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Abstract 

The oxidation performance of NiCrAlY and NiCrMo coatings thermally sprayed by high velocity air-

fuel (HVAF) technique has been investigated in a chloridizing-oxidizing environment, with and without 

a KCl deposit, at 600 °C for up to 168 h. Both coatings protected the substrate in the absence of KCl 

due to formation of a dense Cr-rich oxide scale. In the presence of KCl, Cl-/Cl2
 diffused through a non-

protective and porous NiCr2O4 scale formed on NiCrAlY, leading to formation of volatile CrCl3. On 

the other hand, Mo in NiCrMo stimulated the formation of a more protective Cr-rich oxide scale which 

increased the corrosion resistance by reducing Cl-/Cl2 diffusion.  
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1 Introduction 

Alkali chlorides deposited on water-wall and superheater tubes are a major concern in boilers utilizing 

renewable fuels such as biomass and waste, as it usually leads to severe corrosion problems [1–3]. 

Although combustion of such fuels is reported to significantly reduce emission of greenhouse gases 

(e.g., CO2) and accordingly combat global warming, degradation of the critical load-bearing 

components in the presence of alkali chlorides can seriously limit the thermal/electrical efficiency of 

the boiler [4,5]. Development of new alloys to address the problem has begun to yield diminishing 

returns, and consequently application of protective coatings is widely acknowledged to be the most 

promising option to increase the lifetime of boiler components exposed to such harsh environments [6–

8]. Coatings deposited employing different techniques and utilizing varied material chemistries have 

been researched and deployed in boilers [9,10] but, notwithstanding the significant efforts, a dense and 

adherent coating that can be “maintenance-free” for an extended period remains elusive and provides 

the motivation for further investigation [11].  

Among the various coating’s chemistries, Ni-based coatings are of growing interest to be employed on 

the critical boiler’s parts [12–17]. These coatings, with the desired level of density and adherence, can 

be conveniently deposited by thermal spraying techniques, e.g., atmospheric plasma spraying (APS) 

and high velocity oxy-fuel (HVOF) [18]. Addition of the alloying elements, i.e., Al, and Cr to Ni has 

been shown to ensure formation of a protective oxide scale under ordinary oxidation conditions [19,20]. 

However, the situation is much more complex under the oxidizing-chloridizing conditions that typically 

prevail in biomass/waste fired boilers. The alloying elements not only influence the type of protective 

scale formed but also govern the severity of internal selective attack that can occur depending on the 

nature of alloying elements present in the coating. The corrosive species can occasionally diffuse 

through the oxide layer and cause depletion of these elements [21], based on well-stablished 

mechanisms of “chlorine-active corrosion” [22,23] or “electrochemistry” [24,25]. While several studies 

have been conducted to identify the mechanisms associated with alkali chloride-induced corrosion in 

case of bulk materials [26,27], a better understanding of the degradation of coatings containing different 

alloying elements is highly desired to enable their design for superior high temperature corrosion 

protection. 

Apart from the coating chemistry, the microstructural features in a thermal spray coating, e.g., in situ 

oxides, splat boundaries, and pores formed during the process, are also known to influence the level of 

corrosion protection [28]. The coatings produced by the high velocity air-fuel (HVAF) method can be 

distinguished by a relatively dense microstructure free from in-situ oxides [28–32] that are ideal from 

a corrosion protection standpoint. These features are realized by virtue of the lowest flame temperature 

and highest flame velocity (T<1800 °C, V= 700-1500 m/s) [15] that HVAF provides compared to other 

two conventionally used thermal spray processes of APS and HVOF [29,33]. The use of compressed 

air in HVAF instead of pure oxygen used in HVOF and the fact that grit-blasting procedure (to improve 
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coating/substrate adhesion) can be operated with the HVAF gun itself offers economic advantages well 

recognized by the industry.  

The present work is an extension of a previous study [34] in which chlorine-induced high temperature 

corrosion behaviour of chromia-forming Ni21Cr and alumina-forming Ni5Al coating was investigated 

in 5% O2 + 500 vppm HCl + N2 bal. at 600 ºC for 168 h. After exposure, although Ni5Al showed better 

corrosion performance than Ni21Cr, lack of the stable alpha-alumina on Ni5Al led to the assumption 

that this coating might not withstand such a corrosive environment for a longer exposure time, hence 

the particular attention was paid to the chromia-forming coatings with addition of certain alloying 

elements such as Mo and Al. Therefore, this work aims to evaluate the role of such alloying elements 

on corrosion performance of the chromia-forming coatings in the similar corrosive environment 

(O2+HCl) with and without KCl at 600 °C for 168 h. The improved understanding of the influence of 

coating composition and microstructure on corrosion performance emerging from this study has 

important design implications and can facilitate tailoring of highly dense and uniform microstructures 

with high chlorine-induced corrosion resistance. To confirm the high temperature corrosion 

performance of the coatings in simulated test conditions, long-term exposures in an actual boiler 

environment are also presently ongoing and results from this will be published later. 

 

2 Experimental procedure 

The substrate specimens used were round coupons (φdiameter= 16 mm and Tthickness= 5 mm) cut from a 

commercially available low carbon steel 16Mo3 material (nominal composition in wt%; 0.01Cr-0.3Mo-

0.5 Mn0.3Si-0.15C- Fe bal.) procured in the form of a rod. The substrates were grit blasted with alumina 

particles (63±10 µm) in order to roughen and clean the surfaces before coating. 

The feedstock powders used were a commercially available gas-atomized powder of Ni21Cr7Al1Y (in 

wt%; 21.2Cr-7.3Al-0.6Y-0.2O-Ni bal.) sourced from HC Starck GmbH (Germany) (referred to as 

NiCrAlY hereafter) and a proprietary SiO2-containing Ni21Cr9Mo powder supplied by M.H. 

Engineering AB (Sweden) (referred to as NiCrMo hereafter), both powders with particle size of 45±22 

µm. The powders were selected in order to evaluate the effect of alloying elements, especially Al and 

Mo, on chlorine-induced corrosion behaviour of the chromia-forming coatings. 

All specimens were sprayed with a M3TM-HVAF spraying system (Uniquecoat, Oilville, VA, USA). 

The 16Mo3 rod was fixed in a horizontal rotating mandrel to first coat on the cylindrical surface, see 

Fig. 1. The rod was then sliced into buttons of 5 mm thickness (step A in Fig. 1) and both flat surfaces 

of the buttons were firstly grit blasted (step B in Fig. 1) and then HVAF sprayed (step C in Fig. 1) to 

ensure that the specimens were coated on all sides. The HVAF spray parameters given in Table 1 were 

chosen based on preliminary coating trials performed to obtain the least porous microstructure. The 

coatings were sprayed to a thickness of around 250 μm. The coating thickness was achieved once 

thickness/pass ratio was calculated after the first pass of deposition, so multiple passes (8 passes in this 

study as reported in Table 1) were applied to obtain the target thickness. Prior to the corrosion test, all 
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surfaces of the investigated samples were polished with a 0.2 μm SiC suspension to achieve a surface 

with Ra< 0.1 μm in order to get a uniform surface roughness on both coatings.  

The corrosion tests were performed in 5 vol.% O2 + 500 vppm HCl + N2 for 24, 96, and 168 h at 600±1 

°C, with and without KCl salt deposit using individual alumina crucibles for each specimen. The 

exposure set-up utilized a horizontal tube furnace with a stainless steel vessel, with the inside of the 

chamber entirely lined with high purity alumina. A mass flow controller was used to flow 35 cm3/min 

of the synthetic gas (O2 + HCl + N2) through the chamber during the corrosion test. This is a simplified 

flue gas composition in biomass-fired boilers (e.g., forest residue, waste wood, and straw), where HCl 

is formed from burning high Cl-containing biomass fuels [35]. The experimental setup was based on 

industrial benchmark tests for biomass-fired boiler materials. A schematic diagram of the test setup 

used in this study is shown in Fig. 2. The test environment (e.g., gas composition and deposits) used in 

this study is well established and have been widely reported in literature [36–38]. 

A KCl suspension was prepared with ethanol and distilled water, and the deposit (~0.1 mg/cm2) was 

applied on the top surface of the sample using a paintbrush. After exposure, the samples were 

maintained under a flow of N2 to prevent further corrosion during cooling. Just prior to the test, the 

samples and the crucibles were individually weighed using a LE26P Poly Range Microbalance 

(SartoriusTM, Massachusetts, USA). The crucibles and samples with the applied KCl deposit, if any, 

were also weighed together to calculate the amount of deposit placed on the surface of the sample. The 

samples were removed from the furnace after the test, and weighed in their individual crucibles together 

with any oxide scale spalled from the exposed coatings.  

The growth rate of uniform and dense oxide scales is commonly assumed to be controlled by diffusion 

of elements through the scales [39]. A simplified analysis of this situation is carried out to show that 

rate control by such a process leads to the parabolic kinetics according to Eq. 1: 

(
∆𝑤

𝐴
)2 = 𝑘𝑝. 𝑡                               (1) 

where Δw = the weight gain per unit area A (mg/cm2), t = the oxidation time in s, and kp = the parabolic 

rate constant for scaling weight gain at each temperature.  

The cross-sections of the as-sprayed and exposed coatings were investigated using a QUANTA-200 

FEG scanning electron microscope (FEI, Oregon, USA) equipped with X-ray energy dispersive 

spectroscopy (EDS). To analyse the cross sections, the as-sprayed coatings were cut slowly (at a disk 

speed of 300 rpm with a feed rate of 0.005 mm/min) using a diamond tipped precision saw and then 

cold mounted in a low shrinkage resin to prevent spallation of the formed oxide scale. The mounted 

samples were ground/polished to a 0.2 μm colloidal silica finish. The topographic features of the 

coatings were analysed using a secondary electron (SE) detector, whereas the cross-sections of the 

coatings were studied using backscattered electron (BSE) signals. An accelerating voltage of 20 kV in 

BSE and 10 kV in SE mode was used for the SEM analysis in order to improve the spatial resolution.  
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ImageJ software (NIH, USA) and image analysis (IA) technique were utilized to determine the extent 

of porosity [40] by converting the SEM (BSE mode) micrographs of the cross-sectioned coatings with 

horizontal field width of 100 µm into binary images, and quantifying the percentages based on grey 

scale contrast [30]. Five SEM images taken from each coating were used for these measurements. 

A D5000 X-ray diffractometer (Siemens, Germany), equipped for grazing incidence analysis with Cr-

Kα radiation (λ=0.229 nm) operating with a fixed incident angle of 1° and diffraction angle (2θ) between 

25° and 80° was used to identify the phases present in the coating before and after the oxidation tests. 

The analysis of the diffractograms was performed with DIFFRAC.EVA using the ICDD-PDF database 

for phase identification. 

 

3 Results and discussions  

3.1 Characterization of as-sprayed coatings  

The cross-sections of the as-sprayed NiCrAlY and NiCrMo coatings are presented in Fig. 3 (a-b). The 

values of porosity measured from the SEM images of the cross-sections were 0.2±0.06 and 0.4±0.1 

vol.% for NiCrMo and NiCrAlY, respectively. The low amount of pores found in the coatings were 

promising as high corrosion protection can be expected from such dense coatings [38]. No evident gap 

(disbonding) between the coatings and substrates could be observed (Fig. 3) verifying that the coatings 

and substrates were well bonded. At higher magnification, the splat boundaries could barely be seen 

confirming the good cohesion among splats. A few particles that were either semi-molten or not fully 

deformed (flattened) to form splats were observed in the NiCrAlY coatings, whereas the NiCrMo 

coating microstructure was relatively more uniform. A small amount of O picked up by the EDS point 

analysis in NiCrAlY coatings was already reported to be sourced from the pre-existing oxygen in the 

powders [11] and not from the HVAF spraying process. This negligible O content confirmed that the 

protective scale forming elements such as Cr or/and Al were not depleted during the spraying process 

but preserved for oxidation protection (see EDS analysis of points A and B in Fig. 3). A higher amount 

of O detected in NiCrMo was attributed to the presence of SiO2 in the coating. It is pertinent to mention 

that oxygen considers as a light atom, so oxygen content obtained from the EDS analysis can only be 

determined qualitatively and its quantitative determination contains some uncertainties. 

It is widely acknowledged that coatings ideal for imparting a high corrosion resistance would be those 

that possess a dense structure, high adhesion to the substrate and are free from interconnected pores, 

which can serve as diffusion paths for the corrosive agents [11]. Such features obtained in the present 

work, e.g., low level of pores and oxygen in the as-sprayed coatings, high adherence of the coating to 

substrate and high cohesion among the splats, are all attributable to the high velocity and low 

temperature of the in-flight particles in the HVAF process [34]. 

The XRD patterns of feedstock powders and polished coatings are shown in Fig. 4 (a-b). The three 

primary peaks detected in case of powders in both figures corresponded to the austenitic γ-Ni(NiCr) 

phase. The β phase rich in Al was also observed in case of the NiCrAlY powder, and this was found to 
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be retained in the coating after spraying. The NiCrMo powder presented detectable amount of SiO2, 

consistent with the powder constitution explained in Section 2. 

The as-sprayed coatings retained the solid solution phase and corresponding oxide phases of the 

feedstock powders. The XRD results proved that the HVAF process did not affect the phase 

composition of the feedstock powders, either by forming any new phases or by eliminating the pre-

existing phases. This is particularly noteworthy in case of the NiCrAlY coating, as the β phase is 

important to be preserved for ensuring oxidation protection [41]. The SiO2 phase in NiCrMo might also 

affect the oxidation mechanism, by acting as nucleation sites to form the protective oxide layer on the 

surface [42]. Negligible in situ oxide pick up was observed after spraying of both coatings. This further 

confirmed the previously mentioned EDS findings which suggested that the protective scale forming 

alloying elements, e.g., Cr or/and Al, were not consumed during spraying but remained available for 

oxidation protection. 

 

3.2 Weight change measurement 

The progressive weight changes in the NiCrMo and NiCrAlY coatings exposed at 600 °C for up to168 

h are shown in Fig. 5a. The results showed that a higher weight gain was recorded in the presence of 

KCl deposit in case of both coatings, reflecting the substantial effect of KCl on the extent of corrosion 

damage. The rate of weight gain increased during the early stages and then reduced as the exposure 

time increased. The weight gain for the NiCrMo and NiCrAlY coatings exposed to O2 + HCl without 

KCl deposit was 0.31 (±0.01) and 0.37 (±0.02) mg/cm2 respectively, whereas the values were 0.67 

(±0.04) and 1.49 (±0.06) mg/cm2 respectively with KCl after 168 h of exposure. The weight of NiCrAlY 

exposed to O2 + HCl with KCl showed a significant drop in weight from 96 to 168 h, while the weight 

loss was very small for NiCrMo in the same period of exposure. 

Fig. 5b shows the obtained data of squared weight gain in a plot of (Δw/A)2 as a function of (t in sec.) 

according to Eq. (1) to obtain the values of kp, which are given in Table 2. The lowest kp value was 

measured for NiCrMo exposed without KCl (⁓2.5×10-7 mg2/cm4s) followed by NiCrAlY exposed 

without KCl (⁓3.6×10-7 mg2/cm4s). The highest kp value was calculated as ⁓2.2×10-5 mg2/cm4s for 

NiCrAl exposed with KCl. The calculated parabolic rate constants of the NiCrMo and NiCrAlY 

coatings exposed without KCl fell within the range of 3.3×10-9 - 2.8×10-7 mg2/cm4s, typically reported 

for chromia-forming bulk materials [43]. However, the kp values was much higher once KCl was 

introduced to the environment implying that the aggressive environment facilitated formation of other 

corrosion products rather than chromia. It should be also noted that the parabolic rate for Cr2O3 scale 

growth may vary depending on temperature and composition.  

In a previous work performed in ambient air (in the absence of HCl) [11], the above two 

coatings had shown much better corrosion protection behaviour in the absence of KCl, as 

reflected in their considerably lower recorded weight gains (0.006±0.001 and 0.13±0.1 mg/cm2 
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for NiCrAlY and NiCrMo, respectively, after 168 h of exposure at 600 °C). These results 

confirm the strong effect of HCl on the corrosion performance of the coatings. In yet another 

study, adding KCl to ambient air [44] led to very high weight gains, i.e., 3.5±0.3 and 4.1±0.3 

mg/cm2 in exposed NiCrAlY and NiCrMo coatings, respectively. From all the aforementioned 

results, it can be summarized that, although HCl alone is more corrosive than ambient air, 

presence of KCl in ambient air is much more detrimental than the simultaneous presence of 

HCl+KCl. 

In another work [34], an alumina-forming Ni5Al and a chromia-forming Ni21Cr coating showed 

significantly higher weight changes compared to the current NiCrAlY and NiCrMo coatings exposed 

to the same conditions (O2 + HCl with KCl at 600 ºC for 168 h). The Ni5Al and Ni21Cr coatings had 

weight changes of 11.32±0.57 and 2.49±0.12 mg/cm2 respectively, confirming the beneficial synergetic 

effect of adding alloying elements such as Al and Mo to the chromia-forming Ni21Cr coating in the 

present study. Although the above study had shown the alumina-forming Ni5Al coating to exhibit a 

lower weight change compared to the chromia-forming Ni21Cr coating due to formation of a protective 

Al2O3 scale, the results from this study demonstrate that addition of suitable alloying elements, e.g., Mo 

or Al, can substantially improve corrosion performance of the chromia-forming coatings. 

 

3.3 Surface characteristics of the corrosion product 

According to the XRD diffractograms shown in Fig. 6, Cr2O3 was only observed to form on the surface 

of NiCrAlY coating exposed to O2 + HCl without KCl. NiCr2O4 along with CrCl3 formed on the surface 

of NiCrAlY in the presence of KCl. The XRD peaks indicate the presence of Al-rich β phase confirming 

the potential of the NiCrAlY coating to preserve the Al content after exposure to a HCl-containing 

environment [11]. 

NiCr2O4 and MoO3 were similarly identified on the surface of NiCrMo exposed to O2 + HCl with and 

without KCl deposit. No metallic chlorides such as MoCl3, NiCl2, or CrCl3 were found on the surface 

of NiCrMo in either case. In NiCrMo exposed to a KCl-containing environment, more peaks of SiO2 

could be observed compared to the XRD peaks from the exposed NiCrMo to O2 + HCl without KCl, 

reflecting the contribution of SiO2 to the formation of the oxide scale.  

It has already been reported that the formation of a dense and slow-growing oxide scale is crucial for 

protection against corrosion at high temperature [45]. Although the coatings selected for this study were 

mainly chromia formers, the extent of corrosion of the coatings seems to dependent, apart from the Cr 

content, on the following: a) content of minor alloying elements, and b) coating microstructure in 

relation to the spray process used. The minor alloying elements such as Mo, Al, etc. present in the 

coatings can support the formation of protective chromia [46]. Indeed, the minor alloying elements have 

the ability to act as nucleation sites for Cr2O3 and form precipitates of Cr2O3 relatively rapidly, resulting 

in more stable oxide scale formation [47]. In the presence of KCl, the XRD results confirmed that Mo 
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was more successful than Al to support formation of a protective Cr-rich scale, as no metallic chlorides 

were observed on the exposed NiCrMo coating. Grabke et al. [23] and Zahs et al. [22] have also showed 

that alloying elements such as Mo has beneficial effects against chlorine-induced corrosion of chromia-

forming alloys [35]. It was reported that the reaction of Mo and Cl2 is less thermodynamically favoured 

than the reaction between Cr or Al with Cl2, because the free energy of Mo-chlorides formation is less 

than the values for Cr- or Al-chlorides formation (~ -253 kJ/mol for MoCl3, ~ -350 kJ/mol for CrCl3, ~ 

-287 kJ/mol for CrCl2 and ~ -525 kJ/mol for AlCl3 at 600 °C).  

The NiCrMo coating appeared to clearly enhance the corrosion resistance but, since both Mo and SiO2 

were present, their individual roles in enhancing the corrosion performance were difficult to isolate in 

the present study. Therefore, the exclusive effect of SiO2 in increasing the corrosion resistance of the 

coatings in the oxidizing-chloridizing will be thoroughly investigated in a separate work.  

 

3.4 Microstructure of formed corrosion product 

3.4.1 NiCrAlY exposed to O2 + HCl without KCl 

As can be seen in Fig. 7, NiCrAlY was protective, since the coating and substrate were not notably 

affected. A thin layer of a protective oxide layer (Cr2O3 based on the previously presented XRD results) 

could be identified on the coating. No depletion of Cr or/and Al beneath the formed oxide layer was 

observed. This was indicative of the fact that HCl alone (without KCl) could not significantly damage 

the coating. In the Al EDS mapping, some signs of Al, most likely attributed to alumina, are seen within 

the splat boundaries of the coating. The O EDS mapping clearly showed a protective and thin layer of 

an oxide scale (~ 1 µm) formed after the exposure. Based on the XRD and EDS results, it can be noted 

that the oxide scale consisted of a continuous layer of a Cr2O3. Formation of the oxide scale did not lead 

to creation of a Cr-depletion zone, as seen in Cr EDS mapping in Fig. 7. As no sign of Cl was detected 

within the formed oxide layer (and hence the corresponding Cl map was excluded), at coating’s splat 

boundaries and at coating/substrate interface, the formed oxide scale in a O2+HCl environment reveals 

a high protection capacity. It can be concluded that, in this environment, O has a greater contribution to 

the corrosion behaviour than Cl. 

 

3.4.2 NiCrAlY exposed to O2 + HCl with KCl 

It can be clearly observed in Fig. 8 that a thickness of ~ 120 µm of the coating (from its top surface) 

was affected by the presence of KCl. The figure also shows a mixed oxide scale/layer with a thickness 

of ~ 10 µm formed on the exposed coating. The EDS analysis revealed that the formed oxide layer was 

thick and almost porous. Al-rich and Al-depleted zones were also formed near to the top surface.  

The EDS elemental mapping analysis detected signals from Al, Cr, O, Cl, and Ni in the mixed oxide 

scale/deposit layer. No sign of K was detected in the EDS analysis. It has been previously reported that 

K can contribute to “electrochemical” mechanism during the early hours of exposure [48], but this 

mechanism was obviously not playing any role over the long exposure (168 h) as performed in this 
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study since K was not detected in EDS. The simultaneous presence of Cr, Cl, and O confirmed that Cl 

must have diffused through the Cr-rich oxide (see Fig. 8). Beneath the oxide layer formed on the top of 

the coating, local enrichment of Cr at the splat boundaries could also be observed.  

The dark spots seen in Fig. 8 within the region of the coating that was affected by KCl, corresponded 

to voids. The voids were distributed mainly beneath the top formed oxide scale. These voids could be 

formed by the vaporization of metallic chlorides (in this work, CrCl3) which migrate outwards (towards 

the surface) in the form of volatile species to form the oxide scale [49], which will be further discussed 

in Section 3.5.  

 

3.4.3 NiCrMo exposed to O2 + HCl without KCl 

As can be seen in Fig. 9, NiCrMo seems to be unaffected by the chloridizing-oxidizing test environment 

unlike NiCrAlY. Moreover, a thin and continuous layer of the oxide scale (NiCr2O4 based on the XRD 

graphs) entirely formed on the surface of the NiCrMo coating in the absence of KCl. Some traces of 

Mo could be detected in EDS elemental mapping, beneath the continuous oxide scale and within the 

coating where Cr was also available. The magnified SEM image of the coating (Fig. 9) revealed that no 

Cl could be detected within the coating, confirming the high corrosion protection imparted by the oxide 

scale formed. The oxide scale formed on NiCrMo was slightly thinner than that formed on NiCrAlY 

(Fig. 9).  

 

3.4.4 NiCrMo exposed to O2 + HCl with KCl 

Fig. 10 shows that a thick but dense oxide layer, rich in Cr, Mo and Ni covered the entire coating 

surface. A slight Cr depletion was observed through the cross section, thereby suggesting that the Cr 

reservoir was sufficiently high to support oxide layer formation. Some sign of K was detected on the 

surface of the oxide scale, which can be attributed to the presence of unreacted KCl over the surface, 

even after 168 h of exposure. Similar to the NiCrMo coating in the absence of KCl, no sign of internal 

oxidation was observed within the coating’s splat boundaries. The EDS analysis clearly showed the 

enrichment of Si in the outer parts of the coating and at the scale/coating interface, confirming the 

presence of SiO2 in the corrosion product formed in the presence of KCl.  

The EDS mapping shows that the thickness of the oxide layer was ~15 µm. The signals from Cl was 

poor in the formed oxide scale and also within the coating’s splats, denoting negligible diffusion of Cl.  

 

3.5 Proposed corrosion mechanism 

In light of the obtained results, it seems that the coatings underwent both “electrochemical” and 

“chlorine-active corrosion” mechanisms during exposure. The two mechanisms, well described in 

literature [23,35,50,51], are schematically presented in Fig. 11. 

According to the “electrochemical” mechanism, Cl- diffusion through the oxide’s grain boundaries 

occurs at the early hours (where there is only a very thin and dense oxide scale present), see Step 1 in 
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Fig. 11. As the exposure progresses, both mechanisms (diffusion of Cl2 and Cl-) could occur evolving 

into the next stage when the oxide becomes non-protective, thick, and porous, see Step 2 in Fig. 11. The 

main reason why the “chlorine-active corrosion” mechanism cannot participate in the early stage of 

corrosion is that the corrosion reactions which take place in this mechanism (i.e., formation of K2CrO4 

and Cl2 based on Eq. 2) are not thermodynamically favoured. This problem is frequently reported as 

one of the main drawbacks in this mechanism. In addition, inward diffusion of only Cl2 through the 

cracks and the pores of the scale (while diffusion of O2 and gaseous metallic chloride could be also 

possible) is also not well explained in this mechanism. 

 

𝐶𝑟2𝑂3(𝑠) + 4𝐾𝐶𝑙(𝑠) +
5

2
𝑂2(𝑔) = 2𝐾2𝐶𝑟𝑂4(𝑠) + 2𝐶𝑙2(𝑔)                   (2) 

∆𝐺𝑓
0(𝐾2𝐶𝑟𝑂4) ≈ 73.8 𝑘𝐽/𝑚𝑜𝑙 𝑎𝑡 600 ℃             

 

As Cl was detected within the oxide scales formed on both coatings, it could be assumed that corrosion 

was initiated by the reaction of KCl with Cr2O3, forming K2CrO4 and Cl- based on Eqs. (3-7) [48,52], 

shown in Step 1, Fig. 11. As Cl- is smaller than Cl2, it has higher mobility in the oxide scale’s grain 

boundaries and coating’s splat boundaries [53]. Once Cl- reaches the interface, it reacts with transition 

metal ions (for instance, Cr) formed by the oxidation of coating as suggested in Eq. 3; 

Scale/coating interface: 

𝐶𝑟 = 𝐶𝑟2+(𝑜𝑥𝑖𝑑𝑒) + 2𝑒−                      (3) 

 

The reaction that occurs on the scale surface is:  

1

2
𝐶𝑟2𝑂3 + 4𝐾𝐶𝑙(𝑠) +

5

2
𝑂2(𝑔) + 2𝑒− = 𝐾2𝐶𝑟𝑂4(𝑠) + 2𝐶𝑙−                                          (4) 

 

And at the locations where Cl- and Cr2+ meet each other within the coating: 

𝐶𝑟2+ +  𝐶𝑙− =  𝐶𝑟𝐶𝑙2 (𝑠)                      (5) 

𝐶𝑟𝐶𝑙2 (𝑠) =  𝐶𝑟𝐶𝑙2 (𝑔)                      (6) 

 

The sum these reactions becomes (for the case of Cr oxidation): 

1

3
𝐶𝑟2𝑂3 + 2𝐾𝐶𝑙(𝑠) +

3

2
𝑂2(𝑔) + 𝐶𝑟 = 𝐾2𝐶𝑟𝑂4(𝑠) +

2

3
𝐶𝑟𝐶𝑙3 (𝑔)                    (7) 

 ∆𝐺𝑓
0(𝐾2𝐶𝑟𝑂4) ≈ −292.6 𝑘𝐽/𝑚𝑜𝑙 𝑎𝑡 600 ℃ 

 

It should be noted that the “electrochemical” mechanism can be interrupted if KCl was completely 

consumed as there would not be any reservoir to promote Cl- formation. However, the SEM results 

confirmed that KCl was still present on the exposed coatings even after exposure, meaning that the 

environment remained oxidizing-chloridizing during the course of exposure. 

http://link.springer.com/article/10.1007/s11085-015-9546-3#Equ1
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The formed solid chlorides have considerable equilibrium vapour pressures (see Eq. 6), evaporate 

readily, and diffuse upward towards gas–oxide scale interface, see Step 2 in Fig. 11. When the sufficient 

pO2 is available, the gaseous chlorides react with the available oxygen to form solid oxides, releasing 

Cl2, see Eqs. (8-12) [35], e.g.: 

 

𝑁𝑖𝐶𝑙2(𝑔) +
1

2
𝑂2(𝑔) = 𝑁𝑖𝑂(𝑠) + 𝐶𝑙2(𝑔)          ∆𝐺𝑓

0(𝑁𝑖𝑂) ≈ −50.9 𝑘𝐽/𝑚𝑜𝑙 𝑎𝑡 600 ℃                   (8) 

𝑆𝑖𝐶𝑙4(𝑔) + 𝑂2(𝑔) = 𝑆𝑖𝑂2(𝑠) + 2𝐶𝑙2(𝑔)                     ∆𝐺𝑓
0(𝑆𝑖𝑂2) ≈ −205.4 𝑘𝐽/𝑚𝑜𝑙 𝑎𝑡 600 ℃                   (9) 

2𝐶𝑟𝐶𝑙3(𝑔) +
3

2
𝑂2(𝑔) = 𝐶𝑟2𝑂3(𝑠) + 3𝐶𝑙2(𝑔)           ∆𝐺𝑓

0(𝐶𝑟2𝑂3) ≈ −255.6 𝑘𝐽/𝑚𝑜𝑙 𝑎𝑡 600 ℃                 (10) 

2𝐴𝑙𝐶𝑙3(𝑔) + 3/2𝑂2(𝑔) = 𝐴𝑙2𝑂3(𝑠) + 3𝐶𝑙2(𝑔)         ∆𝐺𝑓
0(𝐴𝑙2𝑂3) ≈ −319.9 𝑘𝐽/𝑚𝑜𝑙 𝑎𝑡 600 ℃                 (11) 

𝑀𝑜𝐶𝑙3(𝑔) + 3/2𝑂2(𝑔) = 𝑀𝑜𝑂3(𝑠) + 3/2𝐶𝑙2(𝑔)      ∆𝐺𝑓
0(𝑀𝑜𝑂3) ≈ −349.3 𝑘𝐽/𝑚𝑜𝑙 𝑎𝑡 600 ℃                 (12) 

 

Once Cl2 formed, as shown in the above reactions, it may diffuse through defects (mainly pores and 

cracks) in the oxide scale towards the scale-coating interface and even further towards the coating-

substrate interface (where pO2 is low) via “chlorine-active corrosion” mechanism. Depending upon the 

available alloying elements in the coatings which were Ni, Cr, Al, and Mo in the present study, solid 

metal chlorides which are thermodynamically stable could form after reacting with Cl2 (where pO2 is 

high), see suggested in Eqs. 13-17.  

 

Ni (s) + Cl2 (g) = NiCl2 (s)             ∆𝐺𝑓
0(𝑁𝑖𝐶𝑙2) ≈ −173.9 𝑘𝐽 𝑎𝑡 600 ℃                    (13) 

Mo (s) + 3/2Cl2 (g) = MoCl3 (s)            ∆𝐺𝑓
0(𝑀𝑜𝐶𝑙3) ≈ −253.7 𝑘𝐽 𝑎𝑡 600 ℃                   (14) 

Cr (s) + 3/2Cl2 (g) = CrCl3 (s)           ∆𝐺𝑓
0(𝐶𝑟𝐶𝑙3) ≈ −371.6 𝑘𝐽 𝑎𝑡 600 ℃                    (15) 

Al (s) + 3/2Cl2 (g) = AlCl3 (s)            ∆𝐺𝑓
0(𝐴𝑙𝐶𝑙3) ≈ −525.6 𝑘𝐽 𝑎𝑡 600 ℃                     (16) 

Si (s) + 2Cl2 (g) = SiCl4 (s)                                   ∆𝐺𝑓
0(𝑆𝑖𝐶𝑙4) ≈ −547.1 𝑘𝐽 𝑎𝑡 600 ℃                      (17) 

 

Based on the thermodynamics and Gibbs free energy of formation of the metallic chlorides, AlCl3 is 

more thermodynamically favoured than the other metallic chlorides particularly MoCl3 (based on Eqs. 

13-17). Even once MoCl3 forms, transformation of such chloride to oxide (MoO3) is again more 

thermodynamically favoured than transformation of AlCl3 to Al2O3 (see Eqs. 8-12). This proved that 

the contribution of Mo in the oxide scale to provide a better corrosion protection was higher than that 

of Al. 

The weight change of NiCrMo was also significantly lower than that of NiCrAlY due to the formation 

of a protective NiCr2O4 scale, which prevented the formation of volatile NiCl2. Mo did not interrupt the 

formation of the NiCr2O4 scale on the NiCrMo coating as no MoCl3 was detected, while Al in NiCrAlY 

was not successful enough, as formation of AlCl3 was thermodynamically the most favoured reaction 

among the other alloying elements.  
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Fig. 10 also indicates the potential protective effect of a dense SiO2 scale in oxidizing-chloridizing 

environments at 600 °C. The effect of SiO2 in NiCrMo was clearly stronger than the effect of Al in 

NiCrAlY. It is because the chlorine partial pressure (pCl2) for the formation of volatile SiCl4 is always 

higher than that for the formation of volatile AlCl3 [54]. If cracks are present in the oxide scale, the 

formation of SiCl4 may also take place at the oxide/coating interface. The formation of SiCl4 impedes 

healing of the damaged oxide scale. Since the reaction of SiCl4 to stable SiO2 and Cl2 is relatively slow, 

a circular mechanism, similar to those discussed for other elements, can be excluded, in particular in 

the presence of a very thin protective SiO2 layer.  

Another important finding was the increased level of voids in the exposed coatings (in particular 

NiCrAlY), which is consistent with the findings of several other studies [50,55] and explained in terms 

of diffusional processes. The outward diffusion of elements such as Al and Cr left a void-rich region 

that act as open channels for enhanced transport of Cl2, accordingly high vaporization of the formed 

metallic chlorides. Consequently, deep internal corrosion could occur (120 µm of the NiCrAlY coating 

was affected, see Fig. 8). Fig. 8 provides a better insight into processes that occur beneath the KCl 

deposit, with some of the residual KCl still being retained on the coatings surface, (although some of it 

could be lost during material preparation and replaced by the mounting resin, leaving the formed oxide, 

as scattered areas within the mounting resin). Indeed, diffusion of Cr or Al towards the surface of the 

NiCrMo or NiCrAlY coating could be evidenced with the voids formed in the Ni-rich areas. Cl was not 

only detected in the oxide/coating interface but also within the coating, most commonly in the pores. 

This proves that Cl may diffuse along the splat boundaries and structural defects of thermal spray 

coatings, such as interconnected pores, that exist and form during spraying process within the coatings, 

creating high pCl2 regions near the substrate surface [21,56].  

 

5 Conclusions 

High temperature chlorine-induced corrosion behaviour of HVAF thermal-sprayed NiCrAlY and 

NiCrMo coatings was investigated in 5 vol.% O2 + 500 vppm HCl + N2 with and without KCl salt 

deposit at 600 °C for 168 h. The coatings subjected to corrosion tests revealed a strong correlation 

between the alloying elements and corrosion. The coatings demonstrated low corrosion attack in the 

O2+HCl environment without KCl, however the corrosion protection was less in the presence of KCl. 

While both coatings were chromia formers in the test condition, NiCrAlY showed higher weight gain 

compared to NiCrMo, verifying the beneficial effect of Mo to reduce the corrosion, especially in the 

presence of KCl. In the O2+HCl environment with KCl, preferential removal of Al from the corrosion 

front in NiCrAlY was observed due to the formation of a porous and non-protective Cr-rich scale, which 

facilitated the formation of volatile metallic chlorides such as CrCl3 and AlCl3. Chloride attack was 

particularly rapid in the vicinity of coating’s splat boundaries where the oxides were present. Cl- and 

Cl2 could diffuse through the grain boundaries and pores of the formed oxide scale respectively, forming 
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metal chlorides and accelerating the corrosion. In the presence of KCl, Mo supported formation of the 

protective oxide scale rich in Cr, which reduced the formation of volatile CrCl3.  
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Figures and Tables Captions: 

Table: 

Table 1. HVAF process parameters used to spray the NiCrMo and NiCrAlY coatings  

Table 2. Weight gain parabolic rate constant (kp) determined from Fig. 4b 

 

Figures: 

Fig. 1. Schematic of the procedure followed to produce the fully coated specimens. The 16Mo3 rod with the length 

of 500 mm and diameter of 16 mm was firstly grit blasted and then coated using the HVAF process. The coated 

rod was then sliced to small buttons with thickness of 5 mm (step A). The two flat surfaces (top and bottom) of 

the buttons were grit blasted (step B) and then coated (step C). Especial attention was paid to the corner of buttons 

in order to avoid any damage during cutting, grit blasting and spraying. 

Fig. 2. Schematic diagram of the controlled-atmosphere high temperature corrosion rig. 
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Fig. 3. Back-scattered SEM micrographs of cross-sections of the as-sprayed coatings, coating/substrate interfaces, 

and the corresponding EDS point analysis, a) NiCrAlY, and b) NiCrMo. 

Fig. 4. XRD patterns of the NiCrAlY and NiCrMo powders and corresponding polished coatings. 

Fig. 5. a) Weight gain of the exposed NiCrAlY and NiCrMo coatings in 5%O2 + 500ppm HCl + N2 with and 

without KCl deposit up to 168 h at 600 °C, and b) squared of weight gain versus time (h). 

Fig. 6. XRD patterns of the exposed NiCrMo and NiCrAlY coatings in 5%O2 + 500ppm HCl + N2 for 168 h at 

600 °C with and without KCl deposit. 

Fig. 7. Cross-sectional SEM micrographs (BSE) and EDS elemental mapping analysis of the NiCrAlY coating 

oxidized in 5%O2 + 500ppm HCl + N2 without KCl deposit for 168 h at 600 °C. 

Fig. 8. Cross-sectional SEM micrographs (BSE) and EDS elemental mapping analysis of the NiCrAlY coating 

oxidized in 5%O2 + 500ppm HCl + N2 with KCl deposit for 168 h at 600 °C. 

Fig. 9. Cross-sectional SEM micrograph (BSE) and EDS elemental mapping analysis of the NiCrMo coating 

oxidized in 5%O2 + 500ppm HCl + N2 without KCl deposit for 168 h at 600 °C. 

Fig. 10. Cross-sectional SEM micrograph (BSE) and EDS elemental mapping analysis of the NiCrMo coating 

oxidized in 5%O2 + 500ppm HCl + N2 with KCl deposit for 168 h at 600 °C. 

Fig. 11. Schematic of the proposed corrosion mechanisms in the coatings exposed to 5%O2 + 500ppm HCl + N2 

with KCl for 168 h at 600 °C. 
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Tables 

Table 1. HVAF process parameters used to spray the NiCrMo and NiCrAlY coatings 

Variables  

Nozzle type 

For NiCrAlY: 3L2G 

For NiCrMo: 4L2G 

Air pressure, MPa 0.8 

Fuel 1 pressure-Propane, MPa 0.7 

Fuel 2 pressure-Propane, MPa 0.7 

Carrier gas pressure-N2, MPa 0.4 

Feed rate, g/min 150 

Pass velocity, m/min 50 

Pass spacing, mm/rev. 5 

Spray distance, mm 300 

Number of Passes 8 

 

 

Table 2. Weight gain parabolic rate constant (kp) determined from Fig. 4b 

Coating/environment kp (mg2/cm4s) 

NiCrAlY without KCl 3.6×10-7 

NiCrAlY with KCl* 2.2×10-5 

NiCrMo without KCl 2.5×10-7 

NiCrMo with KCl 1.3×10-6 

* Kp value for NiCrAlY exposed to KCl was measured within the exposure period from 0 to 96 h to avoid the 

interference by the weight change drop observed from 96 h to 168 h. 
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Figures 

 

Fig. 1. Schematic of the procedure followed to produce the fully coated specimens. The 16Mo3 rod with the 

length of 500 mm and diameter of 16 mm was firstly grit blasted and then coated using the HVAF process. The 

coated rod was then sliced to small buttons with thickness of 5 mm (step A). The two flat surfaces (top and 

bottom) of the buttons were grit blasted (step B) and then coated (step C). Especial attention was paid to the 

corner of buttons in order to avoid any damage during cutting, grit blasting and spraying. 

 

Fig. 2. Schematic diagram of the controlled-atmosphere high temperature corrosion rig. 
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Fig.3. Back-scattered SEM micrographs of cross-sections of the as-sprayed coatings, coating/substrate 

interfaces, and the corresponding EDS point analysis, a) NiCrAlY, and b) NiCrMo. 

 

Fig. 4. XRD patterns of the NiCrAlY and NiCrMo powders and the corresponding polished coatings. 
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Fig. 5. a) Weight gain of the exposed NiCrAlY and NiCrMo coatings in 5%O2 + 500ppm HCl + N2 with and 

without KCl deposit up to 168 h at 600 °C, and b) squared of weight gain versus time (h). 
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Fig. 6. XRD patterns of the exposed coatings in 5%O2 + 500ppm HCl + N2 for 168 h at 600 °C with and without 

KCl deposit. 
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Fig. 7. Cross-sectional SEM micrographs (BSE) and EDS elemental mapping analysis of the NiCrAlY coating 

oxidized in 5%O2 + 500ppm HCl + N2 without KCl deposit for 168 h at 600 °C. 
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Fig. 8. Cross-sectional SEM micrographs (BSE) and EDS elemental mapping analysis of the NiCrAlY coating 

oxidized in 5%O2 + 500ppm HCl + N2 with KCl deposit for 168 h at 600 °C. 
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Fig. 9. Cross-sectional SEM micrograph (BSE) and EDS elemental mapping analysis of the NiCrMo coating 

oxidized in 5%O2 + 500ppm HCl + N2 without KCl deposit for 168 h at 600 °C. 
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Fig. 10. Cross-sectional SEM micrograph (BSE) and EDS elemental mapping analysis of the NiCrMo coating 

oxidized in 5%O2 + 500ppm HCl + N2 with KCl deposit for 168 h at 600 °C. 
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Fig. 11. Schematic of the proposed corrosion mechanisms in the coatings exposed to 5%O2 + 500ppm HCl + N2 

with KCl for 168 h at 600 °C. 

 

 


