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Abstract 

Carbonate formation in waste from the steel industry could constitute a non-trivial 

proportion of global requirements to remove carbon dioxide from the atmosphere at 

potentially low cost. To constrain this potential, we examined atmospheric carbon 

dioxide sequestration in a >20 million tonne legacy slag deposit in northern England, 

UK. Carbonates formed from the drainage water of the heap had stable carbon and 

oxygen isotope values between -12 and -25 ‰ and -5 and -18 ‰ for δ13C and δ18O 

respectively, suggesting atmospheric carbon dioxide sequestration in high pH 

solutions. From the analyses of solution saturation states, we estimate that between 



280 and 2,900 tCO2 have precipitated from the drainage waters. However, by 

combining a thirty-seven-year dataset of the drainage water chemistry with geospatial 

analysis, we estimate that <1 % of the maximum carbon capture potential of the 

deposit may have been realised. This implies that uncontrolled deposition of slag is 

insufficient to maximise carbon sequestration, and there may be considerable 

quantities of unreacted legacy deposits available for atmospheric carbon 

sequestration. 

  



Introduction 

The steel industry produces around half a billion tonnes of an alkaline material (known 

as slag) globally each year1. Blast furnace slags commonly find uses as secondary 

aggregate2, pozzolan3 or agricultural lime4. However, due to the higher concentrations 

of oxides and hydroxides (which may cause expansion if used directly in aggregate), 

slag from steel production is typically ‘weathered’ for months to years prior to use5. 

While the proportion of slag being reused varies with regional demand, a sizable 

proportion of annual production is ultimately stockpiled in steelworks6,7. This, 

alongside historic deposits of iron and steel slag, creates environmental issues 

associated with highly alkaline leachates (pH > 11)8,9. The dissolution of these 

materials releases calcium and magnesium ions from oxide and silicate minerals and 

glass/amorphous material, which raises pH beyond that encountered in most natural 

settings (Equations 1 and 2, which show dissolution reactions for larnite and 

portlandite respectively).  

𝐶𝑎2𝑆𝑖𝑂4 + 4𝐻2𝑂 → 2𝐶𝑎2+ + 𝐻4𝑆𝑖𝑂4 + 4𝑂𝐻−  (1) 

𝐶𝑎(𝑂𝐻)2 → 𝐶𝑎2+ + 2𝑂𝐻−  (2) 

These hydroxide-enriched leachates promote dissolution of atmospheric carbon 

dioxide (CO2) into solution, which reacts to form carbonate and bicarbonate ions 

(Equation 3). Slag leachates are rich in dissolved calcium (Ca), which leads to 

supersaturation of calcium carbonate minerals (e.g., calcite) and rapid rates of 

precipitation of secondary carbonates (Equation 410,11). Such leachates can pose 

enduring12 and acute13 environmental issues due to the physical smothering 

(‘armouring’) of receiving streams, alongside extreme pH, and potential metalloid 



enrichment and mobility14–16. However, carbonate precipitation buffers the waters back 

towards circum-neutral pH which limits metalloid solubility.  

𝐶𝑂2 (𝑔) ⇌  𝐶𝑂2 (𝑎𝑞) + 𝐻2𝑂 (𝑙) ⇌ 𝐻𝐶𝑂3 (𝑎𝑞)
− + 𝐻+ ⇌ 𝐶𝑂3 (𝑎𝑞)

2− + 2𝐻+ (3) 

𝐶𝑎2+ + 2𝐻𝐶𝑂3 (𝑎𝑞)
− ⇌ 𝐶𝑎𝐶𝑂3 (𝑠) + 𝐻2𝑂(𝑙) + 𝐶𝑂2(𝑎𝑞)   (4) 

The potential for steel slags to capture atmospheric CO2 in the form of stable 

carbonates has been extensively studied, initially in reaction vessels at elevated 

temperatures (>200°C), enriched CO2 gas-concentrations (>10 %), and/or pressures 

(~20 bar)17–21, with a theoretical CO2 sequestration capacity of 0.27 to 0.43 kg CO2 

per kg slag (see Supporting Information S1). This capacity can be improved through 

the application of ‘enhanced weathering’22,23, which is an alternative CO2 

sequestration pathway in which carbon is stored as dissolved bicarbonate in the 

ocean24. In this approach, almost twice as much CO2 may be sequestered (Equation 

5).  

𝐶𝑎2𝑆𝑖𝑂4 + 4𝐻2𝑂 + 4𝐶𝑂2 → 2𝐶𝑎2+ + 𝐻4𝑆𝑖𝑂4 + 4𝐻𝐶𝑂3
−  (5) 

The removal of CO2 from the atmosphere (‘negative emissions’ or ‘greenhouse gas 

removal’) is emerging as an important policy requirement for limiting global 

temperature change <2 °C 25,26. Emissions reduction scenarios predicted to achieve 

this require between 180 - 900 Gt CO2 to be removed from the atmosphere over the 

coming century27, alongside limiting further emissions. Atmospheric carbon 

sequestration in the steel industry may provide a relatively cheap method of negative 

emissions, and, in the case of carbonate formation, a means for waste remediation28. 

The removal of atmospheric CO2 into waste materials has previously been explored 

in chrysotile mine tailings (e.g.,29), in soils mixed with concrete from demolition30,31. To 

constrain the potential of CO2 sequestration in waste from the steel industry, we 



quantify atmospheric carbon sequestration in a deposit of slag associated with an iron 

and steel works that closed nearly four decades ago.  

 

Materials and Methods 

Study Site 

For over 100 years an iron and steel works located in Consett, Co. Durham, UK, 

produced cumulatively around 120 million tonnes of iron and steel. This led to the 

creation of >20 million of tonnes of slag, which were deposited in several large mounds 

adjacent to the works. Production ceased in 1980, and the heaps were landscaped, 

capped with thin clay topsoil, and have been passively managed (Figure 1). The 

deposits are underlain by alluvium and glacial till above Carboniferous Coal Measures, 

and the largest deposit was heaped over a partially culverted watercourse (the 

Howden Burn), which receives the bulk of the drainage water. A smaller heap is 

located to the south of the main workings (Figure 1), the drainage waters of which 

collect in a pond before discharging through a naturally developed wetland in the 

Hownsgill Valley and into a watercourse (the Dene Burn)9 (see Supporting Information 

S2 for location and site detail) 



Figure 1: Location map showing the topography of the former Consett Steelworks, 

drainage systems (the colour scale represents elevation above sea level derived 

from 1 m and 5 m LIDAR Data32 The red line denotes the boundary of the study site). 

 

Volume Estimates  

2 m and 5 m resolution LIDAR data32 were compiled for the site, representing the 

modern ground surface. 41 spot heights were recorded from the historic 1890 

Ordnance Survey map and used to create a low resolution 5.3 km2 digital elevation 

model of the natural ground surface underlying the site. The comparison between 

these two digital elevation models was used to estimate the volume of the northern 

heap (using the terrain subtraction function in Global Mapper© v18 1.0, see Supporting 

Information S3). 



Resistivity Tomography Survey 

The depth of the slag deposit has been confirmed using Electrical Resistivity 

Tomography (ERT) surveys, which determined the depth of the contact between the 

slag and the underlying natural ground. A 72-channel IRIS Syscal resistivity system 

was used to acquire three profiles (A, B and C) across the slag deposits (shown in 

Figure 2). Profiles A and B transect the top of the slag deposit, to observe how slag 

thickness increases with distance away from the side of the valley; Profile B strikes 

towards the foundations of the now demolished steel work buildings (see Supporting 

Information). Profile C trends from the bottom of the slag deposit towards profile A.  

Profiles A and B were acquired with a 5 m electrode spacing, giving a maximum depth 

of investigation of ~50 m bgl. ERT Profile C was acquired with an electrode spacing of 

2.5 m, giving a maximum depth of investigation of ~25 m bgl.  The data were 

processed using Res2DInv software to derive modelled electrical cross-sections of the 

subsurface. The resulting resistivity models for Profiles A, B and C had an RMS error 

of 8, 17 and 9 %, respectively. Robust inversion was not used to allow for more 

geologically realistic results, hence the higher RMS values were condoned. The 

finalised models were calculated within 4 or fewer iterations. The elevation data were 

added to the models, using electrodes positions extracted from LIDAR data (Figure 

1). Finally, these data were exported into Surfer 7, gridded and presented as a 2D 

cross-section of resistivity. 

Chemical sampling and analysis 

Long term water quality records from the site are compiled from monitoring by 

regulatory agencies (Environment Agency and their predecessor, the National Rivers 

Authority) who routinely sampled major physico-chemical parameters, major ions and 



minor elements from 1978 - 2000. However, sample collection was sporadic, ranging 

from monthly to annual sampling in frequency. From 2004 onwards, annual sampling 

(as a minimum) has been undertaken by the authors at the same locations in the 

Howden and Dene Burns. Bi-monthly samples were collected from the Hownsgill 

valley wetland between 2004 - 20069 and ad-hoc samples up to 2015. Field sampling 

consisted of major labile variables (pH, electrical conductivity, Eh, temperature using 

a Myron Ultrameter) and total alkalinity which was measured in situ using a Hach 

digital Titrator (0.8 moles/l H2SO4 with bromocresol green-methyl blue indicator). 

Samples were also taken in acid-washed HDPE bottles for field-filtered (0.45 μm) 

samples which were acidified with trace metal grade HNO3, and analysed for major 

cation content using a Perkin Elmer Optima 5300 DV Inductively Coupled Plasma 

Optical Emission Spectrometer.  

Long term patterns in saturation index for calcite were determined using the 

geochemical code PHREEQC33 with the Lawrence Livermore National Laboratory 

database based on sample dates where synchronous pH, temperature, Ca and total 

alkalinity data were available. Trends in calcite saturation index (SIcalcite) for the Dene 

Burn and Howden Burn are assessed using Partial Mann-Kendall tests with flow as a 

co-variate (as per12). Flow at the time of sampling was either manually measured or 

determined from an adjacent permanent flow gauging station (River Derwent at 

Rowlands Gill, National River Flow Archive station: 23007) adjusting for catchment 

area (see Supplementary Information S2).  

Synchronous sampling for water quality and flow along the courses of the Dene Burn 

and Howden Burn was undertaken from 2003 to 2015 on 14 and 8 occasions, 

respectively. The Hownsgill Valley wetland was sampled on 10 occasions from 2004 

to 20069. This enables determination of mass loss of Ca between successive 



downstream sample locations (the mass load being the product of flow and 

concentration) from which to assess carbonate precipitation rate, assuming all Ca load 

lost from the water column is as CaCO3 (Equation 4). A source location and 

downstream location (in between which there were no major tributaries) along the 

course of each stream were sampled for major physico-chemical parameters as 

above. Flow was measured using a Valeport 801 velocity meter with a flat sensor 

suited to the shallow stream depths (typically <0.2m) via the velocity area method. The 

length of the channel reaches was determined through measurement in ArcGIS v.10 

of 1:1000 Ordnance Survey base maps34. Average channel width was taken from 

manual spot measurements of channel width every 50 m of the study reaches.  The 

area of the Hownsgill Valley wetland was determined by a manual field survey with 

differential GPS9. Synoptic sampling was undertaken over a range of flow conditions 

from which relationships between source chemistry (notably SIcalcite) can be related to 

the estimated mass of carbonates deposited on the downstream streambed (Equation 

6). 
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where P is the area adjusted calcium carbonate precipitation rate (g/m2/day1); Qd 

equates to the mean daily flow-rate (m3/day); Cs is the Ca source concentration (mg/l); 

Cd is the concentration of Ca at downstream sample location (mg/l); A is the stream 

area (m2), based on length of reach (GIS-derived) and average width from spot 

measurements. The multiplier is the ratio between molar mass of Ca and CaCO3. 

A series of 14 surficial secondary carbonate samples were taken from the streambeds 

of the Howden and Dene Burns alongside samples from carbonate hardpans in the 

Hownsgill Valley wetland (See Supporting Information S5). The samples were crushed 



using an agate pestle and mortar and analysed for stable carbon and oxygen isotope 

ratios using Kiel IV Carbonate Device calibrated against a Vienna Pee Dee Belemnite 

standard. The standard error for the analysis is 0.001 ‰ and 0.003 ‰ for δ13C and 

δ18O respectively. To this powder, ultra-pure acetone was added, and the resultant 

slurry was pipetted onto a clean glass slide. The slides were allowed to dry, and then 

analysed using a Philips PW1710 Automate Powder Diffractomer with a CuK radiation 

source operating at 35 kV and 40 mA. Samples were scanned from 2 to 70 ⁰2θ at a 

step size of 0.02 ⁰2θ with a counting time of 1 s per step. Diffraction patterns were 

analysed using PW1876 PC-Identify software (Version 1.0b) and compared with 

JCPDS cards of standard materials. 

Results and Discussion 

Volume Estimates and Resistivity Tomography  

By creating and comparing elevation models of the current (from LIDAR data) and pre-

slag (from spot heights of historic maps) terrain, it is possible to estimate the depth of 

the deposit and the total volume of the material (Figure 2). The analysis suggests 

depths of the largest deposit range up to 45 m, which is consistent with historic 

accounts of the site35,36, and that the total volume of material is ~16 Mm3, which is 

consistent with theoretical maximum historic production estimates (see Supporting 

Information S6). Given that the bulk density of slag is typically between 1 and 1.5 

Mg/m3 37, and that the concentration of CaO and MgO is between 34 and 42 % and 8 

and 12 % by mass, respectively38, then the carbon dioxide sequestration potential for 

the largest heap is 6 - 11 million tonnes CO2 (as mineral carbonate) or 10 – 19 million 

tonnes CO2 (through enhanced weathering).  



Figure 2: An estimate of the depth of the slag deposit based on the comparison of 

pre- and post-deposit digital elevation models. The bold white lines (A/A’, B/B’ and 

C/C’) represent the locations of the resistivity survey (see Figure 3). 

The results of the ERT geophysical surveys are shown in Figure 3. The interpretation 

for each technique is obtained by comparison with known values of common 

materials39. Each ERT profile shows a more resistive material overlying a more 

conductive material. In this scenario, the slag deposits are more resistive than the 

underlying natural geology which is composed of alluvium, clays and mudstones. This 

may be due to a well-drained slag overlying saturated natural ground, or that the 

conductive metals contained in the slag are fixed within a silicate matrix, creating a 

more resistive material than the natural ground. Profile A shows an undulating 



boundary (Feature, F1) between more resistive and more conductive material which 

begins at ground level, 50 m along the profile and deepens to the west. The authors 

interpret this as the boundary between the slag and natural ground. Profile A also 

shows a shallow less resistive feature which may be related to groundwater flow. 

Profile B shows a highly heterogeneous image of resistivity; the very low resistivity 

feature (F2) is likely to be a plume of highly conductive ground water caused by solutes 

within the slag. Profile C shows a clear boundary between a more conductive 

underlying geology and a more resistive overburden. Feature (F3) is likely to represent 

the boundary between the slag deposit and the underlying geology. The boundary on 

the west side of the profile (F4) is caused by made ground due to a nearby road and 

is not related to the slag deposit.  

 



Figure 3: Results from the Electrical Resistivity Tomography. Location of the lines 

are presented in Figure 2. Transition between high and low resistivity potentially 

denote changes in ground conditions (e.g., between slag and the natural ground in 

F1 and F3)  

Stream water geochemistry 

Three drainage streams at the site are characterised by hyperalkaline pH (typically in 

the range 10 to 12.5 at source), dominated by Ca-OH-SO4 waters (see Supporting 

Information S7), where the sulphur potentially originates from the coke or coal used in 

the blast furnace. All drainage streams are consistently supersaturated with a range 

of carbonate phases (Supporting Information S7), with calcite dominant in the 

extensive downstream secondary deposits (Supporting Information Figure S11).  As 

such, long term changes in aqueous chemistry focus on saturation indices for calcite 

hereafter (Figure 4). Flow in each of the systems is relatively steady, receiving a 

mixture of groundwater from within the slag or spring water from the underlying Coal 

Measures11 generally rich in Ca, which are occasionally diluted by solute-poor surface 

runoff (Supporting Information S7)11-12. 



 

Figure 4: Long-term calcite saturation index (SIcalcite) values for the Dene Burn (DB) 

and Howden Burn (HB). Closed grey circles show individual measurements; open 

squares show averages for each hydrological year (1st October - 30th September). 

Blue trend line in upper plot (Dene Burn) based on the Sen’s slope statistic shows 

the significant decline in SIcalcite from Partial Mann Kendall Tests (see text). No 

significant trend was apparent in the Howden Burn (lower plot). 

 

There has been a slight change in bulk drainage chemistry in 37 years of monitoring. 

There was a significant decline in saturation index in waters draining to the Dene Burn 



(Figure 2A; PMK: -856; P = 0.002) irrespective of flow condition which showed no 

significant long-term trend (PMK: 220; P = 0.421). This may be indicative of gradual 

exhaustion of alkalinity generating minerals (e.g., Ca-silicates, free lime, or portlandite) 

in the slag deposits with weathering (see Supporting Information S7)12. No significant 

trend in SIcalcite or flow in the Howden Burn is apparent (Figure 2B; SIcalcite: PMK: 9.3: 

P = 0.80; Flow: PMK: 22; P = 0.95), although a clear decline then subsequent recovery 

in SIcalcite is apparent between the mid-1980s and the early part of the 21st Century, 

respectively. This has previously been attributed to changes in flowpaths and 

significant groundworks in this sub-catchment as part of broader restoration works12. 

The Howden Burn drains a much greater proportion of the slag deposits at the site 

(>3/4 total area and much greater depths) than the Dene Burn and as such which may 

explain why there has been no sign of decline in alkalinity generation yet in the 

Howden Burn. Regardless of temporal changes, the SIcalcite in all systems is typically 

in a range where spontaneous calcium carbonate precipitation would be anticipated 

(>+0.3) and generally above >+1.5 where homogenous precipitation is expected40 

(see supporting information Table S2). 

 

Evidence of carbonate precipitation 

Observations of calcium carbonate precipitation are common in the drainage waters 

emanating from slag deposits8 and provide a means for translating the long-term 

saturation index data into carbon mass balances for the drainage streams. The mass 

loss of Ca between source and a downstream sample location is divided by reach area 

(Equation 9). The synoptic sampling of the receiving streams at Consett reveals a 

strong and significant positive relationship (Spearman rs: 0.82; p <0.001; ANOVA 



regression: F: 52.1, p <0.001) between empirical estimates of CaCO3 precipitation rate 

and SIcalcite at the source of the discharge (Figure 5). The higher CaCO3 precipitation 

rates are apparent in the Howden Burn with a range of 8 - 259 g/m2/day, where waters 

are typically further from equilibrium (see higher SIcalcite values in Table S2) as 

compared to the Dene Burn (range 7 - 116 g/m2/day: Table 1) which have lower SIcalcite 

values. 

 

Figure 5: Relationship between SIcalcite and empirically observed calcium carbonate 

precipitation rate (shown as log10 values) across the Dene Burn (DB) and Howden 

Burn (HB) streams. 

 

Table 1: Estimated calcium carbonate precipitation rates for the three drainage 

systems at the site of the former Consett Steelworks derived from loadings-based 

assessments. Flux data show median and range in parentheses. 



 Dene Burn Howden Burn Hownsgill Valley 

Area between sample locations (m2) 2310 525 2863 

n 14 8 10 

Ca2+ load loss (kg/d) 28.4 (6.7 - 107.6) 30.9 (1.7 - 54.4) 6.2 (1.2 - 10.9) 

CaCO3 precipitation rate (g/m2/day) 31 (7 - 116) 147 (8 - 259) 5 (1 - 10) 

 

Precipitation rates across the wetlands that receive leachate in the Hownsgill Valley 

have been previously published, based on intensive monitoring of aqueous 

geochemistry9,30 and are in the range of 1 to 10 g/m2/day (Table 1). These lower rates 

are readily ascribed to the topographical differences between the Hownsgill Valley 

wetland, which is low gradient and thus limited by the rate of diffusion of atmospheric 

CO2 (in addition to microbially-generated CO2 in the water column and substrate9), 

compared to the cascading Howden and Dene Burns. In the faster-flowing systems, 

the dissolution rates of CO2 into solution are likely to be far greater given the turbulent 

flow of the shallow waters over secondary carbonate barrage cascades (see 

Supporting Information S441). 

 

Carbonate deposit analysis 

Stable carbon and oxygen isotope ratios have been widely used to assess provenance 

of carbonate minerals (e.g.42). Carbonates formed from highly alkaline solutions 

derived from the dissolution of steel slags, lime waste, cement wastes, or alkaline mine 

tailings30,43,29 have very characteristic negative δ13C isotopic signatures30,44,45. These 

have been ascribed to a stable carbon isotopic enrichment factor (εCaCO3-CO2 = -19 ‰) 

in carbonate and dissolved aqueous CO2 from the reaction between aqueous CO2 and 

hydroxide ions (‘hydroxylation’)46. The isotopic value of oxygen in carbonate minerals 



formed from high pH solutions is a mixture of the isotopic value of hydroxide ions, and 

atmospheric CO2
46–48. This fractionation gives rise to the highly negative δ18O isotope 

values (-24 and -19 ‰) characteristic of hyperalkaline sites (eg., cements30,49,50 and 

hyperalkaline groundwater51). The use of isotopic values unambiguously 

demonstrates incorporation of atmospheric CO2 into solid carbonate minerals. 

 

Figure 6: δ18O and δ13C values of carbonates formed in the drainage waters of the 

slag heaps at Consett, Co. Durham. 

The stable carbon and oxygen isotope ratios for the deposits in the three drainage 

streams at Consett are presented in Figure 6. The more negative δ13C and δ18O values 

were recorded in samples from the Howden Burn and Hownsgill Valley, where dilution 



of the leachate by uncontaminated ground or surface waters was minimal11. The Dene 

Burn, which receives drainage rising from a spring line in the Coal Measures (rich in 

bicarbonate52), has the least negative δ13C and δ18O values. A common approach to 

assessing the relative portion of atmospheric CO2 in the secondary mineral deposits 

produced from highly alkaline solutions is via the use of a linear mixing model that 

assumes carbon in a mineral sample is sourced from two endmember reservoirs (e.g., 

53). If atmospheric CO2 is the only source of carbon in hydroxylation isotopic 

fractionation, the proximity of the isotope values in the samples to end members can 

be used to determine the quantity of sequestered atmospheric CO2 in the secondary 

deposits. Hydroxylation will produce an end member with an isotopic ratio of -25.3 ‰ 

for δ 13C, see 31). Therefore, based on the proximity of the data in Figure 6 to a 

‘lithogenic’ (δ 13C = 0 ‰) and the ‘hydroxylation’ end members, it is estimated that 

between 54 and 99 % of the carbon in the carbonate is derived from the atmosphere 

and the remaining carbonate is derived from lithogenic sources.  

Carbon budget and storage potential 

The drainage water chemistry and flow suggests that approximately 314 tonnes of 

calcium have been leached from the heaps over the past 37 years, which is 

approximately >0.004 % of the potentially available calcium based on the volume and 

typical composition of slag16. Even if the same concentration of calcium was present 

in the drainage waters since rapid expansion of the heaps in the early 1900s (~8.5 

t/yr), and that the flow through the site was similar to present levels, then approximately 

850 tonnes of calcium would have been leached over 100 years. Estimates of 

carbonate precipitation from stream waters suggest between 281 and 2,890 tonnes of 

CO2 have been sequestered since the work’s closure in 1980 (Table 2). For 

comparison, this equates to approximately 255 – 2,627 tonnes of calcium; the upper 



value is consistent with calcium leach values. Given the heaps may contain 3.9 – 7.2 

million tonnes of calcium, only a very small proportion has been leached, and that the 

carbon sequestration potential of the material has not been exploited. 

Table 2: Total carbon flux estimates based on long term SIcalcite data, empirical 

loading measurements and isotopic characterisation of secondary deposits. Total 

estimated low and high range (in parentheses) based on aggregated margin of error 

of relationship between SIcalcite and precipitation rate (Figure 4) and standard 

deviation of isotopic characterisation. *Hownsgill Valley calculations based on 

minimum and maximum recorded average precipitation rates in intensive sampling; 

long term total extrapolates from this single year 

Site Average CaCO3 

formation in 

drainage waters 

t/y 

%CO2 from 

atmosphere 

Average 

atmospheric CO2 

uptake t/y 

Total CO2 t 

(1978 - 2015) 

Dene Burn 17.6 (5.4 - 57.1) 64  3.5 - 36.5 130 - 1,351 

Howden Burn 13.0 (4.0 - 42.1) 80 3.2 - 33.7 118 - 1,247 

Hownsgill Valley 5.7 (1.1 - 9.9)* 79 0.9 - 7.8 33 - 292 

TOTAL - - - 281 - 2,890 

 

The poor conversion of the carbon capture potential may be attributed to limited 

ingress of atmospheric CO2 into the heap. For instance, if the groundwater inside the 

heap was in equilibrium with Ca(OH)2, atmospheric CO2, and CaCO3 (and thus 

precipitating carbonate minerals) waters would have a pH of 10.2 and 0.1 mmol l-1 of 

Ca (see Supporting Information S7 for geochemical modelling). However, the 

concentration of Ca (~1-5 mmol l-1) and pH (~11.5) in the drainage waters is more 

consistent with the equilibrium concentration ([Ca] = ~20 mmol l-1, pH = 12.5) of 



portlandite (Ca(OH)2) or larnite (Ca2SiO4) which are common minerals in slag 54. The 

lower than expected pH and calcium concentration could be caused by dilution of 

leachate with meteoric or ground water, and/or a kinetic limitation of weathering (e.g., 

surface armouring of slag with carbonate or C-S-H phases limiting weathering rates 

15,17). 

Implications 

The steel industry is responsible for more than 5 % of the total greenhouse gas 

emissions worldwide55, with more than 2 tonnes CO2 released per tonne of steel 

manufactured19, which equates to over 6 tonnes of CO2 released for every tonne of 

slag. Slag has the potential to capture ~0.4 tCO2 per tonne as a mineral carbonate or 

up to 0.7 tCO2 per tonne through enhanced weathering. The full carbon cycle of iron 

and steel slag production and weathering is currently far from a negative emissions 

technology, and would merely offset emissions from the production site. However, the 

iron and steel industry will be under increasing pressure to reduce emissions, which 

may fall to 0.3 tCO2 per tonne of steel (0.5 tCO2 per tonne of slag) primarily by mixing 

low carbon fuels into the blast furnace, exploiting a low carbon power sector, and 

capture and geological storage of CO2 emissions56. If these emissions reductions were 

achieved, then the additional carbon sequestration through slag weathering may be 

sufficient to create an overall carbon negative steel industry. Furthermore, there may 

be considerable atmospheric removal potential of legacy slag deposits which are 

plentiful in many current steel producing areas and post-industrial settings. If the 

requirements of COP2157 are to be implemented, there is likely to be a requirement 

for ‘negative emissions’ technologies to keep atmospheric CO2 within targets25,58. Half 

a billion tonnes of slag are produced annually1, which may increase to over a billion 

tonnes in the current century. Considering these production values, it is estimated that 



the industry may be able to remove half a billion tonnes of CO2 out of the atmosphere 

per year.  

Proactive management of slag to account for, and accelerate, carbon uptake (e.g., 

through comminution of slag where carbon budgets are favourable) while addressing 

any potential environmental concern of hyperalkaline discharges on recipient 

watercourses could provide mutual benefits. Leachate management to minimise 

subsequent impacts on the aquatic environment is likely to be best addressed via (a) 

aeration of waters (e.g., CO2 sparging, cascading of thin films of leachate over 

barrages where hydraulic head is suitable10,41), (b) settlement lagoons, to allow 

accumulation and ready recovery of precipitated calcium carbonates (e.g.,59), and (c) 

residual buffering of alkaline leachates with wetlands60–61. In addition to wetland 

habitat creation as part of broader post-industrial restoration, there may be 

opportunities, through careful treatment of the leachate, to recover and reuse the high 

purity precipitated calcite (potentially used as a filler and coating in paper 

manufacture18,62) and typically benign in terms of trace element content61. 
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