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Abstract

Integrin-mediated adhesions between airway smooth muscle (ASM) cells and the extracellular ma-
trix (ECM) regulate how contractile forces generated within the cell are transmitted to its external en-
vironment. Environmental cues are known to influence the formation, size and survival of cell–matrix
adhesions, but it is not yet known how they are affected by dynamic fluctuations associated with tidal
breathing in the intact airway. Here we develop two closely-related theoretical models to study adhesion
dynamics in response to oscillatory loading of the ECM, representing the dynamic environment of ASM
cells in vivo. Using a discrete stochastic-elastic model, we simulate individual integrin binding and rup-
ture events and observe two stable regimes in which either bond formation or bond rupture dominate,
depending on the amplitude of the oscillatory loading. These regimes have either a high or low fraction
of persistent adhesions, which could affect the level of strain transmission between contracted ASM cells
and the airway tissue. For intermediate loading we observe a region of bistability and hysteresis due to
shared loading between existing bonds; the level of adhesion depends on the loading history. These find-
ings are replicated in a related continuum model, which we use to investigate the effect of perturbations
mimicking deep inspirations (DIs). Due to the bistability, a DI applied to the high adhesion state could
either induce a permanent switch to a lower adhesion state or allow a return of the system to the high adhe-
sion state. Transitions between states are further influenced by the frequency of oscillations, cytoskeletal
or ECM stiffnesses and binding affinities, which modify the magnitudes of the stable adhesion states as
well as the region of bistability. These findings could explain (in part) the transient bronchodilatory effect
of a DI observed in asthmatics compared to a more sustained effect in normal subjects.

1 Introduction

Contraction of airway smooth muscle (ASM) cells is typically triggered by exposure to irritants or allergens
and leads to bronchoconstriction, a narrowing of the airways characteristic of asthma (1). Contracted ASM
cells transmit strain to the extracellular matrix (ECM), and hence the airways, via focal adhesions (2, 3),
of which integrins are a key component. Integrins are transmembrane proteins that provide the necessary
mechanical link between the intracellular and extracellular domains by binding to the cytoskeletal network
within the cell and to ligands in the ECM (4, 5). Since it is well-established that integrins are responsive to
mechanical and environmental cues (6–8) we expect the environment of the in vivo airway, which is inher-
ently dynamic due to tidal breathing, to modulate the integrin binding dynamics and consequent levels of
strain transmission. Several experimental studies have shown that tidal breathing and deep inspirations (DIs)
are able to modulate the levels of contractile force in healthy airways (9–11). In particular, DIs are capable
of inducing bronchodilation (reversing airway narrowing) in healthy subjects but these effects are either tran-
sient or diminished in asthmatics. To understand this, a number of studies at the cell-level and tissue-level
have focussed on the ASM cell response to oscillatory loading and consequent modulation of contractile
force generation (12–15). Disruption of actin-myosin crossbridge cycling, which mediates contractile force
generation within the cell, reduces the mean contractile force. However, the role of cell–matrix adhesions in
understanding how the strain due to contraction is transmitted to the tissue could also be an important factor,
and has so far been neglected.

To enable strain transmission between the cell and the ECM, a sequence of molecular events takes place
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that connect integrins to both the intracellular and extracellular regions of the cell. These events can be
thought of as reversible state transitions, where integrins belong to one of five states (depicted in Fig. 1).
Inactive integrins freely diffuse in the plasma membrane in a bent conformation that leaves them close to the
membrane and with a low affinity for binding to ligands in the ECM. Integrin activation occurs in stages,
with a final stage being recognised as the binding of adaptor proteins—commonly talin—to the integrin
cytoplasmic tail (16, 17). At this stage, the active integrin extends into an upright conformation where it
is more readily available for ligand binding. The adaptor proteins additionally form the link to the actin
cytoskeleton. Once bound to both the actin cytoskeleton and to ligands in the ECM, the integrins form a
physical link between intracellular and extracellular domains, enabling transmission of mechanical strain.

Figure 1: Representation of the five possible integrin states. Inactive (IU ) and active (I) integrins diffuse in the membrane. Active
integrins may become actin-bound (IA) via adaptor proteins, bound to ligands in the ECM (IE) or double-bound to both the actin
cytoskeleton and the ECM (B). In our models, we consider actin-bound and double-bound integrins (blue).

In previous models the binding dynamics of individual integrin–ligand bonds have been studied using stochas-
tic simulations. A number of studies (18–20) investigate the stochastic rupture of parallel bonds under shared
loading, and Qian et al. (21) extend this by considering bonds that experience stress non-uniformly due to an
inclined loading angle. Of particular relevance to the current work are studies that consider the effect of dy-
namic loading on adhesion stability (22), measured by the mean change in number of bound integrins when
subject to the external load. Kong et al. (22) consider the rupture of adhesion clusters under an oscillatory
strain and, starting from a high adhesion state, a threshold strain is observed past which adhesions quickly
rupture. In a related modelling framework, although not concerned with external loading, Paszek et al.
(23) use lattice spring models together with a stochastic simulation algorithm for modelling integrin–ligand
bonds, called Adhesive Dynamics (24, 25), to simulate the formation of integrin clusters. Stochastic models
are a common approach for studying the mechanosensitive nature of cell–matrix adhesion. Chan and Odde
(26) and Walcott et al. (27) both use stochastic models to investigate the differing adhesion dynamics on stiff
and compliant ECM, and obtain results in agreement with experimental studies. Walcott et al. (27) show
that mechanosensitive adhesion properties emerge naturally with the inclusion of load dependent reactions.

Studies considering friction generated by discrete bonds in more general contexts are also relevant to mod-
elling cell–matrix adhesions. Filippov et al. (28) consider the stochastic formation and rupture of discrete
molecular bonds between two rigid surfaces and simulate macroscopic friction properties with high and low
relative velocities of the surfaces. In a closely related study, Srinivasan and Walcott (29) develop a con-
tinuum approximation through the use of the Lacker-Peskin model (30), and find that well-known steady
slip and stick-slip friction behaviours are captured. Given the potentially large number of integrins present
on the cell surface (densities have been reported to reach 900µm−2 in mature adhesions (31)), stochastic
models can become prohibitive; continuum models therefore have greater utility in such cases, allowing for
a more comprehensive exploration of the system behaviour. Welf et al. (32) and Block et al. (33) have
developed continuum models for integrin binding and for integrin clustering based on biochemical feedback
in reaction-diffusion systems. However, these studies do not accommodate the response to local mechanical
cues. Integrins are highly mechanosensitive, and Cao et al. (34, 35) have developed continuum models
that allow for investigation of the effect of substrate and cell nucleus stiffness on focal adhesion size. The
timescale of interest in their studies (focal adhesion growth, occuring over minutes) is relatively large com-
pared to the timescale associated with individual integrin binding reactions, so a quasi-static approximation
for the density of integrins is used. A full review of existing models is not presented here, but other note-
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worthy examples of models that capture experimentally observed focal adhesion behaviour include (36–38).
Further examples of stochastic models have been reviewed by Gao et al. (39).

In this paper, we develop two closely-related theoretical models to investigate integrin binding and adhesion
dynamics between an ASM cell and the surrounding ECM in a dynamic environment. Firstly we consider a
discrete stochastic-elastic model for cell–matrix adhesion, and investigate how tidal breathing influences the
formation and survival of adhesions. We then develop an analogous multiscale continuum model that cou-
ples microscale binding reactions to the mechanical environment, and reproduces the qualitative behaviour
observed in the stochastic simulations. With the more tractable continuum model we further investigate how
material parameters and deep inspirations may affect the adhesion properties of ASM cells in vivo.

2 Methods

In the models that follow we consider a simplified reaction scheme where the previously described integrin
activation processes are assumed to have already occurred. We therefore assume that integrins are already
attached to the actin cytoskeleton within the cell and undergo reversible reactions to become bound to the
ECM and able to transmit force (IA binds reversibly to B, see Fig. 1). Similarly to Paszek et al. (23), in our
discrete model we represent the cell, ECM and bound integrins by a network of linear springs, but focus on
the effect of dynamic loading by introducing an oscillatory shear displacement of the ECM. In our continuum
model we capture microscale binding reactions at the integrin level using an adaptation of the Lacker-Peskin
model (30); these integrin dynamics respond to (and generate) ECM and cell deformations at the cell level.
Through this multiscale approach, we are able to account for microscale spatial constraints in the binding
and unbinding reactions in a similar manner to the individual-based approach used in the discrete model.

2.1 Discrete model formulation

The discrete model comprises an evolving network of nodes and linear springs, the structure of which is
governed by stochastic reactions representing transitions between the integrin states IA and B, described
above. By modelling individual interactions between integrins, the cell and the ECM, we aim first to develop
an intuitive understanding of cell–matrix adhesion. We assume that the cytoskeleton, integrins and ECM
form a spring network in which actin-bound integrins (IA) and ‘potential binding sites’ on the ECM fibre
(E) are modelled as individual nodes, indexed by IAj and Ei, respectively (Fig. 2). Hookean springs
between the neighbouring IA and E nodes represent the cytoskeleton and ECM, respectively, and are each
assigned a spring stiffness (κa and κe). Reactions between integrins and the ECM are dependent on the
proximity and availability of binding sites, and each node is considered to be an individual species so that
reaction propensities depend on their pairwise distances. Pairs of compatible nodes may undergo stochastic
transitions to form fully-bound integrins (B) according to the following reaction

IA + E
k̂b(x̂)−−−⇀↽−−−
k̂u(x̂)

B, (1)

where x̂ is a spatial variable local to each integrin that, following (40), measures the horizontal distance
between each pair of IA and E nodes (see Fig. 2) and is therefore effectively a measure of how far each
integrin head is from its unstressed position, x̂ = 0. Throughout, hats indicate dimensional quantities. In
accordance with these stochastic reactions we add or remove a third spring-type (representing double-bound
integrins with stiffness κb) between the IA and E nodes selected to bind. We additionally include springs
with stiffness κr from the IA nodes to a fixed configuration of ‘anchor’ nodes, as a representation of the
restoring forces and attachments to the cytoskeletal network within the cell. Following (40), the vertical
movement is constrained and we only consider horizontal motion, a physical simplification which will be
addressed in future work (see Discussion).

We select the reversible binding events using a stochastic first reaction algorithm (41) and follow the reactions

3



Figure 2: Structure of the discrete spring network. Following (40), the vertical movement is constrained and we only consider
horizontal motion. Actin-bound integrins (IA) and ECM binding sites (E) are considered as individual nodes, connected to their
neighbours by linear springs with stiffness constants κa and κe respectively. Bound integrins (B) are represented by removable
springs between the two sets of nodes, with spring constant κb. The local variable x̂ measures horizontal distances between pairs of
integrin and ECM binding site nodes. We additionally include horizontal restoring forces for the IA nodes to a fixed configuration
of anchor nodes via springs with stiffness κr .

in Eq. 1 for each pair of compatible nodes. In this work our chosen spatial binding rates are piecewise linear
functions (Fig. 3) given by

k̂b(x̂) =

{
f̂1

(
1− |x̂|

ĥ

)
|x̂| ≤ ĥ,

0 otherwise,
(2)

and

k̂u(x̂) =

{
ĝ1 + ĝ2|x̂|

ĥ
|x̂| ≤ ŝ,

ĝ3 otherwise.
(3)

A maximum binding rate f̂1 occurs at x̂ = 0, after which the binding propensity decreases linearly to zero
within a finite binding range, ĥ. The unbinding rate when x̂ = 0 is given by ĝ1, and increases at a rate
ĝ2/ĥ as x̂ increases. Beyond a maximum horizontal distance of ŝ, any remaining bonds rupture quickly
with a high rate ĝ3. We note that these piecewise linear rates approximate those which can be derived using
detailed balance (see e.g. (42), Fig. 9c and (29), Fig. 2), by which pairs of reaction rates are constrained
to ensure thermodynamic reversibility. Within this modelling framework there is flexibility in the choice of
rate functions, and alternative choices can be used (see Discussion).

Figure 3: Sketch of the chosen form of piecewise linear binding (k̂b, Eq. 2) and unbinding (k̂u, Eq. 3) functions. The local variable x̂
measures the local distance between pairs of ECM and actin-bound integrin nodes (see Fig. 2) and is therefore effectively a measure
of how far each integrin head is from its unstressed position, x̂ = 0.

The stochastic reactions that govern bond formation and rupture are used to update the structure of the
mechanical spring network (Fig. 2). To implement a position update of the network we consider the net
force acting on each node, F̂k. There are contributions due to neighbouring springs, F̂Nk

, and forces due to
integrin bonds between species, F̂Bk

. In this model, electrostatic interactions and inertia are assumed to be
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negligible. We therefore take F̂k = F̂Nk
+F̂Bk

and update the positions of the nodes to ensure that ΣF̂k = 0
at each timestep.

In order to represent fluctuations that occur due to tidal breathing we impose an external, oscillatory, forcing
to the ECM via a time-dependent displacement of the boundary node

ÛE1(t̂) = Âsin(ω̂t̂), (4)

with amplitude Â, frequency ω̂
2π , and where ÛEi denotes the displacement of the ith ECM node from its rest

position. Sinusoidal waveforms are commonly used to represent tidal breathing (43–46); however, they are
a simplification since exhalation is typically longer than inhalation. We include and discuss results for an
asymmetric waveform in Section S.3.2 in the Supporting Material. The results and conclusions are consistent
with those presented here.

We note that the first reaction algorithm (41) generates an event-based timestep. As we are also considering
external forcing we introduce a maximum timestep τ̂max such that, in the case that no reaction occurs within
this timestep, a position update of the network is induced and reaction propensities are recalculated. We
summarise the computational model in Section S.1.1 in the Supporting Material.

2.2 Continuum model formulation

We now introduce an analogous continuum model in which we consider two well-separated scales: a mi-
croscale integrin-level description for bond formation and rupture, that is coupled to a macroscale cell-level
model of material deformation (illustrated in Fig. 4). At the macroscale, we consider deformations of the
cell, ÛA(X̂, t̂), and of the ECM, ÛE(X̂, t̂), where X̂ is a macroscale spatial coordinate and t̂ is time. At
each point in X̂ a macroscale deformation occurs as a result of the adhesive drag force, F̂ (X̂, t̂), which is
generated by integrins cycling between bound and unbound states at the microscale. To model the microscale
reactions we adapt an existing model by Lacker and Peskin (30) (an extension of the Huxley model (40) for
actin-myosin crossbridge dynamics, discussed in detail in (29)).

Figure 4: Schematic diagram of the multiscale coupling. A relative velocity V̂ (X̂, t̂), arising from macroscale deformation, influ-
ences the binding dynamics and distribution of bonds, b̂(x̂, t̂; X̂) in a corresponding microscale problem (Eq. 6). As in the discrete
model, the variable x̂ is local to each integrin and measures the horizontal distance from the cytoskeletal attachment to the binding
site on the ECM, as shown. Microscale distributions determine the horizontal drag force, F̂ (X̂, t̂), which is used to update the
displacements ÛA and ÛE and thereby V̂ (X̂, t̂) (via Eqs. 7–9).

2.2.1 Microscale governing equations

At the microscale we again consider the binding of active, actin-bound integrins (IA) to the ECM to form
double-bound integrins (B, Eq. 1). Following the Lacker-Peskin model, the ECM binding sites are assumed
to be densely distributed, and there is a characteristic length scale, l̂, associated with the spacing between
sites. Each double-bound integrin is associated with a local variable, x̂, measuring the horizontal distance
of the bound integrin head from its unstressed (vertical) position at x̂ = 0. In the unstressed position, the
integrin does not contribute to the horizontal drag force. At each point in the macroscale domain, X̂ ∈
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[
0, L̂

]
, bound integrins are collectively expressed by a distribution, b̂(x̂, t̂; X̂), such that the fraction of

integrins that are bound with local displacements in a range of [x̂, x̂+ ∆x̂] at time t̂ is given by the integral∫ x̂+∆x̂
x̂ b̂(x̂, t̂; X̂)dx̂. The total fraction of bound integrins is given by

B(X̂, t̂) =

∫ ∞
−∞

b̂(x̂, t̂; X̂)dx̂. (5)

The evolution of each microscale distribution is governed by the advection–reaction equation

∂b̂

∂t̂
+ V̂

∂b̂

∂x̂
=
k̂b(x̂)

l̂
(1−B)− k̂u(x̂)b̂, (6)

where the functional dependencies have been suppressed for brevity. The right hand side describes binding
and unbinding of integrins through the functions k̂b(x̂) and k̂u(x̂) respectively, for which we employ the same
rates as in the discrete model (Eqs. 2, 3). The scaling of the binding rate by l̂ arises in the derivation of the
Lacker-Peskin model, discussed in detail in (29). Distributions are additionally advected with a macroscale
velocity, V̂ (X̂, t̂), which is the velocity of the ECM relative to the velocity of the cell. By treating integrins
as Hookean springs, we obtain the drag force per unit length as

F̂ (X̂, t̂) = ρ̂λ̂b

∫ ∞
−∞

x̂b̂(x̂, t̂; X̂)dx̂, (7)

where λ̂b is the integrin spring constant and ρ̂ is the number of integrins per unit length, acting at a macroscale
point X̂ . We implicitly assume that there is sufficient scale separation to approximate the microscale distri-
butions to be acting at a macroscale point; a rigorous derivation will be considered in future work.

2.2.2 Macroscale governing equations

At the macroscale we assume that the ECM and cell are linear elastic materials which undergo small defor-
mations. The relative macroscale velocity can be written as

V̂ (X̂, t̂) =
∂ÛE(X̂, t̂)

∂t̂
− ∂ÛA(X̂, t̂)

∂t̂
, (8)

which is coupled to the microscale distributions of bound integrins (see Fig. 4) via Eq. 6.

We assume that the drag forces, F̂ (X̂, t̂), due to bound integrins are the only body forces acting on the two
materials, and hence obtain the following macroscale description by considering quasi-static equilibrium
conditions

∂2ÛA

∂X̂2
= − 1

K̂A

F̂ ,
∂2ÛE

∂X̂2
=

1

K̂E

F̂ . (9)

The constants K̂A and K̂E are stiffness-like parameters for the cell and ECM, respectively, with units of
force per unit strain. The cell and the ECM experience the force in opposite directions.

2.2.3 Boundary Conditions

The cell displacement is assumed to be zero at X̂ = 0 and X̂ = L̂ so that

ÛA(0, t̂) = 0, ÛA(L̂, t̂) = 0. (10)

We apply a time-dependent displacement to the ECM at X̂ = 0 and zero strain at X̂ = L̂

ÛE(0, t̂) = Âsin(ω̂t̂),
∂ÛE(L̂, t̂)

∂X̂
= 0, (11)

where the oscillatory displacement is chosen to match the discrete model (Eq. 4).

6



2.2.4 Nondimensionalisation

The governing equations and boundary conditions are nondimensionalised with the scalings

x = x̂/ĥ, t = f̂1t̂, UA = ÛA/L̂, UE = ÛE/L̂,

b = b̂ĥ, X = X̂/L̂, V = V̂ /f̂1L̂, F = F̂ /ρ̂ĥλ̂b,
(12)

where f̂1 is the maximum binding rate and ĥ is the integrin binding range. For simplicity we assume that
ρ̂ is uniform, but an extension to non-uniform ρ̂(X̂) is easily incorporated. The dimensionless microscale
governing equations are

∂b

∂t
+
V

δ

∂b

∂x
= ηkb(x)

(
1−

∫ ∞
−∞

bdx

)
− ku(x)b, (13)

where the dimensionless parameters δ = ĥ/L̂ and η = ĥ/l̂ are the ratios of the integrin binding range
to the macroscale length scale and to the microscale binding site separation, respectively. The microscale
advection–reaction equations are coupled to the macroscale equations via the macroscale velocity V (X, t).

The dimensionless binding rate functions are

kb(x) =

{
1− |x| |x| ≤ 1,

0 otherwise,
(14)

and

ku(x) =

{
h1 + h2|x| |x| ≤ s,
h3 otherwise,

(15)

where hi = ĝi/f̂1 are the ratios of unbinding rates to the maximum binding rate, and s = ŝ/ĥ. The
dimensionless drag force

F (X, t) =

∫ ∞
−∞

xb(x, t;X)dx, (16)

features at the macroscale, where the dimensionless governing equations become

∂2UA
∂X2

= − 1

KA
F,

∂2UE
∂X2

=
1

KE
F, (17)

with boundary conditions
UA(0, t) = 0, UA(1, t) = 0,

UE(0, t) = Asin(ωt), ∂UE(1,t)
∂X = 0.

(18)

The remaining dimensionless parameters are

KA = K̂A/ρ̂ĥλ̂bL̂, KE = K̂E/ρ̂ĥλ̂bL̂,

A = Â/L̂, ω = ω̂/f̂1.
(19)

2.2.5 Implementation

To solve the advection–reaction system (Eq. 13), we differentiate the macroscale governing equations (Eq.
17) with respect to time and use Eq. 8 and Eq. 16 to obtain the following second order PDE for V (X, t)

∂2V

∂X2
= γH +

γ

δ
V B, (20)

where
H =

∫ ∞
−∞

xf(b) dx, B =

∫ ∞
−∞

b dx, γ =
(

1
KE

+ 1
KA

)
, (21)
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and
f(b) = ηkb(x) (1−B)− ku(x)b. (22)

Eqs. 13 and 20 are solved numerically, as detailed in Section S.1.2 in the Supporting Material, subject to

V (0, t) = Aωcos(ωt),
∂V

∂X
(1, t) = 0. (23)

The macroscale governing equations (Eq. 17) can be integrated directly to obtain UA(X, t) and UE(X, t) in
terms of F (X, t). Using Eq. 18, the cell deformation is given by

UA = − 1

KA

∫ X

0

∫ ζ

0
Fdξdζ +

X

KA

∫ 1

0

∫ ζ

0
Fdξdζ, (24)

and the ECM deformation is

UE =
1

KE

∫ X

0

∫ ζ

0
Fdξdζ − X

KE

∫ 1

0
dξ +Asin(ωt). (25)

2.3 Initial conditions

For each amplitude of oscillatory loading, A, we consider two initial conditions: (i) a zero state with no pre-
existing bound integrins, and (ii) a saturated steady state with high integrin binding, obtained in the absence
of external forcing. In the discrete model, this is found by running the simulation with A = 0 until the
fraction of bound integrins stabilises; in the continuum model the steady state, obtained from Eq. 13 when
V = 0, is given by

bs(x, 0;X) =
ηkb(x)

ku(x)

 1

1 +
∫∞
−∞

ηkb(x)
ku(x) dx

 . (26)

3 Results

Effect of increasing the amplitude of oscillation
We first investigate the effect of varying the amplitude, A, of the oscillatory loading in both the discrete
and continuum models. In Fig. 5 we show representative time courses from both models for the fraction of
integrins that become fully-bound (B) under low, intermediate and high amplitude oscillatory loading. In
the continuum model the total macroscale bound fraction is found from

Btot(t) =

∫ 1

0
B(X, t)dX, (27)

where B(X, t) is given by Eq. 21.

For the lowest amplitude oscillation, in both models (Fig. 5(a)), we find that both the zero and saturated initial
conditions converge to a pattern of high adhesion (with a mean total bound fraction of approximately 0.75)
subject to small fluctuations as a result of a low, sustainable, turnover of bound integrins. For the highest
amplitude loading (Fig. 5(c)), in both models and for both the zero and saturated initial conditions, the result
is an oscillatory state in which significant bond rupture leads to a total bound integrin fraction with a lower
mean (approximately 0.2–0.3) and larger amplitude fluctuations. For an intermediate oscillation amplitude
(Fig. 5(b)) we observe bistability, where the initial condition determines which of the two adhesion states
occur; if adhesions are present when oscillations begin, then shared loading and increased traction prevent
high levels of rupture under applied strain. Due to the stochastic nature of the discrete model, under high
amplitude oscillations we observe small variations in the time of collapse from the high to the low state.
Similarly, it is possible to observe stochastic switching (not shown) between the two adhesion states when
the loading parameter is within the bistable range. The high state exhibits persistence of bound integrins,
whereas the low state shows cyclic breaking and reattachment of a significant fraction of integrins. These
states could be akin to firm and transient adhesions, observed to occur in other contexts (see Discussion).
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Figure 5: Representative time courses from the discrete stochastic simulation (Section 2.1) and continuum model (Section 2.2),
shown in the left and right columns respectively, illustrating the responses of bound integrins (Eq. 27) to (a) low, (b) intermediate
and (c) high amplitude oscillatory loading. This is applied using ω = 20 and amplitudes A = 0.1, A = 0.15, and A = 0.2
respectively, via the boundary conditions in Eq. 4, or Eq. 18 (where Eq. 4 has been nondimensionalised using the scalings in Eqs.
12, 19). In each case we consider a zero (orange) and a saturated (blue) initial condition (Eq. 26). See Tables S1 and S2 in the
Supporting Material for a full list of chosen parameter values.

As illustrated in Fig. 5, the discrete and continuum models display strikingly similar qualitative behaviour.
We exploit the deterministic nature of the continuum model to more reliably investigate the bistability, sum-
marised in Fig. 6, where we present the bound integrin densities obtained for a range of oscillation ampli-
tudes. For each oscillation amplitude we use both the zero and saturated initial conditions. Since the states
under consideration are oscillatory, once the behaviour has converged to its periodic steady state we plot the
time-averaged adhesion density given by

〈B(X)〉 =
1

T

∫ T

B(X, t)dt, (28)

where T = 2π/ω is the oscillation period. There is variation in 〈B(X)〉 across the macroscale domain,
X ∈ [0, 1], and we observe a significantly lower adhesion density near X = 0 where the oscillation is
applied.
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Figure 6: High (blue) and low (orange) solution surfaces across the macroscale domain, X , indicating stable states of the time-
averaged adhesion density 〈B(X)〉 (Eq. 28) for a range of oscillation amplitudes, A (Eq. 18), in the continuum model. For
intermediate amplitudes there is bistability. The model parameters are as in Fig. 5, and given in Table S1.
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The time-averaged adhesion density plotted in Fig. 6, 〈B(X)〉, is additionally averaged over X to calculate
the total time-averaged density 〈Btot〉 (Eq. 27), which is used to generate a bifurcation diagram (Fig. 7).
Stable branches, indicated by the solid lines, confirm, as in Fig. 6, that for low amplitude oscillations we
expect solutions to converge to a high averaged bound integrin state regardless of initial conditions, while
for high amplitude oscillations the solutions converge to a low bound integrin state. For an intermediate
range of oscillation amplitudes we observe a window of bistability where the initial condition, in relation to
an unstable branch (dashed line), determines which of the two stable outcomes occurs. The position of the
unstable branch is estimated as the mean of two points that are observed to converge to the upper and lower
solutions (green and red markers, respectively). The unstable and stable branches appear to meet in a pair of
saddle node bifurcations. As illustrated in Fig. 7, starting on the upper stable branch, an increase in A would
lead to a jump from the upper to the lower stable solution at the bifurcation point. The value of A at this
point corresponds to a threshold loading at which adhesions quickly rupture. On the other hand a decrease in
A from the lower branch leads to a jump from the lower to upper branch at a different amplitude, following
a different path, thereby generating a hysteresis loop (blue dotted line).
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Figure 7: Bifurcation diagram indicating steady states of the time-averaged total adhesion density 〈Btot〉 (Eqs. 27, 28) for a range
of oscillation amplitudes, A (Eq. 18). Stable branches are indicated by solid lines separated by the dashed, unstable branch.
The position of the unstable branch is bounded by points known to converge to the upper and lower solutions, in green and red
respectively. Blue markers highlight example monostable ((a) A = 0.1, (d) A = 0.3) and bistable ((b) A = 0.125, (c) A = 0.15)
regimes, and a hysteresis loop is seen (blue dotted line). The path taken as A increases ((a)→(b)i→(c)i→(d)) differs to the path
followed as A decreases ((d)→(c)ii→(b)ii→(a)).

Next we examine the spatio-temporal cell deformation resulting from oscillatory loading for both the discrete
and continuum models in each stable regime (Fig. 8). In the high bound integrin regime (i.e. low amplitude
oscillations), adhesions persist and in both models there are smooth transitions between positive and negative
cell deformations across the domain (Figs. 8(a), (c)). These appear as wide bands that follow the movement
of the ECM. In the low bound integrin regime (high amplitude oscillations), the bands narrow and exhibit
sharp boundaries due to greater numbers of rupture events at each cycle (Figs. 8(b), (d)). The differences
in deformation that result from low and high amplitude oscillations correspond to differences in the total
drag force generated by bound integrins, shown in Fig. 9. The total drag force in the continuum model,
Ftot, is defined analogously to Btot (Eq. 27). Note that, although the total drag forces are qualitatively
similar in both models, there are some significant differences in the spatial propagation of the deformation
applied at X = 0 (Fig. 8) because of the differences between the two modelling approaches. In particular,
in the discrete model there are individual springs between each node, but this is simplified in the microscale
formulation of the continuum model. Since bond rupture is affected by the level of deformation, the total
bound fractions (Fig. 5) also differ slightly in magnitude between the two models; however, there is still
striking qualitative agreement for the averaged macroscale quantities of interest (Btot, Ftot, in Figs. 5, 9).
Since we are primarily interested in qualitative behaviour, we exploit the efficiency of the continuum model
in place of discrete stochastic simulations to investigate the effect of perturbations due to deep inspirations.
We also investigate the effect of oscillation frequency, material stiffness and binding affinities on the averaged
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bound integrin density, Btot (Fig. S1 in the Supporting Material). In each case bistability is observed, but
the positions of the stable branches are shifted.
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Figure 8: Cell deformation, UA(X, t), (indicated by colour) plotted as functions of the position in the cell domain, X , and time,
t, obtained in the discrete (a,b) and continuum (c,d) models in the cases where adhesion formation (a,c) and adhesion rupture (b,d)
dominate under oscillatory loading. Simulations are carried out from a zero initial condition, and oscillation amplitudes areA = 0.1
and A = 0.2 in Eq. 4 and Eq. 18. Eq. 4 has been nondimensionalised using the scalings in Eqs. 12, 19. In (a,b) the results have
been averaged over 150 simulations, and the spatial positions are presented on a scaled domain X ∈ [0, 1].
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Figure 9: Total adhesive drag forces, Ftot, in the discrete (a,b) and continuum (c,d) models corresponding to the deformations in
Fig. 8. (a,c). A = 0.1 in Eq. 4 and Eq. 18 and adhesion formation dominates. (b,d). A = 0.2 and there is increased rupture and a
constant turnover of bound integrins under oscillatory loading. Eq. 4 has been nondimensionalised using the scalings in Eqs. 12, 19.
As in Fig. 8, simulations are carried out from a zero initial condition. The results in (a,b) are from one sample discrete simulation.

Effect of perturbations due to deep inspirations
We now investigate the effect of transient perturbations to the amplitude of oscillatory loading, to mimic the
strain imposed on ASM cells and ECM that may result from taking a deep inspiration (DI) during a period
of regular breathing. Starting from the saturated initial condition (Eq. 26), we allow the bound fraction to
settle to its periodic high steady state before perturbing the amplitude of the oscillation for one cycle. We
therefore impose

UE(0, t) =

{
A2sin(ωt), 8π

ω < t < 10π
ω ,

A1sin(ωt), otherwise,
(29)

for baseline oscillation amplitude A1, DI amplitude A2 (where A2 > A1) and oscillation frequency ω
2π .

We consider two different baseline oscillation amplitudes (A1 = 0.1, A1 = 0.125, marked by (a) and (b)
in Fig. 7). This choice is motivated by variations in the amplitude of tidal breathing that may arise between
individuals; pressure-driven oscillations in vivo lead to smaller strains for greater material stiffnesses (14, 47).
The differences in A1 could therefore correspond to asthmatic (stiff) and healthy (compliant) airways. We
investigate the response to a small perturbation (A2 = 0.15, point (c) in Fig. 7) and a DI that is large enough
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to induce significant rupture of adhesions (A2 = 0.3, point (d) in Fig. 7), and find that for a starting amplitude
A1 = 0.1, there is recovery to the high adhesion state regardless of the amplitude of the perturbation (Fig.
10(a)). For a starting amplitude A1 = 0.125 there are two possible responses depending on the amplitude of
the DI perturbation (Fig. 10(b)). As shown by the blue markers in Fig. 7, for A1 = 0.1 the high adhesion
state is the only stable solution and a high density of bound integrins therefore persists after a perturbation.
In contrast, A1 = 0.125 lies within the bistable window and if the DI perturbation is large enough to drive
the system into the basin of attraction of the low adhesion state, there is a transition to a low bound integrin
density which persists even after the oscillation returns to its initial amplitude.
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Figure 10: Different amplitude baseline oscillations and DI-like perturbations may lead to a switch in adhesion states. We show
the applied oscillatory displacement, UE(0, t), and the total bound fraction of integrins, Btot(t), (see Eq. 29 and Eq. 27), when
ω = 20. (a) For A1 = 0.1, A2 = 0.3 (solid line) and A1 = 0.1, A2 = 0.15 (dashed line), the high adhesion state persists after both
DI perturbations, since for A1 = 0.1 this is the only steady state. (b) For A1 = 0.125, A2 = 0.3 (solid line), there is a transition
to a low adhesion state, since A1 = 0.125 is within the bistable window (see Fig. 7) and the DI is sufficiently large to drive the
system into the basin of attraction of the low state. For a smaller amplitude perturbation, A2 = 0.15 (dashed line), the high fraction
of bound integrins persists.

These responses demonstrate the possible consequences of bistability as well as the importance of loading
history, since an event such as a DI perturbation may alter the future state of adhesion when bistability is
present. Persistence of the previous state depends on the amplitude of the DI and on where the bistable win-
dow (Fig. 7) lies in relation to the baseline oscillation amplitude, A1. Physiologically, this will be influenced
by differences in the amplitude of the baseline oscillatory displacement, representing tidal breathing, and
differences in parameters such as the oscillation frequency, material stiffnesses and binding affinities which
shift the location of the bistable window (Fig. S1).

4 Discussion

We have developed a discrete stochastic-elastic model and a multiscale continuum model in order to investi-
gate the effect of oscillatory loading on the dynamics of ASM cell–matrix adhesions. We have demonstrated
that oscillatory loading, representing deformations due to tidal breathing, can have a significant impact on
integrin dynamics and the persistence of adhesions, which we expect to affect the level of force that can be
transmitted between intracellular and extracellular domains. In particular, we observe two distinct regimes
where either adhesion formation or adhesion rupture dominate, resulting in differences in the steady state
densities of bound integrins (Fig. 5). Moreover, a window of bistability exists for intermediate loading am-
plitudes (Fig. 7) due to mechanical cooperativity; shared loading between pre-existing adhesions allows the
high density state to persist when rupture would otherwise dominate. This bistability generates a hysteresis
loop and we see that the loading history and events such as perturbations representing deep inspirations can
significantly alter the future adhesion dynamics (Fig. 10). In previous studies (23, 48), similar instances of
integrin cooperativity have been observed, where shared loading between integrins aids initial cluster forma-
tion. In addition to the differences in bound integrin densities seen in the two regimes, cell deformations and
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adhesive drag forces also differ significantly in each case, both in terms of magnitude and dynamics (Figs.
8, 9). The qualitative behaviours seen in the discrete model are also observed in our continuum model, the
convenience of which we exploit to investigate the adhesion dynamics further. The existence of a threshold at
which bond rupture dominates over adhesion formation is in agreement with the Monte Carlo simulations in
a previous study (22), where an oscillatory strain is applied to an initially fully-bound substrate. Our model
assumptions differ in some respects to those of Kong et al. (22), but sudden rupture occurs in both when the
oscillation amplitude is increased. In our model, we additionally observe bistability and hysteresis. The two
adhesion states reported appear to behave similarly to transient and firm adhesions, observed in other con-
texts. Integrin-mediated adhesions can function as either dynamic or stable structures (6) and, in the context
of cell migration, switching between transient and firm adhesion states (mediated by biochemical signalling)
facilitates migration by altering the traction properties between cells and the ECM. As well as biochemical
signals, mechanical signals are known to be able to modulate focal adhesion size and dynamics (49), and
further studies into how the mechanical environment of ASM affects focal adhesions will be worthwhile.

We propose the following in vitro experiment to investigate whether the mechanical cooperativity of integrins
could indeed lead to bistability: using atomic force microscopy, vertical or lateral oscillations could be
applied to ECM–coated beads which initially have different but controlled levels of adhesion to the cell.
Control over the initial condition can be achieved by varying the contact time between the bead and cell,
as previously carried out in (50). In addition, by gradually increasing and then decreasing the amplitude of
oscillation, the hysteresis illustrated in Figure 7 could be tested.

The airway response to DIs is known to be different in asthmatics and non-asthmatics: in healthy subjects DIs
promote bronchodilation, but this effect is either transient or non-existent in asthmatics (9–11). DI-induced
bronchodilation has previously been attributed to disruption of actin-myosin crossbridges (11), which me-
diate contractile force generation within the cell. However, since intracellular contractile force transmission
to the extracellular domain is reliant on cell–matrix adhesions, the density of adhesions that survive under
oscillatory loading in each case could also play an important role: we expect the high and low density ad-
hesion states predicted by the model to produce significantly different levels of strain transmission between
contracted ASM cells and the ECM. Our results show either persistence of the high adhesion state or a tran-
sition from the high to low adhesion states in response to DI-like perturbations (Fig. 10). The ability of a
DI to induce a switch between states is influenced by a difference in either: (i) the position of the bistable
region, which shifts in response to changes in parameters such as oscillation frequency, material stiffnesses
and binding affinities (see Fig. S1 in the Supporting Material); (ii) the amplitude of the unperturbed oscilla-
tory displacement, which we use to represent the magnitude of tidal breathing; or (iii) the magnitude of the
DI. All of these factors could differ between individuals, as well as between asthmatics and non-asthmatics.
To fully understand the bronchodilatory effect of DIs, it will be crucial to consider the combined dynamics
of actin-myosin crossbridges and integrins; we expect them both to contribute, but their relative importance
will only become clear when considered together. Although actin-myosin crossbridge cycling, which medi-
ates contractile force generation within the cell, undergoes changes during DIs, by considering the possible
integrin response to breathing and DIs we have illustrated that strain transmission (via integrins) could also
be a highly dynamic process. Integrin–mediated adhesion is therefore an important process to study further
in this context.

Further motivation for understanding contractile force transmission between ASM cells and the ECM in
the context of asthma is that contractile force is also known to promote the activation of TGFβ, a growth
factor which otherwise remains latent in the ECM. TGFβ promotes long term airway remodelling with
consequences such as airway wall thickening and altered material properties (e.g. increased stiffness) of the
airway tissue (51–55). These structural changes are irreversible and over time lead to obstructed airflow and
a decline in lung function. In order to fully understand the effect of cell–matrix adhesion density on levels
of contractile force transmission, and the consequences that this may have for the activation of TGFβ, future
work will involve an extension to higher dimensions where the constraint on vertical motion will be relaxed.
This is an important step towards a full coupling to models of actomyosin dynamics and contractile force
generation in ASM cells.
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Our results were obtained firstly in a stochastic-elastic computational model and then in a continuum model.
We find that our discrete and continuum models produce similar qualitative behaviour, and in a future study
we will consider the formal relationship between the two models. This will allow for more rigorous quan-
titative, as well as qualitative, comparisons. Whilst the discrete model is advantageous for incorporating
large amounts of individual detail, the continuum model can more easily be coupled to existing models of
contractile force generation, for example (56), and is more efficient when the number of integrins is high. In
(56), crossbridge cycling and disruption to actin-myosin contractile units (in response to cell length changes)
are considered, which would allow us to more fully investigate the combined dynamics of crossbridges
and integrins during DIs. The continuum model can additionally be extended to address simplifications
made during initial model development; in particular, we can consider nonlinear elastic materials in order
to accommodate large deformations, a more complete reaction sequence including integrin diffusion and
activation, and different forms for spatial binding and rupture rates. Instead of our simplified piecewise lin-
ear rates, a more commonly used description for bond rupture under force is the Bell model (57), in which
rupture rates increase exponentially with force. Other rate functions, including a power law relation, have
also been presented (58, 59), and obtaining precise measurements for individual integrins, using techniques
such as atomic force microscopy (60), remains an area of ongoing research. As we explicitly account for
binding and unbinding rates that depend on microscale distance, both our discrete and continuum models
can accommodate any of these choices.

Here we have discussed cell–matrix adhesion in the context of tidal breathing and airway smooth muscle.
However, the models presented could be applicable to other contexts where dynamic environments occur.
Interesting examples include the adhesion dynamics that occur in response to large volume changes in the
urinary bladder or in uterine smooth muscle during pregnancy and childbirth. In both of these cases, it is
thought that integrins play an important role in the adaptation of smooth muscle to different lengths and
functions (61, 62).

In this paper we have shown that cell–matrix adhesion strength can be heavily influenced by dynamic loading
(representing tidal breathing and DIs) and by the loading history. To date, consideration of mechanical
ASM-ECM interactions via integrins has been neglected in investigations on the effect of tidal breathing
and DIs in asthma. Here we have shown that integrins could play an important role in the level of strain
transmission during ASM contraction in vivo, since the bound integrin density responds dynamically to
oscillatory loading. Furthermore, a simulated DI is shown to induce either transient or permanent changes in
the bound integrin density, depending on the amplitude of tidal breathing (Fig. 10). This result could help to
explain, in part, previous experimental observations on the bronchodilatory effect of DIs, which are transient
or absent in asthmatics yet sustained in healthy subjects.
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Here we present further details about the numerical simulation of the discrete and continuum models (Section
S.1), a list of the parameter values used (Section S.2), and additional figures to support and extend the
continuum model results in Section 3 of the main text (Section S.3).

S.1 Numerical methods

Both models were implemented in MATLAB 2016b, as detailed below.

S.1.1 Discrete simulations

The algorithm employed in the discrete stochastic–elastic simulations (see Section 2.1) is summarised as
follows. We employ a first reaction method (41) to select the stochastic binding and unbinding reactions.

Algorithm S1 Discrete stochastic–elastic model
1: Initialise actin and ECM spring networks and relax to mechanical equilibrium.
2: while t̂ < T̂ do
3: Calculate binding and unbinding propensities, ai, based on pairwise distances (where i ∈ [1, ...N ]

and N denotes the number of possible reactions).
4: Generate a uniformly distributed random number, r1, from the interval (0, 1), to calculate the time

elapsed before the next reaction, τ̂ = 1
a0

ln(1/r1). The constant a0 is the sum of all reaction propen-
sities, a0 =

∑N
i=1 ai.

5: if τ̂ < τ̂max then
6: Generate a second uniformly distributed random number, r2 ∈ (0, 1), and select the reaction,

indexed by µ, such that
∑µ−1

i=1 ai < a0r2 ≤
∑µ

i=1 ai is satisfied.
7: Update the structure of the spring network according to chosen reaction.
8: end if
9: Set t̂ = t̂+ min{τ̂ , τ̂max}. Calculate net forces acting on each point, and update positions by solving

ΣF̂i = 0
10: end while

S.1.2 Continuum simulations

In the continuum model (see Section 2.2), we solve a microscale advection–reaction system (Eq. 13) coupled
to a second order macroscale PDE (Eq. 20). The macroscale PDE is solved using a finite difference scheme,
subject to the boundary conditions in Eq. 23.
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We discretise the macroscale domain, X ∈ [0, 1], into N points with an equal spacing of ∆X = 1/(N −
1). Macroscale variables V , H , and B (defined in Eqs. 8, 21) are discretised into the vectors v =
(V1, V2, ..., VN )T , h = (H1, H2, ...,HN )T , and b = (B1, B2, ..., BN )T , respectively, where the built-in
MATLAB function trapz is used in calculating the elements of h and b from microscale distributions (see
Eq. 21).

By using a second order central difference in Eq. 20, we solve for v through a matrix equation of the form

v = A−1p, (S1)

where the vector p is given by
p = (αωcos(ωt), γH2, ..., γHN )T , (S2)

and the matrix A is

A =



1 0 0 0 0 . . . 0
1

∆X2 D2
1

∆X2 0 0 . . . 0
0 1

∆X2 D3
1

∆X2 0 . . . 0
...

. . . . . . . . . . . . . . .
...

0 . . . 0 1
∆X2 DN−2

1
∆X2 0

0 . . . 0 0 1
∆X2 DN−1

1
∆X2

0 . . . 0 0 0 2
∆X2 DN


. (S3)

The diagonal elements, D2, ..., DN , are given by Di = − 2
∆X2 − γ

δBi, for i ∈ {2, ..., N}, where Bi are ele-
ments of the discretised bound fraction vector, b, as defined above. Eq. S1 is solved alongside the microscale
advection–reaction system (Eq. 13), for which we evolve discretised microscale distributions, b(x, t;X), us-
ing the built-in MATLAB function ode15s with a first order upwind scheme for the spatial derivatives.
We evolve microscale distributions at each of the N (macroscale) discretised points, and distributions are
coupled through the solution of v.

S.2 Parameter values

S.2.1 Dimensionless parameter values

Dimensionless parameter values used in the continuum and discrete simulations, unless otherwise stated in
figure captions, are given below.

Parameter Description Value

KA Cell Stiffness 2
KE ECM Stiffness 4
h Integrin binding range 1
s Maximum integrin range 1.5
h1 Dimensionless unbinding parameter (Eq. 15) 0.5
h2 Dimensionless unbinding parameter (Eq. 15) 0.4
h3 Dimensionless unbinding parameter (Eq. 15) 5000

δ Ratio of microscale binding range, ĥ, to macroscale lengthscale L̂ 0.05

ν Ratio of microscale binding range, ĥ, to microscale characteristic length, l̂. 5
ω Frequency of oscillatory loading 20

Table S1: Dimensionless parameter values for the continuum simulations, unless otherwise stated in figures.
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Parameter Description Value

NIA Number of IA nodes 300
NE Number of E nodes 500
κa Cell Spring Constant 2(NIA-1)
κr Restoring Spring Constant 2(NIA-1)
κe ECM Spring Constant 4(NE-1)
κb Integrin Spring Constant 1.8
h Integrin binding range 1
s Maximum integrin range 1.5
h1 Dimensionless unbinding parameter (Eq. 15) 0.5
h2 Dimensionless unbinding parameter (Eq. 15) 0.4
h3 Dimensionless unbinding parameter (Eq. 15) 5000

δ Ratio of microscale binding range, ĥ, to macroscale lengthscale L̂ 0.05
ω Frequency of oscillatory loading 20

Table S2: Parameter values for the discrete simulations, unless otherwise stated in figures. Note that the cell and ECM spring
constants are scaled by (NIA -1) and (NE-1), respectively, which are the number of cell and ECM springs that act in series between
X = 0 and X = 1 (see Fig. 2).

S.2.2 Dimensional parameter values

The above dimensionless parameters were obtained, where possible, by using dimensional values from the
literature (see below). Some parameters were unknown or widely variable in the literature (denoted by ∗∗)
and are discussed further below.

Parameter Description Range of values Sources Chosen value

T̂ Breathing cycle duration 2.7− 5.8s (68) 3.9s

ω̂
Frequency (angular) of
oscillatory loading

1.08− 2.33s−1 From ω̂ = 2π/T̂ 1.6s−1

ĝ1 Unstressed unbinding rate 0.012− 0.04s−1 (63), (64) 0.04s−1

ĝ2 Unbinding parameter 0.032s−1∗∗

ĝ3 Forced unbinding rate Instantaneous Model choice 400s−1

f̂1 Unstressed binding rate 0.015− 1.5s−1 (64), (32) 0.08s−1∗∗

ĥ Integrin binding range 0− 28nm (65) 20nm

ŝ
Maximum integrin range
before unbinding

28nm+ (65) 30nm

λ̂b Integrin spring constant 0.15− 2pN/nm (37), (39), (23) 0.15pN/nm

ρ̂
Number of integrins per unit
length

0− 0.2nm−1 (66) 0.1nm−1∗∗

l̂ Characteristic length 4nm
L̂ Characteristic length 400nm

Table S3: Dimensional parameter values used to obtain the dimensionless values in Table S1. Parameters that were unknown or
widely variable in the literature are denoted by ∗∗ and are discussed further below.

The unstressed binding rate f̂1 varies widely in the literature, as it depends on a number of factors including
integrin affinity, integrin density and ligand density. Here we have chosen a rate based on (32, 64); however,
higher values have also been used in the simulations of (23, 67). The unbinding parameter, ĝ2, used in the
piecewise linear rates (Eq. 3) does not have an equivalent in the literature, and was chosen to be of the same
order of magnitude as the other reaction rates, ĝ1 and f̂1. Some parameter values were estimated from known
properties of integrins. The integrin binding ranges, ĥ and ŝ are estimates based on the length of integrins.
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An upper bound for ρ̂ is estimated based on integrin diameters, which are typically between 5-10nm (66).
This suggests a maximum value of ρ̂ = 0.2nm−1; however, the integrin density will vary up to this value
depending on the extent of integrin clustering.

The constants K̂A and K̂E in Eq. 9 are given values (240pN and 480pN respectively) such that the dimen-
sionless stiffness parameters, KA and KE in Eq. 17, are O(1). We make this choice so that the drag arising
from bound integrins, F (X, t), influences the macroscale dynamics via Eq. 17, since integrins are known to
be able to influence cell and ECM deformation.

Naturally there is some uncertainty associated with the above parameters, and we have investigated the effect
of varying some of these. We find that the qualitative behaviours reported in the main text appear for a range
of parameter values, with some examples discussed in Section S.3.1 and shown in Figs. S11 and S12.

S.3 Additional simulations

Using the continuum model, we can also investigate the effect of varying the oscillation frequency, material
stiffnesses, and binding affinities (Section S.3.1). We show that these parameters affect the position and
width of the bistable region, and demonstrate that the dynamics we observe can be found for a range of
parameter values. In Section S.3.2, we will consider the effect of varying the waveform representing tidal
breathing since, in reality, this will not be perfectly sinusoidal.

S.3.1 Effect of varying the model parameters

We first consider the effect of varying the oscillation frequency. An increase in the frequency of applied
oscillations results in a decrease in the averaged bound integrin density, 〈Btot〉, on both stable branches
(Fig. S1(a)). This is due to reduced contact times for integrin binding. The most significant shift occurs in
the lower branch where rupture and rebinding must occur at each cycle; the increased frequency prevents
significant binding. The location and size of the bistable window are also affected; for increased frequencies
the lower branch persists for lower amplitudes, A, and the bistable region widens. The end points of the high
and low branches have been calculated (to the nearest 0.005), giving the widths of the bistable region to be
in the ranges [0.03, 0.04], [0.045, 0.055], and [0.055, 0.065] for ω = 10, 20, and 30 respectively.

The material stiffnesses KA and KE influence the microscale distributions through the parameter γ that
appears in the macroscale relative velocity (Eqs. 20, 21). As seen by Eq. 21, the value of γ decreases when
either KA or KE are increased; similarly, γ increases when either KA or KE are reduced. Without loss of
generality, in Fig. S1(b) we present results corresponding to variations in KA. We observe that an increased
cell or ECM stiffness (i.e. reduced γ) leads to a narrowing of the bistable region and a significant downward
shift in the amplitude of forcing at which the saddle node bifurcations occur, and where the high branch
exists. This is due to increased propagation of the forcing across the macroscale domain resulting from
reduced attenuation of the oscillatory load (results not shown). For stiffer cells a lower oscillation amplitude
can therefore result in the same degree of bond rupture.

Since binding affinities are specific to integrin type and can vary due to integrin activation and intracellular
signalling (4, 69), we also investigate how the magnitude of and transitions between stable adhesion states
respond to variations in binding affinities. In Eq. 15 the rupture rates involve parameters h1, h2, h3, the ratios
of unbinding rates ĝ1, ĝ2, ĝ3 to the maximum binding rate f̂1 (see Eqs. 2, 3). Here we vary h1, the unbinding
rate for integrins at x = 0. We find that the magnitudes of the high stable states decrease with increased h1

(Fig. S1(c)), since this state is obtained when adhesion formation and rupture balance, i.e. when the system
is subject to only small fluctuations. Additionally, the bifurcation point on the top branch shifts to a lower
value of A as h1 increases, as deformation-induced rupture will dominate under lower loading if the bound
fraction 〈Btot〉 is reduced. The shift in stable branches is most notable in the upper branch since the high
equilibrium bound state is more sensitive to h1, the unbinding rate at x = 0, than the low oscillatory rupture
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Figure S11: Stable branches in the continuum model (Section 2.2) indicating the values of 〈Btot〉 (Eqs. 27,28) for: (a) varying
frequencies of the oscillatory loading, ω = 10, 20, and 30 (Eq. 18); (b) varying cell stiffnesses, KA = 1, 2, and 4; and (c) varying
integrin binding affinities h1 = 0.25, 0.5 and 1 (Eq. 15). For increased frequencies, contact times for integrin binding are reduced,
leading to lower averaged bound integrin densities. For increased stiffnesses, there is a significant downward shift in the amplitude
of oscillation at which the saddle node bifurcations occur. Binding affinities affect the magnitude of the stable adhesion states, most
notably the upper branch, as well as the position and width of the bistable region. Unless otherwise stated, dimensionless parameter
values are as in Table S1.
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state. In Fig. S2 we show the effect of varying h1 with a reduced frequency of oscillatory loading, where the
separation in the low branch becomes more apparent since the integrins spend more time in an unstressed
state in this regime. The separation is still small since the rates h2 and h3, which control the unbinding of
integrins in a stressed state (see Eq. 15), are dominant on this branch.
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Figure S12: Stable branches indicating the values of 〈Btot〉 (Eqs. 26,27) as a function of oscillation amplitude, A, for different
h1 = 0.25, 0.5 and 1 in Eq. 15 for ω = 10. The lower branches separate (compared to in Fig. S1(c) with ω = 20) due to the lower
frequency of oscillations.

S.3.2 Effect of varying the input waveform

Typically, breathing is not perfectly sinusoidal, with a longer time spent on exhalation than inhalation. Here
we have considered how an asymmetric waveform (accounting for physiological differences in inhalation
and exhalation times) may affect the bound integrins, compared to the sinusoidal waveform used to represent
breathing in the main text. We implement the asymmetry by replacing the sinusoidal displacement condition
in Eq. 18 by a boundary condition of the form

UE(0, t) = Asin(ωt+ αsin(ωt)), (S4)

where A and ω control the amplitude and frequency of oscillation, respectively, and α is a skewness param-
eter. Note that Eq. 18 and the results in the main text are recovered when α = 0. The waveform in Eq. S4
is shown in Fig. S13, where we have chosen to use α = 0.4. Denoting the inhalation and exhalation times
by tI and tE , respectively, this gives tI/tE ≈ 0.62, which is within the range of ratios reported during tidal
breathing in (68). In the sinusoidal case used in the main text (Eq. 18), this ratio was tI/tE = 1.
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Figure S13: Plot of the asymmetric waveform used for UE(0, t), given by Eq. S4 with α = 0.4, A = 0.1 and ω = 20. The times
tI and tE represent inhalation and exhalation, respectively, and in this case tI/tE ≈ 0.62.
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Since the model is driven by the relative velocity at X = 0 (see Eq. 23 and Section S.1.2), we differentiate
Eq. S4 with respect to time to obtain

V (0, t) = Aω(1 + αcos(ωt))(cos(ωt+ αsin(ωt))). (S5)

Additionally, we have used the zero displacement condition for the cell, UA(0, t) = 0 (Eq. 18).

Timecourses of the total bound fraction, Btot, (Eq. 27) as the oscillation amplitude, A, varies is shown in
Fig. S14. For each amplitude of oscillation we consider a zero (orange) and saturated (blue) initial condition
(Eq. 26), as before. Since the oscillations are now asymmetric (Fig. S13), the oscillations in the total bound
fraction also exhibit asymmetry; there is more adhesion formation during the longer exhalation period, and
the bound fraction therefore reaches a higher peak than during inhalation. As in Fig. 5 in the main text,
for low oscillation amplitudes we find that adhesion formation dominates and a high bound integrin state is
obtained. For high oscillation amplitudes, adhesion rupture dominates, resulting in a lower bound integrin
regime. For intermediate oscillation amplitudes, bistability is again observed due to shared loading between
integrins; the outcome depends on the initial condition.

In Fig. S15 we show the stable solution surfaces for a range of amplitudes of oscillatory loading, which
corresponds to Fig. 6 in the main text. Since the results are time-averaged over a full cycle, they exhibit
only slight differences. The bistable window is slightly wider (a difference of 0.05) in the asymmetric case.
As the tI/tE value decreases from 1 (corresponding to the symmetric case), the asymmetry in the bound
fraction timecourses will become increasingly apparent; however, we expect the results to exhibit the same
overall dynamics.
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Figure S14: Timecourses illustrating the responses of total bound integrin fractions (Eq. 27) to low (A = 0.1), intermediate
(A = 0.15) and high (A = 0.2) amplitude oscillatory loading. This is applied via the boundary conditions in Eq. S5 with ω = 20.
In each case we consider a zero (orange) and a saturated (blue) initial condition (Eq. 26).
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Figure S15: Upper (blue) and lower (orange) stable solution surfaces for the asymmetric waveform in Equation S4. For intermediate
values of A there is bistability. The corresponding result with a symmetric waveform is shown in Fig. 6 in the main text.
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