( t ) = 

l ( 0 ) ( t + dt ) − l ( 0 ) ( t ) 

n 

( 0 ) dt 
183 

b ( 
0 ) 

r ( t ) = 

n 

( 1 ) ( t + dt ) − n 

( 1 ) ( t ) 

dt − T 
184 

e ( 1 ) ( t ) = 

2 l ( 1 ) ( t + dt ) − l ( 1 ) ( t ) 

n 

( 0 ) b ( 
0 ) 

r (dt − T ) 
2 

. (1) 

Here, e (0) (t) and e (1) (t) (cm d 

−1 ) are the elongation rate for, 185 

respectively, the seminal and lateral roots and b (0) 
r (t) (d 

−1 ) is the 186 

branching rate of lateral roots. The parameter dt indicates the du- 187 

ration of the examined growth interval of 8 days (day 2 to day 10) 188 

and 6 days (day 10 to day 16) respectively, while l (0) (t) (cm) and 189 

l (1) (t) (cm) are the total seminal and lateral root length at time 190 

t , respectively. The number of seminal roots is denoted by n (0) (t) , 191 

the total number of laterals is denoted by n (1) (t) . Since the num- 192 

ber of seminal roots for the replicates of each genotype increased 193 

with time, n (0) was taken as the mean number of seminal roots 194 

during a given time interval where growth parameters were de- 195 

termined. For lateral roots, there was a time delay between the 196 

emergence of the first appeared seminal and the emergence of lat- 197 

eral roots. The parameter T (d) is therefore the time it takes for 198 

lateral roots to emerge from the primary root. In this experiment, 199 

it applied only to the first time step (day 2 - day 10), since after 8 200 

days, laterals had emerged from all primary roots. T was evaluated 201 

as the mean value of the time delay observed among the replicates 202 

of a single genotype. 203 

The rate at which the angle of the root changes towards verti- 204 

cality (termed gravitropic rate) was determined using stacked im- 205 

ages from day 2 and day 4. Images were first registered (alignment 206 

of the base of the root system) using the plugin Align Image by 207 

line ROI ( Schindelin et al., 2012 ). Registration of images used the 208 

top and bottom of the slit as common feature to perform align- 209 

ment across the different images of a given plant. Two types of 210 

angles were recorded for these images. First the angle of the root 211 

with the vertical axis ( α) was measured at day 2 using the Straight 212 

Line ROI. In this setting, α is 0 when the root is vertical. Then, the 213 

change in angle ( dα) taking place for the same root between day 2 214 

and day 4 was determined as the angle between the two segments 215 

of root (between day 2 and day 4) using Segmented Line ROI and 216 

angle measurement. Three randomly selected seminal roots of each 217 

plate were measured. The root gravitropic rate parameter ( g (0) ) is 218 

defined as the relative decrease in vertical angle per unit time and 219 

it was determined for each genotype using the information gath- 220 

ered for a total of 24 seminal roots as follows: 221 

g ( 0 ) ( t ) = 

α( t ) − α( t + dt ) 

α( t ) dt 
(2) 

where dt is equal to 2, since the change in angle was measured for 222 

an interval of 2 days. 223 

2.3.4. Genetic analysis 224 

A scoring system termed Combinatorial Quantitative Trait Loci 225 

(C-QTL) is proposed to visualise the effect of exotic introgressions 226 

on the root growth parameters measured during the experiments. 227 

The algorithm exploits the genomic structure of the introgressions 228 

and processes markers by blocks during the analysis. An algorithm 229 

is then designed to score each block of markers. The algorithm 230 

selects two groups of genotypes and considers blocks of markers 231 

that vary between and within the groups of genotypes and adds to 232 

or substracts from the score based on phenotypic differences. The 233 

process is repeated for all possible groups of genotypes to provide 234 

an overall score for each block of markers. 235 

Formally, the C-QTL score from the set of plants phenotypes 236 

ϕ 

i is derived from the genetic composition G 

i of a genotype. 237 

The genetic composition of the i th plant is defined as G 

i = 238 

{ g i 
1 
, g i 

2 
, ...g i n } with i ≤ s (number of blocks), such that g i 

k 
takes 239 

the value 0 if the k th block of markers is that of the elite line and 240 

g i 
k 

takes the value of 1 if the k th block of markers is that of the 241 

exotic line. The i th genotype is also defined by its phenotype ϕ 

i 242 

which is the quantitative trait corresponding to the genetic make 243 

up G 

i . We therefore assume genotypes and phenotypes are related 244 

according to the following probabilistic model: 245 

P ( ϕ 

i < x ) = 

∫ x 

−∞ 

N 

( 

x − a i −
∑ 

k ≤n 

b k g 
i 
k , σ

) 

dx (3) 

where ϕ 

i is considered to be normally distributed so that 246 

N( x − a i − ∑ 

k ≤n b k g 
i 
k 
, σ ) is the Gaussian function of mean x − a i − 247 ∑ 

k ≤n b k g 
i 
k 

and standard deviation σ . Here a i is the mean trait value 248 

observed on the modern variety, b k is the effect of the i th marker 249 

on the genotype, σ is the standard deviation of the residual, and 250 

N is the Gaussian distribution function. If two groups of distinct 251 

genotypes U 1 and U 2 are obtained, then variations between and 252 

within groups can be exploited to score each region of the genome 253 

using the following formula: 254 

D 

1 , 2 
k 

= δ1 , 2 
k 

( 

1 

n 1 

∑ 

i ∈ U1 

ϕ 

i − 1 

n 2 

∑ 

j∈ U2 

ϕ 

j 

) 

, (4) 

255 
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E k = 

√ √ √ √ √ ma x r=1 , 2 

⎛ 

⎝ 

γ r 
k 

n r 

( ∑ 

i ∈ Ur 

ϕ 

i − ϕ 

r 

) 2 
⎞ 

⎠ (5) 

where γ r 
k 

= 1 if there exists two genotypes P i and P j in U r such 256 

that g i 
k 

� = g 
j 

k 
and γ r 

k 
= 0 otherwise. E 

k 
is therefore an estimate of 257 

the standard error of the mean within groups of genotypes. 258 

Since there are many possible groupings on which to carry out 259 

such analysis, a logical and computationally efficient way to pro- 260 

cess the entire dataset is to use a clustering algorithm to group 261 

genotypes based on their similarity and to cumulate the indicators 262 

D k and E k on the possible set of clusters identified. The following 263 

formula is therefore obtained for scoring individual markers: 264 

I C−QT L = 

{ 

1 

n clusters −1 

×
k ≤n clusters ∑ 

k =3 

[ 

1 

n clusters 
2 −n clusters 

( ∑ 

i, j≤n clusters 

D 

i, j 

k 

) 

−E k 

] } 

. (6) 

C-QTL analysis was run for all four root growth parameters: 265 

the elongation rate of seminal root e (0) , the elongation rate of lat- 266 

eral roots e (1) , the branching rate b (0) 
r and the gravitropic rate g (0) 267 

(the rate at which the angle of the root changes towards vertical- 268 

ity). The data were transformed so that the value of each of these 269 

growth parameters had zero mean and variance equal to 1. Clusters 270 

were created using the Agglomerative Clustering from the Scikit li- 271 

brary ( Pedregosa et al., 2011 ). 272 

2.3.5. Description of the change of the root system over time using a 273 

time-delay density based model 274 

Direct estimation of root growth parameters from an experi- 275 

mental dataset is often problematic. It requires tracking and mea- 276 

suring the growth of single roots at different time points. It is 277 

time consuming at best and not possible when partial observa- 278 

tions are made, for example in rhizotron systems. The Hackett and 279 

Rose (1972) approach allows direct estimation of growth param- 280 

eters in bulk and remove the need for tracking individual roots, 281 

but it lacks a true spatial formalism. It does not provide ways of 282 

estimating parameters such as gravitropic rate, branching angle or 283 

responses to spatial heterogeneity, and results of direct estimations 284 

are sensitive to missing data ( Kalogiros et al., 2016 ). Hence, we 285 

propose a model that extends Hackett and Rose (1972) approach 286 

to include the spatial distribution of roots. Because both space and 287 

time are considered, the model was generalised into a set of par- 288 

tial differential equations including both time and space derivatives 289 

and also requiring more sophisticated numerical techniques to de- 290 

rive the growth parameters. 291 

The mathematical framework proposed to build on the work 292 

presented in Kalogiros et al. (2016) where root systems were mod- 293 

elled as a continuum and changes in the architecture of the root 294 

system over time were mathematically described with time-delay 295 

partial differential equations. The initial model was extended so 296 

that it could be used to extract growth parameters from time- 297 

lapse data. Modifications included time-varying growth parameters 298 

to characterise the changes in growth patterns over time, enabling 299 

the time delay in the emergence of lateral roots to be consistent 300 

with the time-lapse data considered in order to facilitate the spa- 301 

tial and temporal evolution of RSA. 302 

Root density distributions are functions depending on the hor- 303 

izontal distance (x ) , depth (y ) and root angle (α) , which was 304 

defined with respect to the vertical axis. Therefore, at any point 305 

( x, y, α) the number of root tips per unit volume changes accord- 306 

ing to the main conservation equation: 307 

∂ρ( i ) 
a 

∂t 
+ ∇ ·

(
e ( i ) ρ( i ) 

a 

(
sin α, cos α, −g ( i ) α

))
= b (i ) , with i ≥ 0 

(7) 

The index (i ) describes the type of root so that seminal roots 308 

are denoted with the index 0 and lateral roots are denoted with 309 

the index 1. The root tip density is denoted by ρ(i ) 
a ( c m 

−2 ) and 310 

∂ρ(i ) 
a 

∂t 
is the change with respect to time of the root tip den- 311 

sity. The operator ∇ is the divergence with respect to the inde- 312 

pendent variables x, y, α and e (i ) (t) ( cm d −1 ) , g (i ) (t) ( d 

−1 ) and 313 

b (i ) (t) ( c m 

−2 d 

−1 ) describe respectively the elongation rate, gravit- 314 

ropic rate and the volumetric branching rate (termed also “branch- 315 

ing rate” in the following sections) as functions of time. Since only 316 

seminal roots emerged from the base of the root system during the 317 

experiment, b (0) = 0 . For lateral roots, the branching rate is non 318 

zero and is specified as 319 

b ( i ) ( x, y, a, t ) = 

1 

2 

b ( 
i −1 ) 

r 

[ 
ρ( i −1 ) 

a 

(
x, y, α + b ( 

i ) 
a , t − T ( i ) 

)
+ ρ( i −1 ) 

a 

(
x, y, α − b ( 

i ) 
a , t − T ( i ) 

)] 
, with i ≥ 1 , (8) 

where T (1) (d) is the time delay observed before the emergence of 320 

the first appeared 1st order lateral root, b ( i −1 ) 
r ( d −1 ) is the seminal 321 

root branching rate and b (i ) 
a is the branching angle. In this setting, 322 

the root length density distributions ρ(0) 
l 

and ρ(1) 
l 

are derived from 323 

the root tip density distribution as ∫ e (0) 
(t) ρ(0) 

a and ∫ e (1) 
(t) ρ(1) 

a , 324 

respectively. Numerical solutions for Eqs. (7) and (8) were obtained 325 

using an upwind finite volume solver with minmod flux limiters. 326 

2.3.6. Spatial and temporal mapping of the root system architecture 327 

using density functions 328 

In the next stage, the root tracing data were transformed into 329 

root length density so that model predictions could be compared 330 

directly to experimental data. The lists of pixels describing root 331 

trajectories (ROI) were first processed to extract lists of root seg- 332 

ments, their spatial coordinates, the length of the segment and its 333 

angle. Length density distribution functions were then determined 334 

using a kernel-based density estimation method. The method fol- 335 

lowed the principles of Kalogiros et al. (2016) but in this study, it 336 

was applied to pixel data directly and at different times during the 337 

experiment (day 2, day 10 and day 16). Kernel functions were fit- 338 

ted on data by the adjustment of the band width k of the kernel 339 

function. A Gaussian function was used to obtain smooth repre- 340 

sentation of the densities and facilitate fitting of solutions of the 341 

model to the data. The heterogeneity of the distribution of root 342 

segments in space is a main challenge in order to achieve a good 343 

fit, because the data point distribution is dense along a root and 344 

sparse between roots. In this case, it is advantageous to consider 345 

groups of segments belonging to a single root (V-fold grouping) 346 

and apply cross validation to these groups of roots instead of sep- 347 

arate random data points ( Kalogiros et al., 2016 ). 348 

In a time-lapse dataset, both the number of root segments and 349 

the volume explored by roots increase with time. These two fac- 350 

tors have an opposite effect on the optimal k , with a higher num- 351 

ber of segments lowering k values and a larger explored volume 352 

increasing k values. Overall, k values always increase because the 353 

number of points increase linearly with time, but the explored vol- 354 

ume increases more rapidly as a power function of time. In order 355 

to simplify the analysis, we choose the largest optimal value of 356 

k which was always on the last day of growth. Hence, the band- 357 

width k was first evaluated on the last day of the experiment (day 358 

16) and the same value was used for estimating the root length 359 

density for the other time points of the experiment. Finally, the 360 

seminal root length density distribution maps on each day were 361 
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aligned with respect to the midpoint of the horizontal distance of 362 

the plane ( Fig. 1 ; Step C). 363 

2.3.7. Estimation of time-dependent model parameters from 364 

time-lapse data 365 

The Hackett and Rose (1972) approach allows direct estimation 366 

of root growth parameters ( Eq. 1 ) because the model can be in- 367 

versed analytically to provide simple formula for growth parame- 368 

ters. This is not the case in general for fitting the currently pre- 369 

sented model to experimental data . Instead, simulation algorithms 370 

must be used to find optimal parameters that best describe the se- 371 

ries of experimental observations. With these stepwise algorithms 372 

(described formally below) the model is first initiated with the root 373 

density distribution at day 2of the experiment. Subsequently, an 374 

error function must be defined to quantify the difference between 375 

observed and modelled root length density. A minimisation algo- 376 

rithm then provides the best set of parameters to move from the 377 

initial condition to the next step of the experiment. This proce- 378 

dure is repeated for the different growth increments recorded dur- 379 

ing the experiment. 380 

Here, the length density was initiated directly using the kernel- 381 

based density estimation. Since it is not possible to distinguish be- 382 

tween root tips and root bases from the tracings, the length den- 383 

sity at day 2 was also used to determine the root tip density, as 384 

follows: 385 

ρ( 0 ) 
a ( x, y, α, 2 ) = n 

( 0 ) 
ˆ ρ( 0 ) 

l 
( x, y, α, 2 ) ∫ 

ˆ ρ( 0 ) 
l 

( x, y, α, 2 ) d xd yd α
(9) 

with ˆ ρ(0) 
l 

denotes the root length density distribution function es- 386 

timated using kernel-based methods from the experimental data 387 

made available on day 2. The same data were used to determine 388 

the initial value of the root length density at the beginning of the 389 

numerical simulation of the model. The optimal set of growth pa- 390 

rameters was obtained using the following robust error function 391 

E (i ) : 392 

E ( i ) = 

∫ 
V 

ˆ ρ( i ) 
2 

l 

(
ρ( i ) 

l 
− ˆ ρ( i ) 

l 

)2 

d xd yd α + 

(∫ 
V 

(
ρ( i ) 

l 
− ˆ ρ( i ) 

l 

)
d xd yd α

)2 

(10) 

The first integral term accounts for local differences between 393 

the observed ˆ ρ(i ) 
l 

and predicted ρ(i ) 
l 

root length density. It is a 394 

modification of the mean square error that reduces the depen- 395 

dency of the error on areas of relatively low root length density 396 

in the spatial domain. The second term of the error accounts for 397 

the differences in the total root length density. The Nelder–Mead 398 

optimisation algorithm was used to obtain the parameter values 399 

e (0) and g (0) . Lateral root growth parameters b (0) 
r and e (1) were ob- 400 

tained in a second stage. 401 

Model fitting was carried out stepwise, with each experimen- 402 

tal time increment treated as a distinct optimisation sub-problem. 403 

Both the model parameters and the root densities (root length and 404 

root tip density) were initiated from those obtained from the pre- 405 

vious sub-problem. To insure stability of the simulations, the time 406 

increment of simulations was fixed to the smallest admissible in- 407 

crement for all the sub-problems determined from the Courant–408 

Friedrichs–Lewy condition. To maintain a constant grid size, the 409 

bandwidth k of the density estimation was determined on the last 410 

time-step of the experiment (largest k value for each genotype). 411 

First, the parameter extraction pipeline was benchmarked on 412 

simulated data for which growth parameters were known. The 413 

model used to establish the benchmark consisted of Eqs. (7) and 414 

(8) , for which the elongation rate e (0) was either a linearly decreas- 415 

ing function of time or exponentially decreasing function of time 416 

and the branching rate b (0) 
r increased exponentially with time. The 417 

data generated by these models were used in the optimisation al- 418 

gorithm described above and the results were compared with the 419 

model parameters used to generate the target root length density 420 

function. In the second step, the optimisation algorithm was ap- 421 

plied to the entire root tracing dataset ( Fig. 2 ). For each time inter- 422 

val the Model Elasticity Value (MEV) of the error was determined 423 

as the percentage increase in the error induced by a 1% increase 424 

in each model parameter. Confidence intervals for model parame- 425 

ters were estimated using the V-fold bootstrap method proposed 426 

in Kalogiros et al. (2016) . 427 

2.3.8. Software for numerical simulations and statistical analysis 428 

Numerical simulation of the model equations and parameter 429 

estimation was performed using the Python programming lan- 430 

guage (Python Software Foundation. Python Language Reference, 431 

version 2.7. Available at http://www.python.org ). The algorithms 432 

were implemented in the Python SciPy library ( http://www.scipy. 433 

org/ ) using a personal computer of 3.1 GHz CPU (IntelCore i5- 434 

2400 CPU @ 3.1 GHz) and 4 Gb RAM. We provide software and 435 

code for simulation and estimation of growth parameter from 436 

root tracing data under the BSD and GNU General Public Li- 437 

cense. The modules provided include a) the numerical algorithm 438 

for root simulation of root growth (Main.py), b) algorithms for 439 

estimation of length density mappings from experimental data 440 

(Roots_VFold_CrossValidation.py) and c) algorithms for the extrac- 441 

tion of growth parameters from experimental data (Optimisa- 442 

tion.py). All the programs can be downloaded at http://archiroot. 443 

org.uk/tools/model- based- phenotyping.html . Statistical analysis of 4 4 4 

the genotypic effects on root traits was performed using a two fac- 445 

torial mixed model considering the genotype, the time-step (day 2 446 

to day 10, day 10 to day 16 of the experiment) and their inter- 447 

action as fixed effects. The experimental replicate was considered 448 

as the random effect. Genstat 17th Edition (VSN International, UK) 449 

was used for this analysis. 450 

3. Results and discussion 451 

3.1. Integrated phenotyping and computational methods allow 452 

automated extraction of growth parameters 453 

The phenotyping system based on germination paper was tai- 454 

lored for the observation of barley roots of up to 18 days-old 455 

and image acquisition using a DSLR camera. After fifteen days of 456 

growth, seminal roots fitted tightly within the boundaries of the 457 

A3 sized pouches, without touching any of the edges. Similar phe- 458 

notyping systems have been successfully used in cereal crop plants 459 

such as maize ( Hund et al., 2009 ), wheat ( Atkinson et al., 2015 ) 460 

and brassica species ( Adu et al., 2014; Thomas et al., 2016 ). The 461 

preparation of samples and room temperature during growth al- 462 

lowed good control of contamination from fungi and algae with 463 

no significant contamination observed after 18 days of growth. 464 

Elongation rate of seminal roots (approximately 1–2.5 cm d 

−1 ) was 465 

similar to those measured in soil ( Dupuy et al., 2010; Valentine 466 

et al., 2012 ), in hydroponics ( Rose, 1983 ) or in gels ( Shelden et al., 467 

2013 ). Visual inspections of the plant showed vigorous growth 468 

and no signs of stress and mineral deficiencies. Other simple phe- 469 

notyping systems have been used in the past e.g. gel chambers 470 

( Bengough et al., 2004 ), imaging at the surface of transparent 471 

cylinders ( Kristensen and Thorup-Kristensen, 2004 ) or gel systems 472 

( Topp et al., 2013 ), but cost and the time for sample preparation in 473 

such systems is higher. Although the study focused on few selected 474 

genotypes, results showed the phenotypic pipeline is suitable to 475 

detect genotypic variations in rooting traits, and similar analyses 476 

could be carried out on larger number of genotypes simply by al- 477 

lowing for more pouches to be grown simultaneously during an 478 
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Fig. 2. A) Diagram of the optimisation process for automatic identification of growth parameters over time. The target root system architecture (RSA) at specific time points Q6 

results from the available experimentally observed time-lapse data or artificial data (model-generated data with model parameters known). A target root length density 

distribution function is derived from simulations with user-defined time-varying parameters for each time step (1) so that it is feasible for the estimated model parameters 

to be directly compared with target parameters over time. When dealing with experimental data, root density estimation methods (2) are applied to obtain the target RSA. 

Then, the optimal time-dependent model parameters are determined by applying a minimisation algorithm (3) that proposes, at each time step, a set of new candidate 

model parameters. The new set of parameters is then used in a simulation and the results of this simulation are compared with the target root system using a cost function 

(4). The optimisation procedures (3 and 4) are iterated until a convergence criterion is met. The output seminal root distributions with the estimated optimal parameters 

at a specific time step are used as the initial condition for the evaluation of the optimal model parameters at the next time step. B) The quality of the fit obtained with 

the optimisation algorithm was tested on simulated data using time-varying elongation rate and branching rate. In the top figure, the imposed elongation rates (linearly or 

exponentially decreasing with time) are drawn using plain lines and those retrieved by the optimisation algorithms are drawn in dashed lines. Additionally, in the bottom 

figure, the imposed branching rate is drawn using plain lines and those retrieved by the algorithms using dashed lines. 

experiment. This has been achieved in a recent study on Brassica 479 

genotypes ( Thomas et al., 2016 ). 480 

Our approach to the analysis of root data included manual op- 481 

erations to handle the samples and analyse the images, with about 482 

one minute required to trace an entire root system. However, Vari- 483 

ous software and techniques are now being developed to automate 484 

the analysis of root images. Robots are being used to acquire image 485 

data automatically ( Nagel et al., 2012 ) and root tracing algorithms 486 

( Armengaud et al., 2009; Lobet et al., 2011; Pound et al., 2013 ) can 487 

be used to obtain descriptions of the root system and its topology. 488 

Recent developments made in computer vision also indicates there 489 

is a great potential for new software to remove most manual in- 490 

terventions from image processing. Techniques could for example 491 

combine root tip detection ( Kumar et al., 2014 ) with optimal path 492 

search ( Pound et al., 2013 ), active contour ( Makowski et al., 2002 ), 493 

or tracking algorithms ( Mairhofer et al., 2012 ). However, the de- 494 

velopment of automated image analysis techniques may unleash 495 

large quantity of complex root data for which there is currently 496 

no method or strategy to process and analyse. In particular, it has 497 

proved particularly difficult to derive meaningful growth param- 498 

eters from root growth data when only parts of the root system 499 

is visible ( Dupuy et al., 2010; Garré et al., 2012 ). Research pre- 500 

sented here shows that mathematical models of root systems pro- 501 

vide a useful framework to perform such tasks, applicable on var- 502 

ious plants and different types of experimental systems including 503 

rhizotrons ( Kalogiros et al., 2016 ). 504 

3.2. Mathematical models allow accurate estimation of time varying 505 

growth parameters 506 

Optimisation techniques have been used for model calibra- 507 

tion ( Reddy and Pachepsky, 2001 ) to predict, for example, the 508 

spread of roots through soil under different f ertilisation regimes 509 

( Heinen et al., 2003 ). The problem of extracting biologically mean- 510 

ingful information from data is more challenging because models 511 

can make accurate predictions including parameters with no bi- 512 

ological significance. Recent attempts to solve this problem have 513 

shown that root growth rates can be estimated accurately when 514 

the root system is simple ( Kalogiros et al., 2016 ), but when more 515 

complex models are used the optimisation process is more chal- 516 

lenging ( Garré et al., 2012 ). 517 

The difficulty of extending optimisation of model parameters to 518 

time varying parameters and time lapse data is that parameters 519 

of the numerical algorithm for model simulation such as grid size, 520 

time increment or the size of the data buffer for simulation of de- 521 

lays are dependent on both the duration of growth and the ob- 522 

served root system through the bandwidth k of the kernel estima- 523 

tor. 524 

Assessment of the performance of our method was carried out 525 

visually through comparison of the experimental root length den- 526 

sity distributions with the predicted root length density distribu- 527 

tions. ( Fig. 3 A and B). The growth parameters obtained on the ex- 528 

perimental data were also compared with direct measurements 529 

( Fig. 3 C–E, Tables 1 and 2 ). Strong correlations were observed 530 

between direct measurements of growth parameters and model 531 

based estimations of those parameters. All correlations were sig- 532 

nificant ( p < 0.001). Model predictions were greater for the elonga- 533 

tion of seminal roots. The elongation rate had a coefficient of vari- 534 

ation varying between 5% and 20%, and there was little bias with 535 

overestimation of the predictions by a factor of 1.03 ( Fig. 3 C). The 536 

growth of lateral roots was more stochastic with a coefficient of 537 

variation for the branching rate ranging between 9% and 94% and 538 

for the elongation rate between 20% and 110%. This variability af- 539 

fected considerably the predictions. The branching rate of lateral 540 
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Fig. 3. Comparison between data and model predictions. After the optimisation process, root length density estimation matched the experimental data at Day 10 (D10) 

and Day 16 (D16) of the experiment. The data is presented for A) genotype OSU 048; and B) genotype cv. Harrington. Differences between model and data arise from the 

non-smooth variation in root length density due to limited number of genotypes. Overall quality of the extraction of growth parameters (C–E) was assessed by plotting the 

direct estimate with the model-based growth parameters for the entire dataset (all time steps and genotypes). Results show good estimation of elongation rate of primary 

roots e (0) (C) The branching rate b (0) 
r (D) and the elongation rate e (1) of lateral roots (E) could also be predicted but with less accuracy due to the variability of the growth 

rate of lateral roots. Plain lines indicate 1:1 relations and dotted lines show differences in model predictions. 

roots was overestimated by a factor of 1.5 ( Fig. 3 D). The elonga- 541 

tion of laterals showed the weakest model predictions which were 542 

obtained with an over estimation by a factor of 2 ( Fig. 3 E). Like- 543 

wise, the gravitropic rate was more difficult to determine exper- 544 

imentally due to the stochasticity of the direction of growth. Di- 545 

rect estimation of gravitropic rate was obtained using the angle of 546 

primary roots at day 2 and day 4. However, there was a strong 547 

correlation between the initial angle of the root and the magni- 548 

tude of the change in the angle ( p < 0.001, with average R 2 of 0.59). 549 

This confirmed the linearity of the gravitropic response as was pro- 550 

posed in earlier theoretical studies ( Dupuy et al., 2010 ). However, 551 

this measure of the gravitropic rate may be of limited value be- 552 

cause it was obtained at a fixed point in time. The measure is 553 

therefore more sensitive to root stochasticity and it may not be 554 

representative for the overall plant behaviour since the gravitropic 555 

rate may change with time. Results suggest that the global esti- 556 

mation of the gravitropic rate using the optimisation pipeline was 557 

more realistic ( Table 1 ). Direct estimation of the gravitropic rate 558 
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Table 1 

Estimated root growth parameters for primary roots using the optimisation pipeline ( Fig. 2 ) and comparison between mea- 

sured and predicted total root length. 

Genotype Elongation ( cm ×d −1 ) Gravitropism ( d −1 ) Total root length ( cm ) Predicted total root length ( cm ) 

	t 1 	t 2 	t 1 	t 2 	t 1 	t 2 	t 1 	t 2 

OSU_048 0.85 1.30 0.258 0.224 68.30 107.42 68.91 108.72 

OSU_044 1.92 1.99 0.168 0.162 109.83 164.92 110.83 166.99 

Harrington 2.04 1.83 0.167 0.174 137.48 201.00 136.72 201.35 

OSU_060 2.07 1.65 0.178 0.190 137.42 196.01 136.46 195.95 

OSU_052 2.44 1.92 0.174 0.174 152.49 214.54 154.46 217.49 

OSU_144 2.65 2.52 0.155 0.129 161.56 242.58 159.86 242.46 

Table 2 

Estimated root growth parameters for lateral roots using the optimisation pipeline ( Fig. 2 ) and comparison between 

measured and predicted total root length. 

Genotype Branching ( d −1 ) Elongation ( cm ×d −1 ) Total root length ( cm ) Predicted total root length ( cm ) 

	t 1 	t 2 	t 1 	t 2 	t 1 	t 2 	t 1 	t 2 

OSU_048 0.383 0.109 0.690 0.260 13.52 37.27 13.42 37.05 

OSU_044 0.207 0.114 0.373 0.017 3.59 4.37 7.33 8.27 

Harrington 0.442 0.110 0.806 0.087 11.71 20.54 11.52 20.45 

OSU_060 0.296 0.110 0.548 0.086 7.07 13.40 7.00 13.67 

OSU_052 0.4 4 4 0.114 0.814 0.044 7.99 11.91 5.82 9.71 

OSU_144 0.337 0.104 0.624 0.168 6.47 19.05 5.37 18.83 

Table 3 

Analysis of the genotype and time effect on root parameters using a mixed 

effect model. Statistical significance ( p -values) are provided for the fixed ef- 

fects using a chi-squared based Wald-test using residual maximum likeli- 

hood (REML). Level of significance is provided for ( ∗) p < 0.05; ( ∗∗) p < 0.01; 

and ( ∗∗∗) p < 0.001. 

Trait Genotype Time Genotype × Time-step 

Lateral roots number ns ∗∗∗ ns 

Lateral total length ∗ ∗∗∗ ∗∗

Log_lateral_tot_length ns ∗∗∗ ∗

Branching rate ns ∗∗∗ ns 

Lateral elongation rate ns ∗ ns 

Log_lateral_elong_rate ∗ ns ∗∗

Seminal roots number ns ns ns 

Seminal elongation rate ∗∗∗ ∗∗∗ ∗∗∗

predicted genotype OSU060 to be more gravitropic than cv. Har- 559 

rington whereas they were genetically and visually very similar 560 

( Fig. 4 ). There was no major difference in the estimates of the grav- 561 

itropic rate obtained from the optimisation pipeline for the dura- 562 

tion of each growth period between genotypes. 563 

3.3. Both genotypic and temporal factors affect root growth 564 

parameters 565 

Recombinant Chromosome Substitution Lines with contrasting 566 

response to drought in field trials showed remarkable genotypic 567 

variations in the morphology of their root system at early growth 568 

stages. Seminal root elongation rate was the most discriminat- 569 

ing variable across the RCSLs ( p < 0.001, Table 3 ). For instance, 570 

OSU048 (stable but limited yield performance) had a remark- 571 

ably low and uniform elongation rate throughout the experiment 572 

(0.94 ± 0.04 cm d 

−1 and 1.13 ± 0.14 cm d 

−1 from day 2 to 10 and 573 

from day 10 to 16 respectively, Fig. 4 ). In contrast, OSU144 (sen- 574 

sitive but large yield potential) showed an overall decrease in 575 

elongation rate for the seminal roots, with a higher elongation 576 

rate from day 2 to 10 (2.8 ± 0.2 cm d 

−1 ) than from day 10 to 16 577 

(2.3 ± 0.1 cm d 

−1 ). This trend was observed for all genotypes ex- 578 

cept OSU048 and OSU044. Branching rate and lateral root elon- 579 

gation rate showed large variation at the genotype level due to 580 

the stochasticity of these growth parameters. For all the geno- 581 

types, the number of lateral roots emerged from day 2 to day 10 582 

of the experiment was larger than the number of lateral roots that 583 

emerged from day 10 to 16. Genotypic differences were found for 584 

elongation rate of lateral roots ( p < 0.05, Table 3 ). Lateral roots in 585 

OSU048 grew vigorously from day 10 to 16 (0.7 ± 0.3 cm d 

−1 ) and 586 

this resulted in a much larger total lateral root length at the end 587 

of the experiment (40.2 ± 7.0 cm), compared to genotypes such as 588 

OSU044 (4.5 ± 1.4 cm) and OSU052 (13.3 ± 3.5 cm) which had a lat- 589 

eral root growth rate that was significantly lower ( Fig. 4 ). OSU048 590 

and OSU144 were the two most contrasting phenotypes with a fi- 591 

nal total root length of 159.4 ± 10.7 cm and 284.5 ± 23.8 cm respec- 592 

tively. OSU060 was selected because of the similarity of its perfor- 593 

mance to cv. Harrington in field conditions (de La Fuente Canto, 594 

in preparation), and results showed its growth parameters were 595 

comparable to cv. Harrington ( Fig. 4 ). This suggests the exotic in- 596 

trogressions present in OSU060 also had a negligible effect on the 597 

root system at this stage of development. 598 

Overall, these results indicate that introgressions of exotic DNA 599 

in the genetic background of a modern barley can have a strong 600 

effect on root system architecture at establishment stage. Although 601 

the link between response to water deficit and root system archi- 602 

tecture is not demonstrated in this study, there are multiple indi- 603 

cations that modern agriculture and the heavy supply of water and 604 

fertiliser to crops have led to significant changes in the size and 605 

architecture of root systems ( Letter et al., 2003 ). This was illus- 606 

trated in comparative studies of modern and ancient crop varieties 607 

( Chloupek et al., 2006 ). In barley, modern cultivars were found to 608 

have larger numbers of seminal roots with a wider angular spread 609 

of roots compared to their wild relatives ( Bengough et al., 2004 ). 610 

To engineer crops that are efficient in low input cultivation con- 611 

ditions, it is probable that the roots of such new crops will need 612 

to acquire soil resources from different regions of the soil. For ex- 613 

ample, improving the rooting depth could be used for resistance to 614 

drought ( Kato et al., 2006 ) and enhanced lateral root development 615 

in the topsoil could provide better phosphorus uptake efficiency 616 

( Lynch and Brown, 2002; White et al., 2013 ). 617 

Although few genotypes were screened in this study, there was 618 

strong evidence of genotypic variations in root growth parame- 619 

ters of the RCSL population. This result shows the potential of ex- 620 

otic allelic variation in the modification of root system architec- 621 

ture of modern barley cultivars. For example, there was significant 622 
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Fig. 4. Variations in root growth parameters with time and as a function of genotype. Bar charts represent mean values ( + / − SE) for A) seminal root elongation rate (cm d –1 ); 

B) lateral root elongation rate (cm d –1 ); C) branching rate (d −1 ). Growth parameters from Day 2 to Day 10 are plotted with dark grey shading, and growth parameters from 

Day 10 to Day 16 is plotted with light grey shading. D) Genotypes’ mean value for gravitropic rate measured from Day 2 to Day 4. Error bars represent standard error of the 

mean. 

variation in root gravitropism and primary root elongation rate be- 623 

tween the RCSL genotypes, and this could be exploited to create 624 

deep rooting genotypes. Del Pozo et al. (2012) found evidence sug- 625 

gesting segregation in the deep root phenotype within the RCSL 626 

population used for this study. The authors carried out a field trial 627 

and found that drought tolerant RCSLs had greater values of grain 628 

�13 C compared to cv. Harrington, which may indicate greater ac- 629 

cess to soil water during grain filling and a more extensive root 630 

system ( Tambussi et al., 2007 ). The differences found for root elon- 631 

gation rate and gravitropism at early stages of development in the 632 

RCSLs tested in the present study support this hypothesis since 633 

these two traits have been associated with deep rooting phenotype 634 

in cereal crops ( Araki et al., 2002 ), and they have been shown to be 635 

an important quantitative trait to improve water uptake and yield 636 

under water stress in rice ( Uga et al., 2013 ) and maize ( Hund et al., 637 

2009 ). There were also significant variations in the elongation rate 638 

and branching rate of lateral roots. Lateral roots are essential to the 639 

acquisition of nutrients because they allow intensive exploration of 640 

the soil between the main root axes and because of their ability to 641 

solubilize minerals adsorbed on the surface of soil particles. Lat- 642 

eral roots for example, have been shown to increase the uptake of 643 

immobile nutrients such as phosphorus ( Lambers et al., 2006 ). 644 

3.4. Analysis RCSLs phenotypic data 645 

The genomes of Recombinant Chromosome Substitution Lines 646 

(RCSLs) are characterised by substitutions of entire blocks of the 647 

genome with the DNA of an ancient variety (RCSLs, Matus et al., 648 

2003 ). Because the region of DNA inserted are quite large, a much- 649 

reduced number of lines is sufficient to induce variations over the 650 

entire genome. This is particularly appealing to root genetic stud- 651 

ies where phenotyping is particularly time consuming, and this 652 

could be used, for example, to exclude quickly regions of limited 653 

influence on rooting trait. However, it is unclear how best to anal- 654 

yse the phenotypic data of such genetic material to derived useful 655 

knowledge on the genetics of root growth. Traditional QTL map- 656 

ping analysis such as the composite interval mapping (CIM) used 657 

by Uga et al. (2013) in 117 rice RILs or the multiple interval map- 658 

ping (MIM) used by Chen et al. (2010) in a 134 F 4 barley mapping 659 

cannot be applied directly. 660 

In this study, we proposed a combinatorial approach (C-QTL) to 661 

quantify the phenotypic effects of blocks of markers. The method 662 

allows visualisation of the influence of ensembles of markers that 663 

covary in the selection of lines employed in the study. The method 664 

makes group of lines and compute a score for each group of 665 

marker, using variations observed between and within groups. 666 

Since there are different ways of grouping genotypes, a cluster al- 667 

gorithm was used to create the sets of relevant groups on which 668 

the metric was cumulated. Since the metric accounts for both 669 

within group variability and between group variability, it empha- 670 

size regions of the genome that were linked to the largest varia- 671 

tions in a quantitative trait, but also the regions on which no in- 672 

formation can be derived. 673 

The C-QTL method described here is inspired from techniques 674 

used in non-parametric statistics. For example, bootstrapping uses 675 

random resampling of the data with replacement to produce sim- 676 

ulated data of how an estimate varies, and to compute con- 677 

fidence intervals of estimates directly from these simulations 678 
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Fig. 5. Chromosome regions associated with root elongation rates. Green areas of the graph indicate region of the genome for which variations are associated with changes in 

the quantitative trait. Red areas of the graph indicate regions of the genome for which variations are not associated with variations in root traits. Darker regions (respectively 

green or red) indicate regions where there is more chromosomal introgression for which estimates are likely to be more accurate. Horizontal lines in yellow indicate region 

of the genome for which no genetic variations are observed within the selection of genotypes studied. Chromosome regions associated with primary elongation rate A), 

gravitropic rate B), lateral root elongation rate C), and branching rate D). (For interpretation of the references to colour in this figure legend, the reader is referred to the 

web version of this article). 

( Efron and Tibshirani, 1994 ). Cross validation techniques employ 679 

a range of resampling schemes (leave-one-out, leave-p-out, V-fold, 680 

Monte Carlo) for example to determine the log likelihood of a 681 

model ( Burman, 1989 ). In a permutation test, samples are ran- 682 

domly rearranged between groups to assess the likelihood of the 683 

null hypothesis ( Kim et al., 20 0 0 ). The method also shares some 684 

similarities with single marker mapping ( Geldermann et al., 1985 ) 685 

since the metric determined on two sets of genotypes is a direct 686 

estimate of the effect of the group of markers that makes the two 687 

groups genetically different. However, the C-QTL approach is differ- 688 

ent from these methods, in that the whole dataset is used in the 689 

simulations and it is the grouping of the data that is resampled 690 

to compute the net effect of a marker. Intuitively, the method pro- 691 

vides an optimal way of grouping genotypes that minimises the 692 

number of computations while maximises the information con- 693 

tained in the metric. 694 

The method was tested on a larger selection of RCSL lines using 695 

heading date as a reference trait and results can be access on Zen- 696 

odo repository ( de la Fuete Canto, 2018 ). The test showed C-QTL 697 

co-locate with key genomic regions associated with barley phenol- 698 

ogy ( de la Fuete Canto, 2016 ). To date, however, it is unclear how 699 

the resampling of the groups affects the bias and variance of the 700 

estimators of the marker effect, and how different ways of group- 701 

ing genotypes could improve the quality of the estimates. Addi- 702 

tional theoretical work is now required to further characterise the 703 

mathematical properties of C-QTL estimates. Further development 704 

could also expand the technique to include common statistics on 705 

the significance of the effects of markers. For example, permuta- 706 

tion tests could be implemented in the C-QTL analysis to deter- 707 

mine the statistical significance of the QTLs identified ( Doerge and 708 

Churchill, 1996 ), because they do not require a priori knowledge of 709 

the statistical distribution of the sample data. 710 

C-QTL analysis provided a coarse but extensive map of the in- 711 

fluence of wild barley chromosomal introgression on rooting traits 712 

( Figs. 5 and 6 ). Because of the small number of genotypes stud- 713 

ied, only a few substitution segments from the wild genome were 714 

tested and associations for several root growth parameters are 715 

likely to co-vary with other unrelated markers ( Fig. 1 D). Regions 716 

associated with primary and lateral root elongation rates ( Fig. 5 A, 717 

C) were mostly identical across the genome, with the highest 718 

scores recorded simultaneously on chromosomes 1H, 2H, 3H and 719 

4H, moderate score values on chromosome 6H and no associa- 720 

tions on chromosome 5H. In addition, small groups of markers on 721 

chromosomes 2H, 3H, and 7H appear to be solely associated with 722 

the elongation rate of seminal roots whereas a common group of 723 

markers on chromosome 4H was found to overlap with seminal 724 

elongation rate, gravitropism and branching rate. In particular, the 725 

wild barley introgression on chromosome 2H (68.6cM to 80.9cM) 726 

found on OSU048 could be linked in elongation rate. Few QTLs 727 

have been reported in the literature for root growth rate param- 728 

eters in barley ( Gregory et al., 2009 ), while Chen et al. (2010) and 729 

( Arifuzzaman et al., 2014 ) detected genomic regions on chromo- 730 

somes 2H, 3H and 5H influencing root length. Both authors used 731 

populations derived from Israeli wild barley accessions in their 732 
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Fig. 6. Change in regions associated with primary elongation rate with time. Chromosome regions associated with primary elongation rate at day 10 A) and primary 

elongation rate at day 16 B) showed a few differences in chromosomes 2H, 3H, 4H and 7H. 

studies and showed the potential of the unadapted genome to con- 733 

tribute favourable alleles to increase root length and subsequent 734 

adaptation to water-limited environments. 735 

Regions associated with gravitropic rate ( Fig. 5 B) and branch- 736 

ing rate ( Fig. 5 D) were less significant than the associations found 737 

for elongation rate of primary and lateral roots. Two regions on 738 

chromosome 2H and 6H were uniquely associated with gravitropic 739 

rate and a large group of markers chromosome 5H was found 740 

to be associated with the trait but with a very low score. Re- 741 

cently Robinson et al. (2016) reported a major QTL associated with 742 

root spread on chromosome 5H using a double haploid popula- 743 

tion (ND24260 X Flagship). The authors found this region collo- 744 

cated with other QTL controlling seminal root number which also 745 

mapped in the vicinity of aboveground quantitative traits related 746 
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to drought adaptation in barley. A chromosomal region on 7H was 747 

associated solely with the elongation rate of lateral roots and a 748 

chromosomal region on 4H was associated only with the branching 749 

rate. No QTLs have been reported for this trait in previous studies. 750 

It is also interesting to note that the score of markers associated 751 

with the primary elongation rate and the branching rate varied 752 

strongly as a function of time ( Fig. 6 ), whereas the score associ- 753 

ated with the elongation rate of lateral roots was more consistent 754 

at the different time steps. 755 

Accurate identification of root QTL from a small subset of RCSL 756 

genotypes is challenging. First results showed correlations exist be- 757 

tween groups of markers because of limited number of genotypic 758 

combinations within the genome ( Fig. 1 ). Physiological interactions 759 

are also likely to create natural correlations between several traits. 760 

It is often observed that elongation of primary and lateral roots 761 

are linked; for example, enhanced elongation of lateral roots coin- 762 

cides with a reduction in the growth of primary ( Williamson et al., 763 

2001 ). In order to overcome such limitations, it is important there- 764 

fore, to optimise the distribution of wild introgressions within a 765 

selection of RCSL genotypes to be used in a study. An essential 766 

property to consider for the C-QTL approach is the balance be- 767 

tween wild and cultivated introgressions within the selection of 768 

genotypes. An ideal set of lines would have introgressions arranged 769 

with minimum overlapping of segments and each marker would 770 

appear in exactly the same number of times in the set of geno- 771 

types. This is difficult to achieve practically because of the large 772 

number of genotypes that would be required. For example, with 10 773 

segments a full factorial set of introgressions would require 210–774 

1024 genotypes. A more straightforward and effective approach 775 

would be to phenotype introgression lines harbouring a unique ex- 776 

otic insert from the donor parent genome. Lines from the initial 777 

cross between cv. Scarlett X ISR42-8 ( Von Korff et al., 2004 ) have 778 

been further backcrossed to the recurrent parent and new subsets 779 

of lines with unique introgressions have been used in root QTL 780 

mapping studies ( Hoffmann et al., 2012; Naz et al., 2014 ). In this 781 

case, QTLs are located to the target segment making the introgres- 782 

sion line significantly different from the donor parent and the re- 783 

sults can be validated using a small number of introgression lines 784 

( Ahmad Naz et al., 2012 ). However, this approach is not suitable for 785 

groups of introgression lines in earlier generations (BC2) since they 786 

contain several alien inserts in their genome. The C-QTL approach 787 

could aid the selection of target regions putatively associated with 788 

the trait for further experiments, optimising the number of intro- 789 

gression lines used and the backcross strategy to obtain near iso- 790 

genic lines and ultimately identify the genes underlying the QTL. 791 

4. Conclusion 792 

The speed and efficiency of root phenotyping is limiting the 793 

ability of research groups to map QTLs of root-related traits. The 794 

combined imaging and modelling pipeline developed in this paper 795 

allowed efficient measurement of root traits and potential identifi- 796 

cation of QTLs linked to root elongation, branching rate and grav- 797 

itropism for both main axes and first order lateral roots in barley. 798 

The use of barley RCSLs with well-defined chromosomal introgres- 799 

sions enabled identification of QTLs of interest with relatively few 800 

lines in a time lapse dataset. The immediate next step is to design 801 

the next generation of RCSL lines and so better refine the chromo- 802 

somal regions associated with root growth parameters. This gen- 803 

eral approach should be transportable between crop species and 804 

may be applicable in a wider range of growth systems where roots 805 

can be imaged, including root boxes where roots are grown in 806 

soil. As such, the proposed framework is a valuable step forward 807 

in advancing the range of methods available for root phenotyping, 808 

though further testing and verification will be needed for each new 809 

crop growth system adopted. 810 
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