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Abstract

Background: Phosphorus (P) is an essential macronutrient for plant growth, and is required in large quantities by
elite varieties of crops to maintain yields. Approximately 70% of global cultivated land suffers from P deficiency, and
it has recently been estimated that worldwide P resources will be exhausted by the end of this century, increasing
the demand for crops more efficient in their P usage. A greater understanding of how plants are able to maintain
yield with lower P inputs is, therefore, highly desirable to both breeders and farmers. Here, we clone the wheat
(Triticum aestivum L) homologue of the rice PSTOL gene (OsPSTOL), and characterize its role in phosphate nutrition
plus other agronomically important traits.

Results: TaPSTOL is a single copy gene located on the short arm of chromosome 5A, encoding a putative kinase
protein, and shares a high level of sequence similarity to OsPSTOL. We re-sequenced TaPSTOL from 24 different
wheat accessions and (3) three T. durum varieties. No sequence differences were detected in 26 of the accessions,
whereas two indels were identified in the promoter region of one of the durum wheats. We characterised the
expression of TaPSTOL under different P concentrations and demonstrated that the promoter was induced in root
tips and hairs under P limiting conditions. Overexpression and RNAi silencing of TaPSTOL in transgenic wheat lines
showed that there was a significant effect upon root biomass, flowering time independent of P treatment, tiller
number and seed yield, correlating with the expression of TaPSTOL. However this did not increase PUE as elevated
P concentration in the grain did not correspond to increased yields.

Conclusions: Manipulation of TaPSTOL expression in wheat shows it is responsible for many of the previously described
phenotypic advantages as OsPSTOL except yield. Furthermore, we show TaPSTOL contributes to additional agronomically
important traits including flowering time and grain size. Analysis of TaPSTOL sequences from a broad selection of wheat

varieties, encompassing 91% of the genetic diversity in UK bread wheat, showed that there is very little genetic variation

in this gene, which would suggest that this locus may have been under high selection pressure.
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Background

Phosphorus (P) is an essential macronutrient that is re-
quired for all major developmental processes in plants
and is considered to be one of the most limiting plant
nutrients to global agricultural production. Approxi-
mately 70% of global cultivated land suffers from phos-
phate deficiency, making research into phosphate
nutrition a priority for both scientists and farmers [1-3].
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Phosphate is usually taken up in the orthophosphate
forms (P;) which are available at low concentrations in
the soil solution [4]. This low availability can be com-
pounded by the soil chemistry in which soils high in clay
can bind the P; requiring large amounts of fertilizer to
be applied to maintain high yields [4-6]. To compound
the problem of P limiting growth and vyield, recent esti-
mates suggest that only 20-30% of the inorganic phos-
phate (P;) added to fields by farmers is assimilated by
plants [7]. An increased understanding of how plants
use P; and the current inefficiency of P; assimilation
would be of economic benefit to farmers and also
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potentially alleviate environmental problems resulting
from large scale agricultural production. Wheat (Triti-
cum aestivum L.) is one of the most important crops
worldwide and grown on more than 240 million hectares
in 2016 [8]. P is one of the three most important nutri-
ents for growth and yield improvement in wheat [9, 10].
Therefore an improvement in phosphate use efficiency
(PUE) in wheat could potentially have a large global im-
pact over 200 million hectares.

Recent advances in our understanding of the molecu-
lar mechanisms by which different plant species adapt to
low-phosphate stress, the regulation and expression of
phosphorus metabolism genes and alleles to deal with
phosphate limitation, have enabled the design of more
effective breeding strategies to produce highly phosphate
efficient crops [11, 12]. A number of the underlying
genes involved in the response of plants to low P are
highly conserved and play similar roles in a number of
diverse plant species including both model system and
crop species. Thus, a greater understanding of the path-
ways involved in phosphate acquisition and signalling
will allow breeders and plant molecular biologists to de-
velop more efficient crops. Identification of these con-
served pathways and genes from model organisms, and
the subsequent transfer of this knowledge to crop spe-
cies, would therefore allow farmers to optimize fertilizer
use, resulting in increased food production efficiency
with lower environmental cost.

One such locus which is believed to be important is the
recent identification of the PUP1 locus from rice which
contains a putative kinase gene called Phosphate Starva-
tion Tolerance 1 (PSTOL) [13-16]. The PUP1 locus was
originally identified in an upland variety of rice, Kasalath,
yet is absent from most rice cultivars [17-19]. Rice var-
ieties which have this genomic introgression containing
the PSTOL gene, show increased biomass, increased root
growth, increased tiller number and vyield increases of up
to 30% when grown under low P conditions whereas no
deleterious consequences were seen when grown under
normal soil fertility conditions [19, 20]. The identification
of OsPSTOL and its role in helping rice tolerate low P
conditions has led to the belief that we can engineer PUE
into many crop species using translational science from
gains in other model species.

Others have identified homologous PSTOL-like genes in
both maize and sorghum, based upon QTL analysis and
sequence homology. Further evidence of the role of
PSTOL-like genes in PUE has been supported through
QTL mapping rather than direct molecular characterization
of candidate genes [21, 22]. Criteria to identify other poten-
tial PSTOL like genes has included identification of protein
domains such as ATP kinase domains and on DNA se-
quence conservation meeting certain bioinformatic cut-offs
for genes underlying these QTL. However some of these
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homologues appear to have differences in their gene struc-
ture such as number and length of introns and UTRs. Des-
pite the lack of a highly conserved gene in most plant
species, it is critical to understand whether other PSTOL
genes exist in other important crop species and if they can
be exploited.

Our study identifies a putative wheat PSTOL gene
(TaPSTOL) and characterizes its role in PUE and other
phenotypes of agronomic importance.

Methods

Gene identification

The OsPSTOL coding sequence from EMBL (AB458444.1)
was used as a query for BLAST searches of the wheat
genome (IWGSC 2014) and expressed sequence tag
(EST) databases in ensembl, GenBank, Komugi and
URGI [23-27]. Gene prediction was carried out using
FGENESH [28]. Protein domain prediction was found
using IntroProScan [29].

Nullisomic (N) / Tetrasomic (T) wheat lines

PCR conditions for the verification of TaPSTOL homeo-
logues were first optimized with wheat cv. Fielder DNA
using a gradient from 53 to 63 °C T, with and without
2% DMSO (final concentration) using FastStart™ Taq
DNA Polymerase (SIGMA). All primers used in this
study are listed in Additional file 1: Table S1. All three
primer pairs amplified the predicted product under all
conditions tested (Additional file 2: Figure S1). To re-
duce the stringency, the annealing temperature was then
reduced to 55 °C to allow for small sequence variations
and amplification of other distant homeologues using
the nullisomic / tetrasomic wheat DNA [30].

Creation of plasmid constructs

TaPSTOL was PCR amplified from genomic DNA ex-
tracted from wheat cultivar Chinese Spring using primers
TaPUP-K46-F and TaPUP-K46-R with Phusion Hotstart II
DNA Polymerase (Thermofisher). Amplicons were cloned
into pJET2.1 (Thermofisher) and fully sequenced. The full
length gene was then reamplified from pJET-TaPSTOL
with TaPUP-K46-F-Pvull and TaPUP-K46-R-Xbal to add
Pyull and Xbal restriction sites plus a monocot ribosome
binding site, CCACC [31], and cloned into pENTR-1A
digested with Dral and Xbal (Thermofisher). TaPSTOL
was then recombined into the binary vector pSc4ActR1R2
[32] using a Gateway LR Clonase II Kit (Thermofisher) to
create pRMHO007. TaPSTOL was expressed in planta from
the rice Actin promoter [33] and transcripts terminated by
the A. tumefaciens nopaline synthase terminator (tNOS).
The first 350 bp of the TaPSTOL sequence selected to
trigger silencing by RNAi, was amplified from the gen-
omic sequence using the primers RNAi-F GW and
RNAi-R GW, and recombined directly into pDONR221



Milner et al. BMC Plant Biology (2018) 18:115

using a Gateway BP Clonase II kit (Invtrogen). The
pDONR 7TaPSTOL insert was subsequently recombined
into the binary vector pACT-IR2 in a Gateway LR reaction
to create pMM2, with the TaPSTOL RNAI hairpin cassette
expressed from the rice Actin promoter in planta.

The 2.4 kb promoter region upstream of the 7aPSTOL
start codon was amplified from genomic DNA extracted
from Chinese Spring using primers TaPUP-prom-F and
TaPUP-prom-R with Phusion Hotstart II Polymerase
(Thermofisher). The resultant amplicon was ligated
into pCR-Blunt (Thermofisher) and sequenced. The
promoter region was then reamplified with primers
TaPUP-prom-13R and TaPUP-prom-Sall. The ampli-
con was digested with Sa/l and ligated into pRMHO013
digested with BmgBI and Sall. This intermediate vec-
tor containing the 7auPSTOL promoter driving GUS
and flanked by attL sites, was then recombined into
pRLF12-R1R2-SCV to produce vector pRMHI107.
Additional file 3: Figure S2, shows the T-DNA regions
from these constructs, which were transformed into
wheat in this study.

Completed constructs were verified by restriction digest
and sequencing before being electro-transformed into
Agrobacterium tumefaciens. Plasmids were re-isolated
from Agrobacterium cultures and verified by restriction
digest prior to use in wheat experiments [34].

Wheat transformation

Wheat cv. Fielder plants were grown in controlled environ-
ment chambers (Conviron) at 20 °C day/15 °C night with a
16 h day photoperiod (approximately 400 uE m™? s~ '), Im-
mature seeds were harvested for transformation experi-
ments at 14-20 days post-anthesis (dpa). Isolated
immature wheat embryos were co-cultivated with Agrobac-
terium tumefaciens for 2 days in the dark [35]. Subsequent
removal of the embryonic axis and tissue culture was per-
formed as previously described [36]. Individual plantlets
were hardened off following transfer to Jiffy-7 pellets (LBS
Horticulture), potted up into 9 ¢cm plant pots containing
M2 compost plus 5 g/l slow release fertilizer (Osmocote
Exact 15:9:9) and grown on to maturity and seed harvest in
controlled environment chambers, as above.

DNA analysis of transformed wheat plants

Plantlets which regenerated under G418 selection in tis-
sue culture were transferred to Jiffy-7 pellets and vali-
dated using an nptll copy number assay relative to a
single copy wheat gene amplicon, GaMyb, normalised to
a known single copy wheat line. Primers and Tagman
probes were used at a concentration of 10 pM in a 10 pl
multiplex reaction using ABsolute Blue gPCR ROX mix
(Thermofisher) with the standard run conditions for the
ABI 7900 HT. The relative quantification, AACt, values
were calculated to determine nptll copy number in the
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To and subsequent generations [37]. Homozygous and
null transgenic lines were identified on the basis of nptiI
copy number and segregation analysis. WT Fielder
plants were null segregates.

Plant growth conditions

WT and transgenic lines were grown under low P condi-
tions in sand and fertilized with nutrient solution [38] or
under fertilized M2 compost conditions, as above. Total
dry shoot weight, seed weight (yield per plant), seed
number, seed size, tiller number and P concentration via
ICP-MS were measured. Biological replicates each con-
tained 14 plants per line and were grown until seed mat-
uration. Tissues were allowed to dry for a further two
weeks before harvesting. For low P conditions plants
were germinated in sand and watered with 25 mL of a
Magnavaca solution containing 3 pM KH,PO,4, 1.3 mM
NH,NO3, 3.52 mM Ca(NOs3),, 0.58 mM, KCl, 0.58 mM
K,SO,4, 0.56 mM KNOs;, 0.86 mM Mg(NO3), 0.13 mM
H3BO3, 5 uM MnCl,, 0.4 pM NayMoQOy, 10 pM ZnSOy,,
0.3 uM CuSOy, Fe(NO3); and 2 mM MES (pH 5.5) twice
a week until maturity. Plants were grown in a controlled
growth chamber under 16 h light and 20 °C/15 °C day
night temperatures.

RNA expression analysis

Fielder seedlings were grown for seven days in 2.2 L pots
containing Magnavaca solution as listed above and sup-
plemented with either 1, 2.5, 5, 20 or 45 puM KH,PO,
Plants were grown for 7 days before harvesting tissue
and separating the samples into root and shoot tissues
for analysis. Total RNA was isolated from both roots
and shoots for each P treatment using an RNeasy Kit
(Qiagen) and treated with DNasel (Thermofisher) prior
to cDNA synthesis from 500 ng of total RNA using
Omniscript RT Kit (Qiagen). The cDNA was diluted 1:2
with water and 0.5 uL was used as template in each
RT-PCR reaction. Expression levels were quantified by
quantitative PCR in triplicate reactions from three bio-
logical replications using SYBR Green JumpStartTaq
ReadyMix (SIGMA) with the standard run conditions
for the ABI 7900 HT. TaPSTOL expression was com-
pared to two reference genes Tallbiquitin and TaEFla.
Primers used for amplification of transcripts were
TaPSTOL-Q-F and TaPSTOL-Q-R, Ubi-F and Ubi-R for
Ubiquitin [39] or EFla-F and EFla-R for EFla [40].
Data shown is in comparison to Ubiquitin for ease as
both reference genes showed similar differences in
expression.

Genomic comparison

Primers were designed to amplify a 3.3 kb fragment of
TaPSTOL which included the 5° upstream region and
ORF from DNA extracted from Chinese Spring using
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the primers TaPUP-prom—F and TaPUP-prom-R. Gen-
omic DNA was amplified from bread wheat varieties Al-
chemy, Banco, Bersee, Bridgadier Brompton, Claire,
Copain, Cordiale, Fielder, Flamingo, Gladiator, Here-
ward, Holdfast, Kloka, Maris Fundin, Paragon, Rialto,
Robigus, Slejpner, Soissons, Spark, Steadfast, Stetson,
Xil9 and Chinese Spring, plus three wild T. turgidum
ssp. dicoccoides accessions (PI 503314, PI 414722, and PI
428097) sourced from the USDA-ARS National Small
Grains Collection. Genomic DNA was extracted using
the Tanksley method [41].

Gus staining of wheat tissues

Whole 10-day seedlings grown on sand watered once
with hydroponic solution containing 3 pM P, were
stained in X-Gluc solution (0.1 M NaPO,, 10 mM EDTA
pH 7.0, 0.5 mM K Ferricyanide, 0.5 mM K Ferrocyanide,
1.0 mM X-Glucuronide, 0.1% Triton X100, pH 7.0) over-
night at 37 °C, then destained in 70% ethanol [42].

Digestion and elemental analysis of plant material

Dried samples of leaf, root and grain (~0.2 g) were
digested and analysed for elemental content as described
by Thomas et al. [43].

Phosphate use efficiency calculations

Definitions of PPUE and PER were taken from [44].
PPUE was calculated as yield/ P concentration for an in-
dividual treatment. PER was calculated as yield / (P con-
centration * yield) for an individual treatment. ANOVAs
were run using R and the aov and Tukey functions with
the null hypothesis of no difference between lines.
Tukey’s post hoc test was added to identify each signifi-
cant interaction between the lines tested.

Results

Identification of TaPSTOL

Our TaPSTOL candidate was identified following BLAST
searches [45] using the OsPSTOL coding sequence to the
first wheat genome release (IWGSC 2014 and EST collec-
tions; this has subsequently been annotated as gene model
Traes_5AS_AA3DC6ASF on ENSEMBL (IWGSC, 2014
release, Ensembl). The identified homologue is located on
the short arm of chromosome 5A and shares 90% hom-
ology at the DNA level with the rice gene sequence. Fur-
ther analysis showed that the rice and wheat predicted
proteins share 74.2% identity and 92.7% similarity at the
amino acid level (Additional file 4: Figure S3). OsPSTOL
and TaPSTOL both possess single exons, and their pre-
dicted proteins are similar in size: 324 amino acids and
289 amino acids, respectively. InterProScan identified two
protein domains which are predicted in both the wheat
and rice PSTOL genes which include a protein kinase
ATP-binding region signature (PS00107) located from
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amino acids 9-31 and a Serine/Threonine protein kin-
ase active-site signature (PS00108) located from amino
acids 126-138. The second best BLASTp hit to OsP-
STOL in the wheat genome is encoded by a gene lo-
cated on chromosome 3B, which shared only 54%
amino acid identity suggesting that three sub-genome
specific homologues were not present in wheat. A puta-
tive phosphate starvation activation domain thought to
be bound by PHR1, also known as a P1BS binding site,
was identified at — 1156 to — 1149 bp in the predicted
promoter region of TaPSTOL [30]. To provide add-
itional evidence that there is only a single gene present
in wheat, the TaPSTOL sequence was also used to con-
duct a BLASTn search against Triticum urartu (A gen-
ome), Aegilops speltoides (B genome) and Aegilops
tauschii (D genome) sequence databases. A single near
perfect match was found for T.urartu. However no
strong match was found in either the A.speltoides or
the A. tauschii genome sequences. The best match for
A. speltoides was 929 bp but with only 73% identity and
for A. tauschii the best match was 266 bp with 85%
identity [24, 27].

Due to the incomplete nature of the wheat genome as-
sembly, we confirmed the absence of 7aPSTOL homoeo-
logues on chromosomes 5B and 5D by screening the
Chinese Spring nulli-tetrasomic deletion lines [46]. PCRs
using three primer combinations were designed using
the 5A TaPSTOL promoter and coding region. This re-
vealed only one copy of the PSTOL gene on chromo-
some 5A and no homoeologues on 5B or 5D (Additional
file 2: Figure S1). To allow for potential small sequence
variations in primer hybridisation sites, the stringency of
primer annealing was reduced to 55 °C, but no add-
itional amplicons were amplified. This suggests that only
a single copy of TaPSTOL exists in Chinese Spring and
that it is located on the short arm of chromosome 5A.

To search for sequence variation which might exist in
the TaPSTOL gene or regulatory regions, we re-sequenced
TaPSTOL from different wheat accessions: (1) the 22
founders of two bread wheat multiparent advanced gener-
ation inter-cross (MAGIC) populations (NIAB Elite
MAGIC, [47]; NIAB Diverse MAGIC, [48]) that collect-
ively capture 91% of genetic diversity in UK wheat; (2)
spring varieties Fielder (USA) and Chinese Spring (China);
and (3) three T. durum accessions (Additional file 5: Table
S2). No sequence differences in any of the bread wheat
lines tested were detected. A small variant was found in 7.
durum accession PI1503314 which contained two indels in
the promoter region. The first was a 13 bp insertion at -
355 and the second was a 34 bp deletion at — 704 bp. The
A-genome sequence from other two dicoccoides acces-
sions was identical to the hexaploid wheat sequence. No
differences were found in the coding region in any of the
lines tested.
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TaPSTOL gene expression

To further understand if Traes_ 5AS_AA3DC6AS5F is the
putative wheat PSTOL homologue, Fielder wheat plants
were grown with varying levels of P (1, 5,10, 20 and
45 puM P) in hydroponics for seven days and expression
of TuPSTOL was measured in both roots and shoots
(Fig. 1). TaPSTOL is expressed relatively evenly in both
root and shoot tissues, however TaPSTOL transcript
abundance decreases with increasing P concentration in
both tissue types. To further examine the expression of
TaPSTOL, a 2.4 kb region directly upstream of the start
codon was cloned and used to drive the expression of a
GUS reporter gene. Characterization of 10 transformed
wheat lines showed very low to no expression in roots,
shoots or flowers of plants when grown under standard
conditions in compost. When plants were grown under
nutrient limiting conditions, TaPSTOL expression was
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found in the roots and shoots, with the highest expres-
sion in the root tips of both primary and lateral roots
and coleoptiles (Fig. 2). Expression could also be seen in
both the leaf trichomes and root hairs. Similar patterns
of expression where observed in all ten lines tested.

Characterization of TaPSTOL overexpression and RNAi
knockdown lines in wheat

In order to evaluate the function of 7aPSTOL, and com-
pare to that of known OsPSTOL phenotypes, both over
expression (OE) and RNA interference (RNAi) wheat
transgenic lines were created. The expression level of
TaPSTOL in thirty three OE and forty RNAi independ-
ent T, lines was measured. Lines were selected for fur-
ther study with a high over-expression (30x higher than
wild type), low level overexpression (3X higher than wild
type), a highly knocked down line (90% knock down)
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Fig. 1 Expression of TaPSTOL mRNA in wheat grown under a range of P concentrations. Expression of TaPSTOL in (a) roots and (b) shoots is
shown relative to TaUbiquitin mRNA after seven days growth in hydroponic solution. Error bars are SE of three biological replications. Letters
represent a significant difference (p val < 0.05) between the same tissue type at any P concentration
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Fig. 2 Characterisation of TaPSTOL promoter-GUS transcriptional fusions in wheat. Seedlings were grown in sand watered with —P hydroponic
solution for 10 days after germination. Low magnification of a multiple coleoptiles, b a single coleoptile, ¢ leaf trichomes. d Higher magnification
of trichomes. Low magnification of (e) multiple roots, (f) isolated roots. Higher magnification of lateral root initials (g, h). Low magnification of
root system (i), shoots (j), four plants showing TaPSTOL:GUS expression (k), non-transformed control plant (I) grown under same conditions

and a lower level of knock down (80% knock down), line
here to referred as OE-1, OE-2, RNAi-1 and RNAi-2 re-
spectively. Homozygous T, plants were selected on the
basis of nptll qPCR copy number analysis and resulting
lines were phenotypically assessed under both low P
conditions (3 uM P) in sand to better control P levels

and standard P growth conditions, (M2 compost with
109 mg/I available P).

For OE and RNAi lines grown on sand (fed twice a
week with Magnavaca solution containing low P at
3 uM) a significant difference in the dry weight of roots
from both the highest modified expression levels of OE
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and RNAI plants could be seen when grown to seed (ie
OE-1 and RNAi-1, Fig. 3a). No significant differences in
dry weight were found for the shoots of the OE or RNAi
transgenic plants (Fig. 3b and e).

No difference in tiller number under low P conditions
was seen in either the OE or RNAI lines (Fig. 3c). How-
ever, when grown on M2 compost, a significant
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difference in the tiller number was observed, with RNAi
and OE lines showing a significantly lower and signifi-
cantly higher tiller number, respectively (p val <0.05)
(Fig. 3f). Despite the difference in tiller number, modifi-
cation of TaPSTOL expression showed no significant ef-
fect on total yield between the lines tested with growth
in compost.
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During these experiments a novel phenotype was ob-
served under low P conditions, namely a difference in
the time to flowering, defined by time until growth stage
49 in days [49]. The RNAI lines were significantly earlier
in flowering relative to the WT plants by almost two
days (p val < 0.05)(Fig. 4a). As anticipated, the converse
phenotype was seen for the OE lines as the time taken
to flowering was significantly longer than the WT plants
(p val. <0.05). This difference in flowering time corre-
lated with a significant negative effect on the total yield
under low P conditions (3 uM) but not under M2 grown
conditions for lines overexpressing TaPSTOL (Fig. 3d and
g). The effect on flowering time was less pronounced

Page 8 of 14

under M2 compost growth conditions as only the highest
overexpression line (OE-1) and highest knockdown line
(RNAi-1) showed significant variation relative to WT
Fielder (Fig. 4b).

A change in the overall root biomass production with
a significant difference in root DW under low P for the
both the highest (OE-1) and lowest (RNAi-1) TaPSTOL
transgenic lines was observed (Fig. 3). While the overall
total DW (root DW + shoot DW) under low P condi-
tions was unaffected, there was an observable shift in
DW from the root to shoot.

TaPSTOL transgenic lines also showed differences in
seed size. OE lines grown under P stress produced a
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decreased number of seeds compared to both RNAi and
WT plants. In contrast, while OE lines produced far
fewer seeds, each seed was 40—-50% larger than the RNAi
seeds and 30—-40% larger than the WT seeds (Fig. 5b and
d). This effect was mainly observed by an increase in the
width of the seeds (Fig. 6) while the length remained
similar.

Total P concentration in the roots, shoot and seeds
was also measured in five plants chosen randomly for
each transgenic line grown under low P conditions and
for shoots and seeds grown under compost conditions.
No significant differences in P concentration were seen
between root or shoot tissues grown under either con-
dition in any of the sampled lines (Fig. 7a and b). There
was a significant difference in the amount of P in the
seeds of the RNAi-1 and OE-1 and OE-2 relative to
WT (Fig. 7c). The differences in P concentration
showed a lower P concentration in the RNAi line and
higher P; concentration in the OE lines (p val <0.05).
Other essential elements including K, Ca, Mg, Mn, Zn,
Cu, Fe, Mo, S, and Co were also tested for significant
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differences between lines and no significant differences
were found.

The role of TaPSTOL in phosphorus use efficiency:

To understand how modification of TaPSTOL expres-
sion changes the PUE of wheat. The Physiological P use
efficiency (PPUE) and the P efficiency ratio (PER) were
measured (Fig. 8). There was a significant difference in
the PPUE and PER when plants were grown on limiting
P (p val<0.001). The OE lines showed a significantly
lower PPUE and PER, probably due to a significant in-
crease in P in the grain accompanied by a decrease in
yield. These differences in PPUE and PER were not ob-
served under compost growth conditions, as no differ-
ence in the P concentration in the grain or differences in
yield were seen.

Discussion

The need to drive efficiency in global agricultural pro-
duction has led to the elucidation of a number of key
genes in breeding for phosphate efficient crops. Here we
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set out to identify and characterize the wheat homologue
of OsPSTOL, which we denote as TaPSTOL, and com-
pare the effect of manipulating its expression on a num-
ber of agronomic traits both under compost and low P
conditions. The rice gene OsPSTOL has been shown to
confer phenotypes beneficial to growth on P limiting
soils, including increased grain yield, root and shoot bio-
mass and increased tillering [14, 15, 18, 47]. Our data indi-
cates that many of these PSTOL associated phenotypes
are conserved between rice and wheat, including altered
root growth under low P conditions (Fig. 3a), increased P
content in the grain (Fig. 7c), and increased tiller number
(Fig. 3f). There are, however, subtle differences as to when
these phenotypes are exhibited in wheat as compared to
rice; for instance, the increased tillering phenotype in
wheat was only observed in plants grown in compost,
whereas in rice, it was also found under P limiting condi-
tions [14]. These differences in the conditions under
which the increase in tillering occurs, might be a result of
the stringent P limiting conditions in which the plants
were grown in sand or the compost system used here to
represent a replete P substrate. They could also be due to
inherent differences between the two crop species, or the
genetic background in which the PSTOL gene was studied
in both rice and wheat. These differences are worthy of
further study to identify the underlying mechanism of the
PSTOL gene in both species and how TaPSTOL contrib-
utes to the regulation of tillering.

While many of the observed rice OsPSTOL mediated
phenotypes were mirrored in wheat, further supporting
the conserved nature of the PSTOL gene, changes in
biomass and yield were not observed. This might be due
the choice of germplasm used to test the effect of P effi-
ciency in wheat or the P levels chosen might be too lim-
iting or too generous to see the effects described in rice.
There is currently no published data on P efficiency in
the variety Fielder, but other work has suggested that
natural variation in P efficiency does exist in wheat and
this may alter the effect of TaPSTOL on P efficiency [10]

within a specific variety. Recent findings in rice suggest
that plants which contain the PSTOL gene are not the
most efficient under low P conditions, which suggests
that other genetic loci may play a greater role in increas-
ing P efficiency [19]. Further work in both rice and
wheat is required to further understand the processes by
which P efficiency is increased, and the role played by
PSTOL in these differences. While we found PSTOL me-
diated phenotypic effects in common between rice and
wheat, our findings also highlight that the need for more
understanding of how PSTOL genes, and their interac-
tions with other genetic loci, may make crops more effi-
cient under P limiting conditions.

We also identified two phenotypes associated with the
TaPSTOL locus which were not observed in rice, showing
that TaPSTOL modulates wheat flowering time and seed
size. The timing of flowering is of great agronomic im-
portance, as it entrains fertilization and seed set with
favourable environmental conditions, thus helping farmers
reach full yield potential in target agricultural environ-
ments [50]. Seed size is also an important component to
driving yield gains, and we can now add another locus to
those previously described as factors influencing grain size
in wheat [51, 52]. It is interesting that the lack of genetic
diversity at TaPSTOL in most of the wheat lines tested
suggests that this gene may not have been found by trad-
itional QTL mapping in most UK varieties, as no variation
exists to be exploited in a mapping population. The lack
of variation seen in the wheat cultivars tested, point to this
region as having been under strong selection pressure.
The majority of these bread wheat varieties originated
from the UK, however additional varieties from Europe,
USA and China were also included, yet did not show any
variation at this locus. Only when the search is ex-
tended to the distantly related dicoccoides accessions,
which originated from Israel, is some limited variation
observed within TaPSTOL, limited to the promoter re-
gion. This finding is in contrast to OsPSTOL in rice
where natural variation is found across species from a



Milner et al. BMC Plant Biology (2018) 18:115

Page 11 of 14

\

a co0 -
— 500 -
o
<
£ 400
c
.0
= 300 -
= M Roots
3
e 200 - Shoots
o
(%]
& 100 |
0 .
RNAi-1 RNAi-2
b Line
600 -
— 500 A
o
<
£ 400 -
[
.0
£ 300 -
s H Roots
@
g 200 - Shoots
o
(%]
& 100 -
0 -
RNAI-1 RNAI-2
Line
c 7000 A
6000 -
E, I I
% 5000 - I I
£
§ 4000 -
s
‘E 3000 - M LowP
Q
= Replete
S 2000 - P
o
o I
0 .
E- RNAi-1 RNAi-2
Line
Fig. 7 P concentration in roots, shoots and grains from TaPSTOL OE and RNAi plants. a Roots or shoots grown on low P in sand (3 uM); b Roots
or shoots grown on M2 compost. ¢ Grains harvested from TaPSTOL transgenic wheat plants grown on either low P or compost. Asterisk indicates
significant difference, p val < 0.05 relative to WT Fielder

number of different continents in both the promoter
and coding regions [17, 19]. The lack of DNA sequence
variation might also be a consequence of a single
PSTOL homoeologue present in the hexaploid wheat
genome, located on chromosome 5A. Estimates for the
number of genes present as just a single homoeologue

in the hexaploid wheat genome are estimated to be in
the range 3 to11% [53, 54].

Finally alteration of the expression of TaPSTOL led
to changes in PUE as a decrease in yield and increase
in P concentration when grown under P limiting con-
ditions led to lower PUE scores for the over expression



Milner et al. BMC Plant Biology (2018) 18:115

Page 12 of 14

P
a 3.0 b
2.2
20 *
_ 25 a
o —_
- o 1.8 * %
o 20 %
0 - o
g k% s 1.6 -
o [m]
‘9 1.5 4 9 1.4 -
"'DJ * K o
a IEILJ 1.2
o o4
1.0
0.5 0.8 -
T T T T T T T T T T
OEL-1  OEL-2 RNAi-1  RNAi-2 wT OEL-1  OEL-2 RNAi-T  RNAi-2 wT
c d
0.55
10 4
0.50
a a
-~ gl < 045
o o
= = o404
[m] [m]
t‘@ 7 2 s é é
o
LZIJJ H_J 0.30 4
o 4 -
o
0.25
2 0.20 -
T T T T T T T J § T
OEL-1 OEL2 RNAF RNA2 ~ WT OEL-1 OEL-2  RNA-  RNAi-2  WT
Fig. 8 PPUE and PER of transgenic wheat plants. Plants were grown under both low P (3 uM) conditions in sand to seed (a and b) or grown in
M2 compost to seed (c and d). Double asterisk indicates significant difference p val < 0.01 to WT Fielder

of TaPSTOL but not for the RNAI lines. As a positive
increase in yield did not occur with the over expres-
sion of TaPSTOL to compensate for the increased P
found in the grain, the PUE score was significantly
lowered. This was not the case for the OsPSTOL
where both an increase in yield along with an increase
in P concentration of the tissues were found [18]. This
difference in rice versus wheat might be due to some
other part of the signalling cascade needing to be iden-
tified and combined with increased PSTOL expression
to help drive the yield increases under limiting P
growth conditions.

Conclusions

We have identified and characterized the PSTOL gene in
wheat and demonstrated that it controls a number of
agronomic characteristics important to breeders and
farmers, including altering root growth under P deficiency
conditions and increased P content in the grain. While
some of these phenotypes are conserved with PSTOL
genes in other plant species, other phenotypes manifest
themselves under slightly different P conditions. In

addition, we show that while PSTOL may not influence
yield as it does in rice, TaPSTOL modulates flowering time
and seed size in wheat. These results demonstrate PSTOL
genes in multiple crop species may be important targets
for improving agronomic performance, both under P lim-
iting and non P limiting conditions.
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