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Abstract—Seamless navigation requires that the mobile device
is capable of offering a position solution both indoors and
outdoors. Novel seamless navigation system design was imple-
mented and tested to achieve this aim. The design consists of
general navigation system framework blocks and of the necessary
interface agreements between the blocks. This approach enables
plug-and-play style design of modules.

The implementation used four preselected key technologies.
Microstrain 3DM-GX4-45 foot-mounted inertial measurement
unit sensor data was fused together with the u-blox GNSS
receiver positions outdoors. Context sensitive inference engine
enabled the fusion of position updates indoors from the De-
cawave TREK1000 Ultra WideBand ranging kit and from the
6 Kontakt.io/Raspberry Pi anchor-based Bluetooth low energy
fingeprinting system.

Novel dual-mode filter design uses a particle filter and the
pentagon buffer enhanced Kalman filter in the position solution
derivation. Depending on the map and the walls in the environ-
ment and on the quality of position updates, the implemented
control logic employs the most fit filter for the current context.
Computational power is now focussed, when particle filter is
needed. The novel pentagon buffer enhanced Kalman filter is
10 times faster, allowing power saving when situation is not
too critical. Moreover, the buffer provides position updates by
interacting with the map and helps to correct the position
solution.

The navigation system is seamless according to the tests con-
ducted around and within the Nottingham Geospatial building.
No user input is needed for smooth transition from outdoors to
indoors and vice versa. The system achieves an accuracy of 2.35
m outdoors and 1.4 m indoors (95% of error). Inertial system
availability was continuous, while GNSS was available outdoors
and BLE and UWB indoors.

I. INTRODUCTION

Great deal of interest is currently focussed on urban navi-
gation. While car navigation is becoming mundane, pedestrian
and smart environment based solutions are just on the verge
of reaching the markets. Map and application design require
efficient service from the underlying positioning sensor in-
frastructure and from the methods that are used in location
acquisition. Processing power can be diverted to creating
more user friendly interfaces when the navigation motor runs
efficiently under the hood of a mobile device.

This paper introduces a novel approach for seamless naviga-
tion. Previous literature has mostly concentrated on enhancing
a single filter type. The novel dual-mode filter presented here
adapts to the current location and infrastructure by using two
different types of filters. It is able to offer the most fit solution

for the correct context by using the best sides of the particle
and Kalman filters when needed. The efficiency of the method
is proven by a campaign of test walks around the Nottingham
Geospatial Building in the Jubilee Campus of the University
of Nottingham.

Section II reviews the literature. Section III presents the
novel system design. Section IV evaluates the implemented
system which section V concludes.

II. BACKGROUND

We set the goals defined by Mautz in his Habilitation Thesis
[1] for our adaptive system.

o Submeter level horizontal positioning accuracy

o Floor identification

e >99% availability

e Minimal installation costs

Using optical tracking technology, the accuracy requirement
is easily achieved. Santoso et al. discuss the visual inertial nav-
igation technologies and methods in [2] with a special focus
on microaerial vehicles. Issues common to visual and inertial
navigation are examined like for example the brightness of
the image. Time of flight cameras are mentioned, in which
an additional depth information is available. An example of
such is the camera on the Google Tango device. The camera
approach is though far from being user-friendly and is compu-
tationally expensive, when considering navigation on devices
for pedestrians. Requirement of continuous camera recording
on a mobile device is not the most attractive alternative, which
was the main reason why it was not included in the final design
implementation.

Alarifi et al. examined the Ultra-wideband technology in
detail in [3]. They list five main characteristics for a naviga-
tion system; accuracy/precision, coverage/resolution, latency,
impact on infrastructure and random error resistance. Alarifi
as well as Bras [4] agree the good sides using UWB being, the
robustness to interference and jammers and high positioning
accuracy due to large bandwidth. Antenna design for UWB
systems is raised as an issue. Designing an antenna for an
UWRB system is not as easy as for narrowband systems.

Not many article research seamless multi-sensor navigation.
Groves [5] comes perhaps closest. He lists four key challenges
in multi-sensor navigation. These are complexity, context
detection, ambiguous solutions and processing and storage
capability. The key is to find the balance between performance



and complexity. Moreover, best quality sensor data need to be
sieved and bad quality discarded.

Yara et al. [6] developed a map interface with a purpose
that it could be used as a plug-and-play map system for many
kinds of navigation systems. Likewise Xi et al. [7] designed
a sensor capable of adapting to different uses. NavCube was
designed by Morrison et al. [8]. This was a platform that was
capable of using four different GNSS receivers and had 10
slots for additional assisting sensors.

Along with the computational efficiency, accuracy is a
desired feature of a navigation device. Sharp et al. [9] brings
forward the geometric dilution of precision for circular and
oval anchor placements. Rarely anchors within rooms indoors
or satellites outside are in symmetric positions, but the study
offers an insight into how to place anchors optimally.

User may be running, cycling or taking an elevator which all
require readjustments of the navigation filter settings. These in-
dicate different behavioral contexts. Location context depends
on the estimated user position. In addition, virtual contexts
like calendar events can be used in the inference of the best
possible filter settings. System can also use learning methods
for solution derivation if memory aspects are implemented.

Chen and Vadde [10] infer the context individually in the
sensor submodules. The position information is then fed to the
fusion motor with quality information. A centralized approach
was used in our implementation, which means that no context
is inferred in the sensor submodules.

Sensor output can be described by the level of abstraction
[11]. Vertical abstraction describes the information content of
the sensor output, which can be for example highly abstract
sensor outputs like the calendar event in contrast to raw inertial
data. Horizontal abstraction describes the capabilities of the
similar types of sensors. One sensor measuring the same
physical phenomena can output complementary information
while another is capable of measuring the other end of the
same phenomena scale.

As a part of the Marie Curie, Multi-Pos project, previous
studies presented in [12], [13], [14] analyse the positioning
technologies. On this basis, three absolute positioning tech-
nologies were selected. Global Navigation Satellite System
(GNSS) receiver is responsible for outdoor positioning. Ultra-
WideBand (UWB) and Bluetooth low energy (BLE) systems
offer an absolute position indoors. Inertial measurement unit
was mounted on the user’s left boot for dead-reckoning the
motion as an assisting relative positioning technology.

III. ADAPTIVE DESIGN AND IMPLEMENTATION

Figure 1 represents the adaptive design.

Sensor subsystems format the raw data for the Control and
Navigation Blocks. In our design the data flow is only out
of the Sensor Subsystems. The general format is following:
{timetag, measurement, error estimate}. For GNSS subsystem,
timetag is the system time of the mobile device, measurement
is the LLH output provided by the sensor and error estimate
is the sensor output estimate for horizontal accuracy. UWB
least squares and BLE fingerprinting approaches are explained

Timing
ﬁ‘ > ———
Sensor Subsystems - »| Context Engine
R ——— i Data -
I 1 Format
Adaptive F
Navigation \vailability Control
Filter

B S

ter or Pentagon Buffer Kalman Filter

Fig. 1. Adaptive Dual-Mode Filter Design.

in [14]. Sensor subsystems blocks feed the navigation and
control block according to the timing interface agreement.
In our case, whenever a measurement is available it will be
instantly delivered and processed.

The execution order starts from the sensor subsystems.
When a measurement is ready the context engine is run first
and the system state is set accordingly. Context engine also
uses the estimated position information from the navigation
filter together with the map sensor data. Finally, availability
check infers the filter to be used by checking the system status
and initiates either both the prediction and update cycles or
just one that is needed. Availability block is in charge of
data association, also by performing checks on the sensor
subsystems data quality (e.g. deweigh if inside a wall).

A. Context Engine

Table I shows the implementation of the context engine.
System status values are inferred as stated in the middle
column.

TABLE I
CONTEXT ENGINE IMPLEMENTATION.
State flag| Inference Values
Position From navigation filter (x.¥)
ZUPT ZUPT filter in Context Engine TRUE/FALSE
i
FF Pentagurll Buffer fmls F‘avulurable TRUE/FALSE
particle clond properties

Entrance Estimated position distance to entrance TRUE/FALSE
< threshold value

Stairs Estimated position in the stairs TRUE/FALSE

Entrance flag AND approach direction is
Indoor between threshold values AND TRUE/FALSE
GNSS/UWE/BLE availahility check

Current estimated position is taken from the navigation
filter. Zero update filter runs inside the Context Engine. This is
a 7 tap (70ms delay) low pass filter for both the accelerometer
and gyro total magnitudes. 100 Hz sampling frequency was
used for the Microstrain 3DM-GX4-45 inertial measurements.
High and low thresholds are used for accelerometer value
and low threshold for gyro value. ZUPT flag is risen if
accelerometer thresholds OR gyro threshold is exceeded.

Pentagon buffer fail logic and favourable particle cloud
properties are explained later on. Entrance flag uses a single
threshold value to indicate whether estimated position is close



to the entrance. Stairs flag is turned on if estimated position
is inside the stairs area defined in the map. Indoor flag
status indicates whether indoor settings should be used for the
particle and pentagon buffer filters. Entrance flag needs to be
true and approach direction between threshold values for the
current entrance. Final condition to switch the indoor flag is to
check the measurement availability of the latest measurements.
If only GNSS updates are available and horizontal accuracy
has become better (threshold of 2.5m) these indicate a transfer
to outdoors. Similarly if the GNSS horizontal accuracy values
have been bad for longer time (3s and horizontal accuracy over
2.5m) and availability of both UWB and BLE measurements
show that they are present, the indoor flag is turned on.

B. Particle Filter

Basic bootstrap particle filter was used [15]. The dual-
mode implementation always started with particle filter turned
on since it is considered to be the more robust filter. It
can also handle the situtation better when initial values are
unknown. Particle filter was initialised to the first position fix
measurement. Direction initialisation distribution was uniform.
After few steps the correct direction was achieved via particle
elimination. Figure 2 lists the prediction and update steps for
the particle filter.
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Fig. 2. Bootstrap particle filter.

Particle filter advances everytime either a step is detected
or a position update from the absolute positioning systems
(GNSS, UWB, BLE) is available. Particle consists of a po-
sition, direction and weight attributes. Propagation since the
last particle filter update is estimated by propagating particles
according to the IMU double integration mechanisation results.
Small perturbation is added to each particle. Particle pertur-
bation characteristics were derived experimentally. 20 short
walks around the office were conducted. Two perturbation
characteristics were derived from the data. Propagation angle
perturbation was set to 1 degree per metre. Mechanisation
length perturbation was set to Scm per metre. These values
describe the estimated error of our inertial boot mounted sys-
tem. For indoors these values were increased. This enhances
particle filter survivability and compensates for errors that the
perturbation addition phase is not able to handle.

Absolute positioning systems’ position updates update the
weight of each particle. For example, for each GNSS mea-
surement the horizontal accuracy is given in Circular Error
Probable (CEP, 50% error bounds) which is used in the

position update of each particle. Then the Bayesian inference
step for the new value of each particle weight is derived
according to the distance to the measurement.

Final step for the particle filter is the resampling step.
We used resampling at every particle filter update to avoid
impoverishment. Fixed ratio, 4% of particles were resampled
each update cycle. Resampling was a transformation of dead
particles into an inferred copy of survived particles. The more
weight one particle had the more likely it was to be copied.
Copying involved an addition of small perturbation in position
and direction of the particle. Normalisation of the weights was
the last step. If particle filter fails (that is every particle dies)
a new particle cloud is created with wider seeding area at the
previous update position and step is retaken.

C. Kalman Filter with Pentagon Buffer

Double integration mechanisation was implemented using a
15 error state closed loop Kalman filter explained in detail in
Groves book [16]. This mechanisation filter ran continuously
for the inertial mechanisation solution.

The Kalman filter state and covariance are copied into a
parallel running solution that includes the position updates
from GNSS, UWB and BLE. This means that the inertial
Kalman solution runs as an unique solution. And in addition,
when the particle filter is turned off, another Kalman solution
takes care of the derivation of the final solution that includes
position updates. The copy is created when particle filter is
turned off the first time. This copy is then modified and used
each time the particle filter is turned off.

Moreover, a pentagon buffer is created around the copied
Kalman solution. This is shown in the left side of Figure 3.

W, "
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Fig. 3. On the left is shown the Particle filter switch into Pentagon buffer
Kalman filter solution. On the right Pentagon buffer collision logic couldn’t
handle the collision and correct it with a position update and particle filter
needs to be reinitialised.

D. PFarticle filter to Pentagon Buffer switch

The left side of Figure 3 depicts a switch of control from
particle filter to the Kalman filter with pentagon buffer. Particle
filter solution is the weighted average of the particles using
their weight and position values. Particle cloud tends to change
shape according to the walls and turns encountered. The
possibility of a switch from particle filter to pentagon buffer is
checked in the availability block. Main criteria for a switch is
a threshold value for standard deviation of particles’ distances
from the main solution. If this is smaller than the threshold,
Kalman filter is initialised.



Buffer point distances, when initialised, are defined by
the particle cloud properties. Particles are classified into five
groups according to the sector they are in. The average of all
the particles’ directions of movements defines the sectoring
angle. This is shown with a blue arrow in the Figure 3. The
main solution is the centre point or the division point that
divides the five sectors.

Distribution profile and 3-sigma limits are assigned for each
sector. We used only Gaussian profile for simplicity. Using
the standard deviation of the particles’ distances from the
main solution within each sector, a 3-sigma limit was derived.
These were then the pentagon buffer point distances. This
represents the maximum error inside which all of the solution
probability should reside. More corners on the buffer would
enhance the resolution but also increase the computation time.
Buffer points are especially useful in the map matching phase.

E. Pentagon Buffer propagation

Buffer points represent the outer edges of the equivalent
particle cloud. Thus it aids the Kalman filter to maintain a
dynamic measure that is not included within the covariance.
Each buffer point follows the main solution at its distance.
The distances from the pentagon points to the main solution
change according to walls, travelled distance and position
update confidences. The distances are updated at every step
and every position update. The experimentally defined position
error growth, which was 5 cm per metre, is again used.
In our study the same value was used for each direction.
Direction dependent experimental error growth approximation
could enhance the estimation of this buffer growth. Each buffer
point distance is increased according to the position error
growth and travelled distance.

Maximum limits for the buffer points’ distances are defined
by the position updates and are the 3-sigma limits for each
position update measurement. The buffer point distances are
reduced to this maximum limit if these start to grow too large.

After the propagation step, buffer points are matched with
the map.

FE. Buffer logic and switch back to Particle filter

Each buffer point is matched with the map. The walls act as
reducing constraints to the buffer point distances. If a buffer
point has propagated into a wall or has travelled through a wall
its distance value is reduced until it no longer is inside a wall.
If any of the distances goes below zero we have encountered
a collision.

Collision logic then moves the solution towards the centre
of the modified buffer until the solution is no longer inside the
wall. If a collision, like what is depicted in the Figure 3 right
side (none or only one buffer point distance is zero), happens,
then the particle filter has to be reinitialised. The buffer logic
is not able to apply a new unique position that is outside of
the walls and complies with the direction of movement. The
remaining area indicates two possible solutions (left and right
side of the obstruction) where the user might have walked.
Thus particle filter is reinitialised.

The switch is conducted using the covariance values of
the Kalman filter and the latest position update measurement
confidence values if available. New particles are seeded around
the main Kalman solution. After this we conduct a map
matching process that transforms particles that are inside the
walls or outside of the remaining pentagon buffer into particle
copies that are in the permitted area. This is the same process
as was described in the particle filter section. We now have
reinitialised the particle filter with particles inside the failed
pentagon buffer limits.

I1V. EVALUATION

UAV survey images were used for mapping and representing
results in MATLAB. Four points were surveyed around the
Jubilee Campus and the images were georeferenced in QGIS.
Origin was the NGB12 survey point. The resulting images
were then transferred to MATLAB.

C-program was written to record the Microstrain 3DM-
GX4-45 inertial and GNSS data, the Decawave TREK 1000 kit
UWB ranging data and BLE signal strengths. The resulting
record files were used in MATLAB. Laptop that was used
for analysing was running Debian on HP Stream x360. The
designed system is straightforward to be used in real-time
applications by replacing the file reader with real-time data
transfer pipes.

Figure 4 shows the outdoor walk track. Altogether ten walks
were conducted. 5 starting from the bicycle stands marked
on the map. And another 5 walks along the reverse route,
continuing from the main doors.

northing (m)

easting (m)

Fig. 4. Outdoor walking track. Magenta is the reference track recorded using
the Leica RTK kit. Cyan track shows the particle filter solution. A record of
the pentagon buffer is shown before entering indoors. White track shows the
pentagon buffer Kalman filter track. Yellow track is the GNSS measurement
trail.

In between, an indoor walk was conducted. Altogether five
walks were conducted indoors and resemble the track shown
in Figure 5.

The magenta track outdoors is the reference track recorded
using Leica RTK kit. Yellow track is the track from U-Blox
GNSS receiver inside the Microstain sensor. The cyan track is
the Particle filter track when filter was initialised. Note that the
GNSS cold start position is off by almost ten metres. White
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Fig. 5. Indoor walking tracks. Black track is the IMU only track. Green track
is the UWB track and anchors. BLE anchors are in blue. Red track is the
reference track recorded using Leica Total station. Blue track is the pentagon
buffer track and cyan track show the particle filter track of the dual-mode
filter.

track is the Pentagon Buffer track after control transfer from
particle filter, in similar fashion to Figure 3. The fences on the
walkway kill most of the particles and standard deviation of
the particle cloud becomes small.

Black track is the inertial track indoors. Note the walker
wobble in the northeast corner after opening the door. Red
track is the Leica Total station reference track. Blue balls
indicate the BLE anchor locations. Green balls and track are
the UWB setup results. Blue track is the Pentagon buffer
solution. In the northeast corner pentagon buffer fails and is
switched to particle filter. Cyan track indicates the particle
filter in the area where only IMU was available. Again control
is switched back to Pentagon Buffer when particle cloud is
suppressed by UWB measurements while entering lobby.

A. On Accuracy

The recorded data was processed first by using only particle
filter. Then the same tracks were processed using the novel
dual-mode filter design.

Figure 6 shows the accuracies for the UWB, BLE and
particle and dual-mode filters. Inertial mechanisation had a
tendency to swerve slightly right in our measurements. This
means that an unknown heading error was present which
turned the inertial solution more towards the right. Both
particle filter position update and pentagon buffer error bound
control were able to compensate this. Additional Kalman
attitude updates would be helpful if there was a method to
identify this error source.

It is also necessary to note here that the outdoor Kalman
filter weight for GNSS position updates were weaker in
comparison to the particle filter GNSS position updates. While
particle filter solution followed the GNSS trace closely the
pentagon buffer Kalman filter solution did this but with less
weight in comparison. The GNSS receiver track was very

accurate even alone. This is why the particle filter error was
smaller. Though one walk had multipath error within the
GNSS track. This can be seen in Figure 7. This track was
not included in the accuracy Figure 6. Horizontal accuracy
stayed good until the receiver, after 50 metres walk notices the
multipath and fixes the position back to the walkway on the
left side of the picture, where the user was actually walking.
Weighting of the GNSS should be lowered drastically after the
multipath condition is detected.

UWB is the most accurate. Performance degrades when
walking away from the lobby (Figure 5). Indoors, particle
filter and dual-mode filter performed similar (1.4m, 95% of
error). Outdoors the weighting difference between particle and
dual-mode filters for the good quality GNSS updates made
the particle filter perform better (2.35m, 95% of error). BLE
performance was not good and was given lower weight.

09 UwWB

BLE
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Outdoor Dual-Mode Filter BLACK

cumulative probability
distribution of error

Indoor Particle Filter RED
Indoor Dual-Mode Filter GREEN

error (m)

Fig. 6. Errors for technologies, UWB is cyan, BLE is yellow. Particle filter
indoors is red, Dual-mode filter indoors is green, particle-filter outdoors is
blue and dual-mode filter is black.

Fig. 7. Multipath affecting the GNSS receiver. Actual walk went along the
left walkway.

Figure 8 describes how many particles were necessary to
sustain reasonable accuracy for this particle filter setup. 50 and
100 particles accuracy graphs show degradation of accuracy.
Thus 200 particles were used in our measurements.

B. Dual-Mode Filter Advantages

Figure 9 depicts the gain in speed when using dual-mode
filter instead of particle filter. Computational load is ten times
less for the pentagon buffer enhanced Kalman filter compared
with the 200 particle filter.
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Fig. 8. Particle amount test for the particle filter shows that using over 100
particles will guarantee better accuracy.
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Fig. 9. 200 particles chosen as the reference (marked with star). Pentagon
buffer alone runs 10 times faster (red line with 0.10 multiplier). Green is an
example test run for the dual-mode filter with different amount of particles.
If particle filter is on most the time, the green level is closer to the top blue
line (only particle filter running).

V. CONCLUSIONS

Seamless navigation system was developed. The implemen-
tation works indoors, outdoors and is able to cope with the
change of environment by using a simple context engine.
Dual-mode operation uses particle filter when the pentagon
buffer collision logic fails. Computation power is saved using
pentagon buffer Kalman filter when conditions allow.

Submeter level accuracy was not yet achieved. Individual
sensor technologies and fusion still need improvements. Floor
identification was briefly examined by using IMU in the
stairs. Availability outdoors is based on the GNSS availability.
Although constantly available, inertial tracking is only accurate
for few tens of meters after which the error is over a meter.
UWB and BLE were deployed for the lobby and corridor areas.
Wall constraints in corridors help the filter function with IMU
only.

GNSS receiver that we used was a grade level higher quality
than what is used in mobile phones. Quick tests conducted
with an android mobile phone indicate performance closer
to Figure 7. Multi-path condition indicator is necessary for
the context engine to adjust the sensor fusion process. Short
tests indicate that by matching the GNSS and IMU track
forms, the multi-path condition could be inferred. Moreover
this matching process could be used in position correction if
the track qualities were known for both the inertial and GNSS
tracks. In addition, a different position update approach was

tested for the particle filter. Using a more loose measurement
update distribution after multi-path condition is detected seems
purposeful. Instead of the standard Gaussian measurement
distribution update a *Tukey’-style distribution could be used
to compensate for the multi-path effect. This is nearly equal
to weighing the GNSS less. These are left for future study.
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