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Predicting vapor liquid equilibria (VLE) of molecules governed by weak van der Waals

(vdW) interactions using first principles approach is a significant challenge. Due to

the poor scaling of post Hartree-Fock wave function theory with system size/basis

functions, Kohn-Sham density functional theory (KS-DFT) is preferred for systems

with a large number of molecules. However, traditional DFT cannot adequately ac-

count for medium to long range correlations which are necessary for modeling vdW

interactions. Recent developments in DFT such as dispersion corrected models and

nonlocal van der Waals functionals have attempted to address this weakness with

varying degree of success. In this work, we predict the VLE of argon and assess the

performance of several density functionals and second order Møller-Plesset perturba-

tion theory (MP2) by determining critical and structural properties via first principles

Monte Carlo (FPMC) simulations. PBE-D3, BLYP-D3, and rVV10 functionals were

used to compute vapor liquid coexistence curves (VLCCs), while PBE0-D3, M062X-

D3, and MP2 were used for computing liquid density at a single state point. The

performance of PBE-D3 functional for VLE is superior to other functionals (BLYP-

D3 and rVV10). For single state point calculations, MP2 performs well for the density

and structural features of the first solvation shell in the liquid phase.

Keywords: Density functional theory, Vapor liquid equilibria, Dispersion interactions,

First principles Monte Carlo, Liquid structure
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I. INTRODUCTION

The knowledge of thermophysical properties such as vapor liquid equilibria (VLE) is crit-

ical for design and development of numerous separation processes. The classical empirical

potentials are often parametrized against experimental data for computing thermophysical

properties at ambient or subcritical state points.1–5 The performance of these force fields

becomes unreliable when considering properties or state points not included in parametriza-

tion. There is also significant emphasis on developing ab initio interatomic potential by using

quantum chemical calculations and using it to predict bulk phase properties.6–25 The poten-

tial energy surface for a large number of configurations is generated to fit to the functional

form of the force field. This approach is, however, limited to moderately sized molecules with

limited conformational degrees of freedom as the computational cost increases significantly

with the complexity of the molecule.

Rapid advances in computational resources and efficient algorithms have contributed

immensely to the development and application of electronic structure calculations. This

expands the capacity to simulate bigger system size, model complex molecules by signifi-

cantly reducing computational time. Recent density functionals (DF) and post Hartree–Fock

(HF) wave function theory can model small molecules with reasonable accuracy. However,

modeling condensed phase systems, in particular, multi–phase phenomena such as vapor liq-

uid equilibria, remains a significant challenge. The popular Kohn-Sham density functional

theory (KS-DFT)26,27 is widely used in material science for modeling condensed phase prop-

erties. One of the biggest challenges for KS-DFT is to accurately account for weak non

covalent interactions.28–30 Advances in the DFT are largely based on improving the perfor-

mance of exchange-correlation (XC) functionals by incorporating additional information of

the electronic system. Perdew et al.31 explain the construction of XC functionals through

“Jacob’s ladder” where different rungs were classified based on the density functional approx-

imations to define XC energies. As of now, there are five rungs starting from local density

approximation (LDA),32,33 generalized gradient approximation (GGA),34–37 meta-GGA,38–42

hybrid functionals,43–47 and random phase approximation (RPA).48–51 As one climbs higher

steps in the ladder, it leads to greater accuracy albeit at higher computational cost. Ad-

ditional details regarding hierarchy of DF methods can be accessed through the work of

Perdew and co-workers.31,52–54
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Over the last two decades or so, many improvements in DFT have been through the

addition of dispersion correction terms to the XC energies. A concept similar to “Jacob’s

ladder”was introduced by Klimeš and Michaelides29 to classify different DFT based dis-

persion correction schemes. Going higher on the ladder leads us to greater accuracy, less

empiricism, and higher computational cost. At present, the pair-wise additive dispersion cor-

rection models28,55–57 and nonlocal van der Waals (vdW) functionals58–61 have demonstrated

some success in handling weak vdW interactions. These models are usually benchmarked

against data sets of dimer energetics and their performance in estimating bulk phase prop-

erties precisely is still a concern.

This work is aimed at obtaining vapor liquid coexistence curves (VLCCs), critical proper-

ties, and structural properties for argon via first principles Monte Carlo (FPMC) simulations,

and assess the performance of several density functionals (GGA, hybrid, and rVV10 non-

local vdW functionals) along with second order Møller-Plesset perturbation theory (MP2).

Being an important noble gas, argon has been studied extensively for establishing bench-

marks. Earlier VLE works with FPMC simulations were performed on water,62–64 methane,65

methanol,65 hydrofluorocarbons,66,67 carbon dioxide,68 and sulfur dioxide.68 For argon, the

work carried out by Maerzke et al.69 presents several key results including dimer potential

energy curves and liquid structure by using self-consistent polarization density functional

theory. However, their bulk phase calculation was limited to single temperature (85 K) tested

with BLYP functional. Given the significance of argon as a prototypical system governed

by dispersion interactions, it is useful to determine VLE directly from first principles, and

examine performance of several density functionals. In the past, most of the studies were

performed by using GGA class of functionals and the accuracy of higher rung functionals are

rarely tested. With the relatively low cost of GGA functionals, they are still very popular

and widely used with reasonable accuracy. However, researchers are moving towards hybrid

density functionals and electron correlation methods such as RPA, and MP2, to predict bulk

phase properties with greater accuracy as compared to GGA functionals.70–84

The rest of the paper is organized as follows. The next section describes the details

of density functionals, simulation set up, dispersion models, and Monte Carlo method. In

Section III, we present potential energy curves, second virial coefficients, and results obtained

from Monte Carlo simulations. The results comprise of VLCCs, Clausius-Clapeyron plots,85

critical properties, and structural investigation of the liquid phase argon. At last, concluding
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remarks are presented in Section IV.

II. COMPUTATIONAL METHODS

In this work, two sets of simulations were performed. First, we calculate the vapor liq-

uid coexistence curves of argon which involves two thermodynamically connected simulation

boxes for computing saturated liquid and vapor densities at different temperatures. Second,

using NpT ensemble the density is computed at a single temperature. First set of calcula-

tions were performed by using the PBE37, BLYP35,36 GGA functionals and rVV1086 nonlocal

van der Waals functional. The GGA functionals particularly PBE and BLYP are well known,

and were extensively used due to reasonable accuracy and modest computational cost. Non-

local functionals add a nonlocal correlation energy term to the local or semilocal functional,

which results increased computational cost to some degree but improves performance. We

have used the rVV10,86 functional which is a revised version of the VV10,87 functional. The

rVV10 functional is chosen because it is one of the best-performing nonlocal correlation

functionals for accurate predictions of the equilibrium bond length and interaction energy of

argon dimer, and the equilibrium lattice constant and cohesive energy of argon solid.88 The

second set or single temperature calculations were carried out using PBE0,45,89 M062X,47

and the second-order Møller-Plesset perturbation theory (MP2).90–94 We could do these cal-

culations only at a single temperature due to extremely high computational cost. In order

to consider the long range dispersion interactions, we have used dispersion correction DFT-

D357 developed by Grimme and co-workers. The DFT-D3 method is used with PBE, BLYP,

PBE0 and M062X functionals, respectively. In order to determine the VLCCs for argon, we

have used the canonical version of Gibbs ensemble Monte Carlo (GEMC) method95 and the

NpT 96 ensemble was employed to calculate liquid density at a specified temperature and

pressure. The GEMC simulation set up utilizes two separate periodic simulation boxes for

representing liquid and vapor phases connected thermodynamically via a unified partition

function.97 For GEMC simulation, total number of molecules, total volume of both boxes,

and temperature of the system are kept constant. The Monte Carlo simulation contains

various trial moves to sample the configurational space. These moves include translation

and changes in the volume of the simulation box for NpT simulations. In addition, the swap

moves between liquid and vapor boxes were also performed for GEMC simulation to equi-
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librate the chemical potential. The probabilities of volume, swap, and translational move

types are 15-20, 20-25, and 60 %, respectively, and the acceptance rate of the moves ranges

from 50 to 60 %. Most of the simulations were carried out using with triple-zeta valence ba-

sis set augmented with polarization functions (TZV2P) and Godecker-Teter-Hutter (GTH)

pseudopotentials.98,99 For dispersion corrected hybrid functionals (PBE0-D3, M062X-D3),

the auxiliary density matrix method (ADMM) with pFIT3 auxiliary basis were employed.76

The ADMM method benefit is to reduce the computational cost by considering a smaller

auxiliary basis for nonlocal Hartree-Fock exchange (HFX) calculations. For MP2 simulation,

we used the Gaussian and plane wave MP2 approach with the resolution of identity (RI)

approximation100,101 which was recently implemented in the CP2K code. Triple-zeta qual-

ity valence-only correlation consistent type primary basis set and associated auxiliary RI

basis set (see the Supplementary Material) were generated and used for the RI-GPW-MP2

calculation. The procedure for generating these basis sets have been discussed in the work

of Del Ben et al.,101 and we refer the interested reader to the original reference for more

information. The truncation radius for Coulomb interaction was set to 7 Å for hybrid DFT

and MP2 calculations. All computational details such as XC functionals, GTH pseudopo-

tentials, and their plane wave cutoff are explicitly provided in the Supplementary Material.

All MC simulations presented in this work have used CP2K software suite (version 2.6.2 and

5.0).102 CP2K software suite uses KS-DFT to compute interaction energies via Quickstep

module103 employing a hybrid scheme of Gaussian and Plane Wave (GPW) method.

First principles MC simulations require large computational resources. This computa-

tional cost can be considerably reduced by using approximate bias potentials to sample

the configurational space.104–107 In this scheme, the configurational space is first sampled

by approximate bias potentials for a short sequence of moves followed by DFT calculation.

The energy difference between DFT and the approximate bias potential is used to compute

acceptance criteria to either accept or reject the entire (short) sequence of moves. We have

used 16 moves for the short sequence using approximate bias potentials.62 The nonbonded

interaction parameters for the approximate bias potential are taken from Michels work.108

All GEMC/NpT simulations (except MP2) were run 500-600 MC cycles. Each cycle refers

to N (total number of molecules) moves with Quickstep energy calculations. The first 250-

300 cycles were considered to be the equilibration, and the remaining cycles were considered

for data collection. The production run was divided into blocks of 50 cycles to calculate the
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FIG. 1. Effect of system size (N) on the liquid density of Ar at 85 K and 1 bar. The error bars

smaller than symbol size are not shown.

average and standard deviations for saturated liquid and vapor densities. For MP2 simu-

lation, we performed four independent runs by using different seed and probability ratios.

Each independent simulations consisted of 175 MC cycles. The first 100 MC cycles were

considered as equilibration and the remaining 75 cycles from each independent run were used

to calculate average density and corresponding standard deviation. The approximate bias

parameters and the numerical values for VLCCs can be found in the Supplementary Mate-

rial. The critical temperature and critical density of argon for different functional are also

calculated by using subcritical VLCC data. For this purpose, the density scaling law with

critical exponent 0.325 and the law of rectilinear diameter were used.109–111 Additionally, the

normal boiling point was calculated by fitting vapor pressure data to Clausius-Clapeyron

equation.

We performed GEMC calculations with PBE-D3 functional in order to choose an ap-

propriate system size (number of molecules) for this study. The system size considered are

36, 54, 64, 72, 128, and 256 argon atoms. Figure 1 shows the plot for the saturated liquid

density of argon as a function of system size. It is evident from the figure that the density

converges to large system size limit after 54 particles. There is a somewhat larger standard

deviation for the density obtained from 54 particle simulation. The density obtained from

the system size of 64 or 72 argon atoms are reliable and appear suitable for the simulation

study. Thus, we have used 72 argon atoms for the GGA and hybrid functional (PBE0-D3

and M062X-D3) calculations and 64 particles for MP2 simulations. We have used smaller

7

http://dx.doi.org/10.1063/1.5025726


system size for MP2 simulations because of the significant computational cost associated

with the larger simulation cell. We note the MP2 method has recently been applied to

study liquid water, and excellent agreements have been obtained with the experiment on

water density and radial distribution functions.71 The initial system set up procedure can

be referred from our previous work.66 The structural analysis for the liquid phase of argon

was determined through radial distribution functions (RDF) plots.

As two-body interaction term contributes most to the total potential energy of the n-

body system, it can be helpful to assess the performance of various functional for dimer

energetics. The potential energy curves (PECs) can provide an insight into the accuracy of

bulk phase property prediction. The argon PECs through different functionals are compared

at coupled cluster single, double, and perturbative triple excitations (CCSD(T))112–117 level

of theory with extrapolation to the complete basis set (CBS) limit.7 Most of the GPW dimer

calculations and VLCCs curves in this work have been performed using the TZV2P basis set,

which was found to converge well for the equilibrium bond length and interaction energy

of argon dimer. Therefore, it is also beneficial to obtain the PECs from the CCSD(T)

using triple zeta basis set. For this purpose, we carried out argon dimer calculation to

obtain the PECs from CCSD(T)/aug-cc-pVTZ(aVTZ) basis set.118,119 We have used Boys

and Bernardi counterpoise correction120 for removing the basis set superposition error. The

CCSD(T)/aVTZ calculations for potential energy curve were performed by using Gaussian

09 software.121

The potential energy curve between two argon atoms can be used to compute the second

virial coefficient using the following equation:

B2(T ) = −2π

∫ ∞

0

(e−U(r)/(kBT ) − 1)r2dr (1)

where U(r), kB, and T represents the dimer potential at separation r, Boltzmann con-

stant, and temperature, respectively. To compute B2(T ), we have followed the approached

used by Maerzke et al.69 However, we did not include the quantum corrections to the virial

coefficients as they appear to be less than 1 %.69 In brief, B2(T ) was determined by using

trapezoidal numerical integration in the range of r = 0 − 50.0 Å. The energies were set to

a large positive number in the region of r = 0 − 2.0 Å, which results in Mayer function to

be -1. For every functional, we have computed the dimer potential energy for r =2.0-7.0

Å and the local cubic splines were used to interpolate the energies in this region. The po-
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tential energies obtained over the region r = 6.25 − 7.0 Å were used to fit the functional

form −C6r
−6. Thereafter, the value for C6 coefficient were used to extrapolate the potential

energies from 7.0 to 50.0 Å.

III. RESULTS AND DISCUSSION

A. Dimer Energetics

The leading contribution to the total energy for an n-body system is from two-body terms.

Thus, dimer potential energy curves (PECs) can be a good indicator for the performance of

different level of theory for predicting condensed phase thermodynamic properties. Figure

2 shows the PECs of argon with different class of functionals and MP2. The location of

the minima and the interaction energy are also listed in Table I. The curve obtained from

CCSD(T)/aug-cc-pVTZ(aVTZ) basis set overestimates the equilibrium bond length and

underestimates the binding energy when compared with CCSD(T)/CBS or the experiment.

For GGA functionals (PBE and BLYP with dispersion correction D3), the equilibrium

bond lengths from both functionals are overestimated by approximately 0.1 Å in compari-

son with the experiment. The binding energy is largely underestimated for BLYP-D3 and

overestimated by PBE-D3 functional compared to the experimental values. This binding

energy difference for the BLYP-D3/PBE-D3 functionals can have significant consequences

on the nature of VLCCs (see below). In the case with hybrid functionals, the PBE0-D3 func-

tional overestimated the bond length marginally with a difference of 0.09 Å as compared

to experiment or CCSD(T)/CBS. The PBE0-D3 functional binding energy at the equilib-

rium distance is close enough to the experiment or CCSD(T)/CBS, but it fails to carry

the similar performance in the long range interaction region where it is more attractive

than CCSD(T)/CBS. The M062X functional is based on hybrid meta exchange-correlation

functionals and account for short to medium range correlation. The M062X-D3 functional

completely fails to determine the equilibrium bond length and it overestimated the value

by 0.40 Å. Furthermore, the binding energy obtained from M062X-D3 functional underesti-

mates the experiment well depth.

For the nonlocal functional rVV10, we can see that the calculated equilibrium bond length

and the binding energy is in good agreement with the experimental data. The PEC obtained
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TABLE I. The location of well depth (R0, Å) and interaction energy (E int, kJ/mol) of argon at

the minima in the dimer potential energy curve for different functional/potential compared with

CCSD(T) and experimental work.

Functional R0 -E int

PBE-D3/GPW 3.87 1.412

BLYP-D3/GPW 3.85 0.690

rVV10/GPW 3.77 1.210

PBE0-D3/GPW 3.85 1.155

M062X-D3/GPW 4.10 0.780

MP2/GPW 3.90 0.759

MP2/aVTZ 3.85 1.014

LJ (Vrabec et al.23) 3.81 0.969

LJ (Michels et al.108) 3.82 0.994

CCSD(T)/aVTZ 3.89 0.853

CCSD(T)/CBS7 3.767 1.187

Experiment122 3.761 1.188

aug-cc-pVTZ (aVTZ)

complete basis set

(CBS)

Gaussian plane wave

(GPW)

from rVV10 functional matches well with the CCSD(T)/CBS curve until 4 Å. However, the

rVV10 PEC does not provide similar accuracy as the distance between particles increase

beyond 4 Å. After 4 Å, the interaction energy is slightly underestimated when compared to

the CCSD(T)/CBS curve. In addition, the argon PEC with rVV10 functional is in good

agreement with the reference curve as shown in the work of Sabatini et al.86 and Tran and

Hutter.88 Next, the MP2 method well known for accounting electron correlation is computa-

tionally efficient as compared to coupled cluster and configuration interaction methods. The

results obtained from the MP2/GPW and MP2/aVTZ show the binding energy difference of

around 0.25 kJ/mol. Compared to the experimental data, both underestimate the binding
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energy and overestimate the equilibrium bond length. In summary, the rVV10 functional is

the best functional for dimer energetics, which is consistent with our earlier published works

on hydrofluorocarbons as well.66,68 According to the work of Tran and Hutter,88 the rVV10

functional also perform well as compared to other tested DFT functionals in case of rare gas

dimers. After rVV10 functional, the PBE0-D3 functional also does a decent job for equilib-

rium bond length and binding energy as compared to the experiment/CCSD(T)/CBS. The

effective LJ pair potentials developed by Michels et al.108 and Vrabec et al.23 underestimate

the potential well depth by approximately 16 and 18 %, respectively. Since, the LJ poten-

tial by Vrabec et al.23 can provide an extremely good prediction for vapor liquid coexistence

curve, it suggests that many-body polarization effects are repulsive in nature.

B. Second Virial Coefficients

The second virial coefficients for argon with different functionals and LJ potential23 are

shown in Figure 3 and compared with the experimental123 and CCSD(T)/CBS7 date over

the range of 100-1000 K. The numerical values for second virial coefficients are also provided

in the Table S6 of the Supplementary Material. Among all the functionals and the LJ

potential23 used here, the best performance are shown by the PBE0-D3 and rVV10 nonlocal

functional. At lower temperatures (100 to 200 K), the unsigned mean percentage error are

7.5 % and 8.0 % for PBE0-D3 and rVV10 functional as compared to the experimental data.

Moreover, the predictions for second virial coefficients at higher temperatures are also in

good agreement with experimental data. The next closest results are provided by the LJ

potential.23 For other functionals, the PBE-D3 functional significantly overestimate while

BLYP-D3, MP2, and M062X-D3 significantly underestimate B2(T ).

C. Liquid Density and Structure

The performance of GGA (PBE-D3 and BLYP-D3), rVV10, hybrid (PBE0-D3, M062X-

D3), and MP2 method are compared by predicting liquid densities for argon at 85 K and

1 bar. Table II lists down the computed densities for different functionals and MP2. The

accuracy of the functionals in predicting density are in this order: MP2>M062X-D3>PBE0-

D3>BLYP-D3>PBE-D3>rVV10. Clearly, the MP2 method provides the best estimate of
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TABLE II. Liquid density of argon at T = 85 K and P = 1 bar with different functionals and LJ

potential. Experimental data are taken from the NIST chemistry webbook.124

Functional ρ (g/cm3) St. dev. % Error

PBE-D3 (at 85 K) 1.238 0.014 -12.14

BLYP-D3 (at 85 K) 1.268 0.016 -10.0

rVV10 (at 85 K) 1.621 0.006 15.04

PBE0-D3 (at 85 K) 1.527 0.010 8.37

M062X-D3 (at 85 K) 1.377 0.016 -2.27

MP2 (at 85 K) 1.440 0.014 2.20

LJ (Vrabec et al.23) 1.407 0.002 -0.15

Expt. (at 85 K)124 1.409

density with a 2.2% error. From the B2(T ) values for MP2, one could not have come to

the conclusion that MP2 would be able to provide such a good estimate for the liquid

density. It appears as the system size increases, MP2 overestimates many-body polarization

effects leading to cancellation of errors. The only constraint in doing MP2 calculations for

the condensed phase is the need for substantial computational resources. The second best

estimate comes from the M062X-D3 functional with an underprediction of 2.3%. We could

also test the accuracy of M062X-D3 functional at a slightly higher temperature (105 K)

and the computed density is underpredicted by approximately 6.5%. The M062X-D3 does

a decent job in computing density in spite of poor performance for well depth location. The

performance of another hybrid functional PBE0-D3 is somewhat reasonable for density and

PEC of argon. The computed density is overpredicted by 8.4%. The density obtained from

BLYP-D3 and PBE-D3 functionals are underestimated by 10 and 12%, respectively. At 85

K, both functionals show similar accuracy for liquid density in spite of the large difference

in binding energy, suggesting that at lower temperatures location of the minima in PEC

is more important than the binding energy. As described above, the difference of binding

energy mainly affects the bulk phase properties at higher reduced temperatures.

The structural features of the liquid phase of argon are explored through analyzing radial

distribution function. Figure 4 shows the RDF plots with different functionals at 85 K

and its characteristics (location of the first coordination shell and height of the peak) are
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TABLE III. Characteristics (location and height of the first solvation peak) of liquid phase radial

distribution function for argon with different functionals and LJ potential.

Functional r (Å) g(r)

PBE-D3 3.86 2.808

BLYP-D3 3.74 3.174

rVV10 3.66 3.784

PBE0-D3 3.70 3.395

M062X-D3 3.70 2.632

MP2 3.66 2.982

LJ (Vrabec et

al.23)

3.67 2.943

Experiment125 3.68 3.050

provided in Table III. The experimental RDF is taken from Yarnell et al.125 Except for PBE-

D3 and BLYP-D3, most of the other functionals perform reasonably well in predicting the

location of the first coordination shell. The PBE-D3 and BLYP-D3 functionals somewhat

overestimate the location of the peak, 3.86 and 3.74 Å, respectively, as compared to the

experimental value of 3.68 Å. This is also consistent with the fact that liquid density is

underestimated for these functionals. The peak height with PBE0-D3 and rVV10 functional

are considerably higher as compared to other functionals and this is largely due to higher

densities predicted with both of these functionals. The peak height obtained from M062X-

D3 functional is slightly smaller despite a reasonable density prediction. The liquid structure

obtained from MP2 based MC simulations is in excellent agreement with experimental data.

This is somewhat expected since density obtained with MP2 energetics is also very close to

experimental liquid density. The location and the height of the first solvation peak for LJ

pair potential is also in good agreement with the experimental data (see Table III).

D. Vapor Liquid Phase Equilibria

The VLCCs for argon obtained from GEMC simulations are shown in Figure 5. This

figure compares the performance of three different functionals (PBE-D3, BLYP-D3 and
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rVV10) against the experimental data. The overall saturated liquid densities obtained from

PBE-D3 and BLYP-D3 functionals are underestimated by 8.5 % and 10 %, respectively.

Clearly, PBE-D3 functional’s performance is superior to BLYP-D3 functional. Nonetheless,

both GGA functionals fail to mimic the slope of saturated liquid and vapor lines. At higher

temperatures, the BLYP-D3 functional gives larger error as compared to lower tempera-

tures, whereas for the PBE-D3 functional agreement with experimental data improves with

the increase in temperature. The results obtained from both these functionals show the

underestimation of dispersion interactions. In the case of rVV10 functional, the overpre-

diction for saturated liquid densities is nearly 23 %. The complete curve shows consistent

overprediction of the saturated liquid densities and underprediction of the saturated vapor

densities. In other words, the dispersion interactions are largely overestimated.

Next, we have used saturated vapor densities to compute the saturated vapor pressures via

ideal gas law. This is an approximation which holds well at lower vapor densities. In Figure

6, the Clausius-Clapeyron plots compares the saturated vapor pressures obtained from PBE-

D3, BLYP-D3 and rVV10 functionals for argon. The BLYP-D3 functional over predicts the

saturated vapor pressures as compared to the experimental data and this is largely due to

the higher vapor densities from the VLCCs curve. The saturated vapor pressure curves

from PBE-D3 functional shows moderate underprediction for all the state points considered

in this study. In the case of rVV10 functional, the saturated vapor pressure curve shows

underprediction with larger standard deviation, especially at the lower temperatures. The

underprediction of saturated vapor pressure for PBE-D3 and rVV10 functionals is directly

associated with the underprediction of saturated vapor densities.

The subcritical VLE data can be used to estimate the critical properties of any com-

pound. The predicted critical temperature (TC), critical densities (ρC), and normal boiling

points (TB) are presented in Table IV. The critical temperature for argon is over estimated

by 15.2% and 27.8% with the PBE-D3 and rVV10 functionals, respectively. The high error

for rVV10 functional is due to the overprediction of saturated liquid densities and under-

prediction of saturated vapor densities. For PBE-D3, it still performs reasonably well for

saturated liquid densities but underprediction of saturated vapor densities takes the crit-

ical temperature to the higher value. The critical temperature for argon with BLYP-D3

functional is underestimated by 24%, and this is mainly because of incorrect curvature of

the saturated liquid and vapor densities curves. The normal boiling point is obtained by
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TABLE IV. Critical temperature (TC), critical density (ρC), and normal boiling point (TB) for argon

obtained from Monte Carlo simulations. Experimental data are taken from the NIST chemistry

webbook.124 The numbers in the parenthesis are the standard deviations.

Functional TC(K) ρC (g/cm3) TB(K)

PBE-D3 173.6(4) 0.439(0.03) 102(2)

BLYP-D3 114.8(8) 0.534(0.10) 67(5)

rVV10 192.7(5) 0.612(0.04) 105(3)

LJ (Vrabec et al.23) 152.0(1) 0.522(0.005) 87(1)

Experiment124 150.69 0.535 87.5

using the Clausius−Clapeyron equation. The PBE-D3 and rVV10 functionals overestimate

boiling point by 17% and 20%, respectively, whereas the BLYP-D3 functional underpredict

by 24%. LJ potential,23 on the other hand, accurately predicts these thermodynamic prop-

erties, which is not surprising give these are parameterized to predict bulk thermodynamic

properties.

The VLCCs obtained from different functionals can also be directly related to the dimer

PECs for argon. As mentioned above, both functionals (BLYP-D3 and PBE-D3) give very

similar results for the location of the well depth but the difference for the binding energy

is approximately 0.7 kJ/mol. The underestimation of binding for BLYP-D3 leads to lower

saturated liquid densities and higher saturated vapor densities, and this behavior ultimately

leads to a lower critical temperature. With PBE-D3 functional, the prediction for saturated

liquid densities at lower reduced temperatures (Tr = T/TC) are similar to BLYP-D3, but

agreement improves at higher reduced temperatures. This is largely due to the difference in

binding energy between the functionals. The higher binding energy prediction with PBE-

D3 leads to having higher critical temperature as compared to the prediction from BLYP-

D3. The rVV10 functional does not reproduce the actual VLCC behavior in spite of PEC

that matches well the experiment and CCSD(T)/CBS data for separation less than 4 Å.

The overprediction for saturated liquid densities is possibly due to overbinding at larger

separations. Therefore, at present, the rVV10 functional is evidently one of the best option

to determine accurate geometries for dimer energetics, but it is not sufficiently reliable for

computing liquid phase properties of the system. In summary, the PBE functional with D3
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dispersion correction model is a good choice to model vapor liquid equilibria for argon when

compared with BLYP-D3 and rVV10 functionals.

IV. CONCLUSIONS

Vapor liquid equilibria along with liquid density and liquid microstructure of argon are

predicted using first principles Gibbs ensemble Monte Carlo simulations. Among different

theoretical models considered in the present work, MP2 performs extremely well for liquid

and the structure of first solvation shell albeit at a significantly higher computational cost

compared to density functional methods. The rVV10 nonlocal van der Waals functional per-

forms well for PEC and second virial coefficients, but overpredicts saturated liquid densities

indicating many body polarization effects are overestimated. The performance of dispersion

corrected hybrid functionals (PBE0-D3 and M062X-D3) is not as good as MP2 for the den-

sities and location of first coordination shell. At last, PBE-D3 performs reasonably well for

VLE as compared to BLYP-D3 and rVV10. Overall, our work indicates that MP2/GPW

approach is most suitable for predicting condensed phase properties of systems governed by

dispersion interactions.

SUPPLEMENTARY MATERIAL

See Supplementary Material for bias potential parameters, energy cutoff for different

simulations, plot for density versus Monte Carlo steps, numerical data used for VLE and

Clausius-Clapeyron plots, dimer PEC, second virial coefficients, and basis sets used for

RI-MP2 calculations.
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29J. Klimeš and A. Michaelides, “Perspective: Advances and challenges in treating van der

waals dispersion forces in density functional theory,” J. Chem. Phys. 137, 120901 (2012).

30A. J. Cohen, P. Mori-Sánchez, and W. Yang, “Challenges for density functional theory,”

Chem. Rev. 112, 289–320 (2011).

31J. P. Perdew, A. Ruzsinszky, J. Tao, V. N. Staroverov, G. E. Scuseria, and G. I. Csonka,

“Prescription for the design and selection of density functional approximations: More

constraint satisfaction with fewer fits,” J. Chem. Phys. 123, 062201 (2005).

32J. P. Perdew and Y. Wang, “Accurate and simple analytic representation of the electron-

gas correlation energy,” Phys. Rev. B 45, 13244–13249 (1992).

33S. Vosko, L. Wilk, and M. Nusair, “Accurate spin-dependent electron liquid correlation

energies for local spin density calculations: a critical analysis,” Can. J. Phys. 58, 1200–

1211 (1980).

34J. P. Perdew, “Density-functional approximation for the correlation energy of the inho-

mogeneous electron gas,” Phys. Rev. B 33, 8822–8824 (1986).

19

http://dx.doi.org/10.1063/1.5025726


35A. D. Becke, “Density-functional exchange-energy approximation with correct asymptotic

behavior,” Phys. Rev. A 38, 3098 (1988).

36C. Lee, W. Yang, and R. G. Parr, “Development of the colle-salvetti correlation-energy

formula into a functional of the electron density,” Phys. Rev. B 37, 785 (1988).

37J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made

simple,” Phys. Rev. Lett. 77, 3865 (1996).

38J. P. Perdew, S. Kurth, A. Zupan, and P. Blaha, “Accurate density functional with

correct formal properties: A step beyond the generalized gradient approximation,” Phys.

Rev. Lett. 82, 2544 (1999).

39T. Van Voorhis and G. E. Scuseria, “A novel form for the exchange-correlation energy

functional,” J. Chem. Phys. 109, 400–410 (1998).

40M. Ernzerhof and G. E. Scuseria, “Kinetic energy density dependent approximations to

the exchange energy,” J. Chem. Phys. 111, 911–915 (1999).

41A. D. Becke, “Exploring the limits of gradient corrections in density functional theory,”

J. Comput. Chem. 20, 63–69 (1999).

42Y. Zhao, N. E. Schultz, and D. Truhlar, “Exchange-correlation functional with broad

accuracy for metallic and nonmetallic compounds, kinetics, and noncovalent interactions,”

J. Chem. Phys. 123, 161103 (2005).

43A. D. Becke, “Density-functional thermochemistry. III. the role of exact exchange,” J.

Chem. Phys. 98, 5648–5652 (1993).

44P. Stephens, F. Devlin, C. Chabalowski, and M. J. Frisch, “Ab initio calculation of

vibrational absorption and circular dichroism spectra using density functional force fields,”

J. Phys. Chem. 98, 11623–11627 (1994).

45C. Adamo and V. Barone, “Toward reliable density functional methods without adjustable

parameters: The PBE0 model,” J. Chem. Phys. 110, 6158–6170 (1999).

46J. Heyd, G. E. Scuseria, and M. Ernzerhof, “Hybrid functionals based on a screened

coulomb potential,” J. Chem. Phys. 118, 8207–8215 (2003).

47Y. Zhao and D. G. Truhlar, “Density functionals with broad applicability in chemistry,”

Accounts Chem. Res. 41, 157–167 (2008).

48A. Heßelmann and A. Görling, “Random-phase approximation correlation methods for

molecules and solids,” Mol. Phys. 109, 2473–2500 (2011).

20

http://dx.doi.org/10.1063/1.5025726


49X. Ren, P. Rinke, C. Joas, and M. Scheffler, “Random-phase approximation and its

applications in computational chemistry and materials science,” J. Mater. Sci. 47, 7447–

7471 (2012).

50H. Eshuis, J. E. Bates, and F. Furche, “Electron correlation methods based on the random

phase approximation,” Theor. Chem. Acc. 131, 1084 (2012).

51G. P. Chen, V. K. Voora, M. M. Agee, S. G. Balasubramani, and F. Furche, “Random-

phase approximation methods,” Annu. Rev. Phys. Chem. 68, 421–445 (2017).

52J. Tao, J. P. Perdew, V. N. Staroverov, and G. E. Scuseria, “Climbing the density

functional ladder: Nonempirical meta–generalized gradient approximation designed for

molecules and solids,” Phys. Rev. Lett. 91, 146401 (2003).

53J. P. Perdew, “Climbing the ladder of density functional approximations,” MRS bulletin

38, 743–750 (2013).

54J. P. Perdew and K. Schmidt, “Jacobs ladder of density functional approximations for

the exchange-correlation energy,” in AIP Conference Proceedings, Vol. 577 (AIP, 2001)

pp. 1–20.

55S. Grimme, “Accurate description of van der waals complexes by density functional theory

including empirical corrections,” J. Comput. Chem. 25, 1463–1473 (2004).

56S. Grimme, “Semiempirical gga-type density functional constructed with a long-range

dispersion correction,” J. Comput. Chem. 27, 1787–1799 (2006).

57S. Grimme, J. Antony, S. Ehrlich, and H. Krieg, “A consistent and accurate ab initio

parametrization of density functional dispersion correction (DFT-D) for the 94 elements

H-Pu,” J. Chem. Phys. 132, 154104 (2010).
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61K. Lee, É. D. Murray, L. Kong, B. I. Lundqvist, and D. C. Langreth, “Higher-accuracy

van der waals density functional,” Phys. Rev. B 82, 081101 (2010).

21

http://dx.doi.org/10.1063/1.5025726


62I.-F. W. Kuo, C. J. Mundy, M. J. McGrath, J. I. Siepmann, J. VandeVondele, M. Sprik,

J. Hutter, B. Chen, M. L. Klein, F. Mohamed, et al., “Liquid water from first princi-

ples: investigation of different sampling approaches,” J.Phys. Chem. B 108, 12990–12998

(2004).

63M. McGrath, J. Siepmann, I.-F. Kuo, and C. Mundy, “Vapor–liquid equilibria of water

from first principles: Comparison of density functionals and basis sets,” Mol. Phys. 104,

3619–3626 (2006).

64M. J. McGrath, J. I. Siepmann, I.-F. W. Kuo, C. J. Mundy, J. VandeVondele, J. Hut-

ter, F. Mohamed, and M. Krack, “Simulating fluid-phase equilibria of water from first

principles,” J. Phys. Chem. A 110, 640–646 (2006).

65M. J. McGrath, I.-F. W. Kuo, J. N. Ghogomu, C. J. Mundy, and J. I. Siepmann,

“Vapor–liquid coexistence curves for methanol and methane using dispersion-corrected

density functional theory,” J. Phys. Chem. B 115, 11688–11692 (2011).

66H. Goel, C. L. Butler, Z. W. Windom, and N. Rai, “Vapor liquid equilibria of hydrofluo-

rocarbons using dispersion-corrected and nonlocal density functionals,” J. Chem. Theory

Comput. 12, 3295–3304 (2016).

67H. Goel, Z. W. Windom, C. L. Butler, and N. Rai, “Phase equilibria and condensed

phase properties of fluorinated alkanes via first principles simulations,” ChemistrySelect

2, 11969–11976 (2017).

68H. Goel, Z. W. Windom, A. A. Jackson, and N. Rai, “Performance of density functionals

for modeling vapor liquid equilibria of CO2 and SO2,” J. Comput. Chem. 39, 397–406

(2018).

69K. A. Maerzke, G. Murdachaew, C. J. Mundy, G. K. Schenter, and J. I. Siepmann, “Self-

consistent polarization density functional theory: Application to argon,” J. Phys. Chem.

A 113, 2075–2085 (2009).

70M. Del Ben, J. Hutter, and J. VandeVondele, “Probing the structural and dynamical

properties of liquid water with models including non-local electron correlation,” J. Chem.

Phys. 143, 054506 (2015).

71M. Del Ben, M. Schonherr, J. Hutter, and J. VandeVondele, “Bulk liquid water at ambient

temperature and pressure from MP2 theory,” J. Phys. Chem. Lett. 4, 3753–3759 (2013).

72M. Del Ben, J. VandeVondele, and B. Slater, “Periodic MP2, RPA, and boundary con-

dition assessment of hydrogen ordering in ice XV,” J. Phys. Chem. Lett. 5, 4122–4128

22

http://dx.doi.org/10.1063/1.5025726


(2014).

73M. Del Ben, J. Hutter, and J. VandeVondele, “Forces and stress in second order Møller-

Plesset perturbation theory for condensed phase systems within the resolution-of-identity

gaussian and plane waves approach,” J. Chem. Phys. 143, 102803 (2015).

74T. Todorova, A. P. Seitsonen, J. Hutter, I.-F. W. Kuo, and C. J. Mundy, “Molecular

dynamics simulation of liquid water: hybrid density functionals,” J. Phys. Chem. B 110,

3685–3691 (2006).

75M. Guidon, F. Schiffmann, J. Hutter, and J. VandeVondele, “Ab initio molecular dy-

namics using hybrid density functionals,” J. Chem. Phys. 128, 214104 (2008).

76M. Guidon, J. Hutter, and J. VandeVondele, “Auxiliary density matrix methods for

hartree- fock exchange calculations,” J. Chem. Theory Comput. 6, 2348–2364 (2010).

77R. A. DiStasio Jr, B. Santra, Z. Li, X. Wu, and R. Car, “The individual and collective

effects of exact exchange and dispersion interactions on the ab initio structure of liquid

water,” J. Chem. Phys. 141, 084502 (2014).

78C. Zhang, D. Donadio, F. Gygi, and G. Galli, “First principles simulations of the infrared

spectrum of liquid water using hybrid density functionals,” J. Chem. Theory Comput. 7,

1443–1449 (2011).

79M. Schonherr, B. Slater, J. Hutter, and J. VandeVondele, “Dielectric properties of water

ice, the ice Ih/XI phase transition, and an assessment of density functional theory,” J.

Phys. Chem. B 118, 590–596 (2014).

80Q. Wan, L. Spanu, F. Gygi, and G. Galli, “Electronic structure of aqueous sulfuric

acid from first-principles simulations with hybrid functionals,” J. Phys. Chem. Lett. 5,

2562–2567 (2014).

81M. Macher, J. Klimeš, C. Franchini, and G. Kresse, “The random phase approximation

applied to ice,” J. Chem. Phys. 140, 084502 (2014).

82A. P. Gaiduk, F. Gygi, and G. Galli, “Density and compressibility of liquid water and

ice from first-principles simulations with hybrid functionals,” J. Phys. Chem. Lett. 6,

2902–2908 (2015).

83F. Ambrosio, G. Miceli, and A. Pasquarello, “Structural, dynamical, and electronic

properties of liquid water: A hybrid functional study,” J. Phys. Chem. B 120, 7456–7470

(2016).

23

http://dx.doi.org/10.1063/1.5025726
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114J. Č́ıžek, “On the correlation problem in atomic and molecular systems. calculation of

wavefunction components in ursell-type expansion using quantum-field theoretical meth-

ods,” J. Chem. Phys. 45, 4256–4266 (1966).
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FIG. 2. Potential energy curves of argon at different levels of theory. The black stars, red

squares, violet triangle up, blue triangle left, magenta triangle down, maroon cross, orange trian-

gle right, turquoise diamonds, green circles, maroon circles and blue triangle down represent data

for CCSD(T)/CBS,7 CCSD(T)/aVTZ (aug-cc-pVTZ), BLYP-D3/GPW, PBE-D3/GPW, PBE0-

D3/GPW, rVV10/GPW, M062X-D3/GPW, MP2/GPW, MP2/aVTZ, LJ (Michels et al.)108 and

LJ (Vrabec et al.)23 potential, respectively. The dashed lines of the corresponding color are guide

to the eye.
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FIG. 3. Temperature dependance of the second virial coefficient of argon. The black stars, magenta

plus, red diamonds, maroon squares, turquoise triangle down, green triangle left, orange triangle

right, violet triangle up, and blue circles represent data for experiment,123 CCSD(T)/CBS,7 BLYP-

D3/GPW, PBE-D3/GPW, PBE0-D3/GPW, rVV10/GPW, M062X-D3/GPW, MP2/GPW, and

LJ (Vrabec et al.)23 potential, respectively. The dashed lines of the corresponding color are guide

to the eye.
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FIG. 4. Liquid phase radial distribution functions for argon at 85 K. The dash-dotted red, dashed

green, and dotted orange color lines represent results obtained with BLYP-D3, PBE- D3, and

PBE0-D3, respectively. The solid violet, dashed maroon, dotted blue and dashed magenta color

lines represent results obtained with MP2, M062X-D3, rVV10, and LJ (Vrabec et al.23) potential,

respectively (y-axis is scaled with +2). The solid black line denotes the experimental data taken

from Yarnell et al.125 A bin width of 0.04 Å is used for all RDF plots.
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FIG. 5. Vapor-liquid coexistence curves (VLCCs) for argon with different functionals and LJ po-

tential. The solid black lines depict the experimental data and the star represents the experimental

critical point.124 The red diamonds, violet squares, green circles, and magenta plus represent GEMC

simulation data with BLYP-D3, PBE-D3, rVV10 and LJ (Vrabec et al.23) potential, respectively.

The error bars smaller than symbol size are not shown.
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FIG. 6. Clausius-Clapeyron plots for argon with different functionals and LJ potential. The solid

black lines depict the experimental data.124 The red diamonds, violet squares, green circles, and

magenta plus represent GEMC simulation data with BLYP-D3, PBE-D3, rVV10 and LJ (Vrabec

et al.23) potential, respectively. The error bars smaller than symbol size are not shown. The dashed

lines show a linear fit of the simulation data.
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