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Rapid formulation of redox-responsive oligo-aminoester 
polyplexes with siRNA via jet printing  

Tatiana Lovatoa†, Vincenzo Tarescoa†, Ali  Alazzoa, Caterina Sansone,b Snjezana Stolnik,a Cameron 
Alexandera* and Claudia Conte.a,b* 

Here we describe a rapid inkjet formulation method for screening newly-synthesised cationic materia ls  

for siRNA delivery into cancer cells. Reduction responsive oligo--aminoesters were prepared and 

evaluated for their ability to condense siRNA into polyplexes through a fast inkjet printing method. A 

direct relationship between the oligomer structures and charge densities, and the final cell response 

in terms of uptake rate and transfection efficacy, was found. The oligo-aminoesters were well -

tolerated by the cancer cells, compared to conventional cationic polymers so far employed in gene 

delivery, and were as active in silencing of a representative luciferase gene.  

Introduction 

Successful and practical gene therapies require consistent 

formulations which can be easily prepared, and which can 

effectively deliver nucleic acids to intracellular target sites.1, 2 In 

turn these formulations need nucleic acid carrier vehicles which 

are safe in human patients, and with the highest performa nc e 

in terms of in vivo stability, cellular delivery and transfection 

efficiency.3 Accordingly, combinations of advances in materia ls  

chemistry and pharmaceutical formulations are pre-requis i tes  

for nucleic acid therapeutics.4   

To date, the formulation parameters for nucleic acid delivery 

have generally evolved from research lab-based protocols for 

preparing polymer-nucleic acid polyelectrolyte complexes , and 

these can be highly ‘operator-dependent’. In part this is due to 

the many variables important in the polycation carrier /nucleic 

acid polyanion association process, as the kinetics of  

polyelectrolyte complex formation are highly variable across  

concentration ranges, order and speed of addition.5-8 As a 

consequence, methods to prepare, formulate and screen 

cationic polymers for nucleic acid delivery are required, and 

these protocols need to be rapid, use small quantities and be 

easily applicable across ranges of physical and chemica l  

properties. The increasing use of printing methods for screening 

pharmaceutical materials is a potential means by which 

polymer-nucleic acid complexes might be optimised for 

practical formulations.9 -1 1    

Concurrently, a very wide range of natural and synthetic 

cationic polymers have been explored as potential non-vi ra l  

gene delivery systems, particularly for cancer treatment. 1  

Amongst these materials, oligo- and poly(-aminoeste r )s  

(OBAEs and PBAEs) have emerged as promising candidates, as  

they are easy to synthesise and are biodegradable due to their 

hydrolysable ester backbones.1 2, 13 These materials are 

generally positively charged at physiological pH and thus are 

able to condense spontaneously with nucleic acids through 

electrostatic interactions. The main advantage of PBAEs  

compared to other conventional cationic materials is thei r 

significantly lower cytotoxicity, combined with their ability to 

transfect cells with high efficiency14, 15. However, the molecular 

weight, the structure and the supramolecular  architectures of  

polycations, including PBAEs, play a pivotal role in the final  

biological effect, influencing the cytotoxicity as well as the gene 

transfection activity16-20 . For instance, it has been demonstra te d 

that polycations with high molecular weight (MW) usually show 

appreciable cytotoxicities , even though their stronger 

condensation capacity toward nucleic acids tends to improve 

transfection potency compared to their lower molar mass  

analogues.2 1, 22 In addition, dependent on their ratio of primary, 

secondary and tertiary amines, OBAEs and PBAEs may display 

appropriate pKa ranges to exploit the “proton sponge 

mechanism” thus enhancing escape of polyplexes and nucleic 

acids from endosomal compartments which in turn improves  

access to the targeted genes.18, 23, 24 However, while highly 

stable polymer-DNA complexes are desirable during the initial  

stages of the delivery process, the release of the nucleic acid 

cargo is more rapid if the vector can be degraded into smaller,  

less charged, fragments . The hydrolysis of the polyester 

backbones in PBAEs in cellular fluids typically occurs on the time 

scale of several hours to a few days, depending on the polymer 

structure, thus affecting the release of the gene cargoes and the 

final transfection effect. While it is possible to tune the 

degradation rate of the PBAE polymer via molar mass and 

monomer structure, it is also desirable to encode “on-dema nd ” 

cargo release, such that very rapid dissociation of the nucleic 

acid can occur at the correct cellular region. This can be 

achieved by incorporating disulfide bonds in the polymer 

backbone, which can be cleaved in the reducing environm en ts  

of certain intracellular milieu, thereby improved the efficiency 

of gene delivery.25 , 26  

In this manuscript, we report the synthesis of a small range of  

redox responsive, cytocompatible oligoaminoes te rs  

(OBAEs) which are able to condense and transfect siRNA into 

cancer cells. Through a specific modulation of the molar ratio 

between the starting materials, we obtained OBAEs with 

different structures and positive charge densities, thus tuning 

their capabilities to interact with siRNA and elicit a subsequen t 

biological response. Furthermore, we designed the OBAEs to 

have solubility properties allowing them to be formed into -
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siRNA polyplexes via an easy, fast and cheap inkjet technolo gy . 

We considered inkjet printing to be particularly suitable for 

screening the formulations of biotherapeutics in this study as  

this technique is versatile, scalable and can deposit picoli tre  

volumes of solution with high accuracy and reproducibility. The 

data together show that oligomeric cations and siRNA can be 

easily print-formulated into effective in vitro nucleic acid 

delivery systems. 

Experimental 

Materials 

All solvents were of analytical or HPLC grade and purchased 

from Sigma or Fisher Scientific unless otherwise stated. 

Deuterated solvents were from Sigma. Acryloyl chloride, 

ethylene-dioxy-bis-ethylamine, triethylamine (TEA), 

dithiodiethanol, sodium chloride, potassium phosphate dibas ic 

and potassium phosphate monobasic, sodium azide, sodium 

phosphate dibasic, ethidium bromide (EtBr), fluorescamin e,  

polyethylenimine (PEI) (25kDa, branched) calf thymus DNA and 

glutathione (GSH), were used as received from Sigma Aldrich. 

Luciferase siRNA (CCGCAAGAUCCGCGAGAUU) was provided by 

Eurogentec (UK).  Luciferase Assay System with Reporter Lysis  

Buffer and CellTiter 96® AQueous One Solution Cel l  

Proliferation Assay (MTS) were provided by Promega (UK). 

Silencer™ Cy™3-labeled Negative Control was provided by 

Thermofisher Scientific (UK).  

 

Synthesis and characterization of cationic oligo (β-amino ester)s 

The synthesis of the oligo--aminoester (OBAE) was via a two-

step reaction, i.e. the synthesis of disulfanediylbis (ethane- 2, 1-

diyl) diacrylate and 2) the Michael addition reaction between 

disulfanediylbis(ethane-2,1- diyl) diacrylate and ethylenedio x y-

bis-ethylamine.  

(1) Synthesis of disulfanediylbis(ethane-2,1-diyl) diacrylat e 

(DSD). Synthesis of DSD was carried out via a literature method 

with minor modifications .27 Briefly, dithiodiethanol (10 g, 0.065 

mol) was added to a round-bottom flask equipped with three -

way stopcocks connected to either a nitrogen line or a vacuum 

pump, and dried via azeotropic distillation with anhydro us  

toluene (3 x 20 mL) under reduced pressure. After complete 

evaporation of toluene, anhydrous THF (20 mL) was added via a 

syringe under inert atmosphere. TEA (6.5 g, 0.065 mol) was  

added to the solution which was maintained at 4 °C during drop 

wise addition of acryloyl chloride (3.5 g, 0.039 mol). The solution 

was allowed to warm to room temperature under magnet ic 

stirring and left to react overnight. The solution was finally 

filtered to remove the chloride salt of TEA and the crude 

product was recovered by evaporation of THF. The product was  

purified by passing through silica column chromatography using 

petroleum ether/ ethyl acetate 90:10 as eluents to generate a 

soft solid (yield 85%). 
ATR-IR: υ (cm-1) 3449, 2978, 2874, 1725, 1634, 1620, 1513, 

1454, 1408, 1371, 1223, 1177, 1045, 978, 911, 814, 663. 
1H NMR (400 MHz, d6-DMSO, ppm):  3.01-3.03 (t, 2, J= 8 Hz, -

SSCH2CH2O-), 4.35-4.38 (t, 2, J= 4 Hz, -SSCH2CH2O-), 5.95 (dd, 1, 

J= 4 Hz, J= 8 Hz, -OCOCHCH2), 6.17 (dd, 1, J= 8 Hz, J= 16 Hz, -

OCOCHCH2), 6.36 (dd, 1, J= 4 Hz, J= 20 Hz, -OCOCHCH2) 
13C NMR (400 MHz, d6-DMSO, ppm): C 36.4 (s, 1, -SSCH2C H2 O-

), 62.1 (s, 1, -SSCH2CH2O-), 128.1 (s, 1, -OCOCHCH2), 131.8 (s, 1,  

-OCOCHCH2), 165.0 (s, 1, -OCOCHCH2). 

(2) Synthesis of oligo- -aminoesters (OBAEs). For the Michael  

addition reaction, different amounts of DSD (0.76 mmol, 0.96 

mmol, 1.15 mmol) dissolved in 1 mL of anhydrous DCM were 

added into a solution of ethylene-dioxy-bis-ethylamine (0.17 g, 

1.15 mmol) in 1 mL of anhydrous DCM. The reaction was  

performed in the dark at 30 °C for 5 days under nitrogen. The 

final product was then dissolved in MeOH and precipitated into 

ice-cold diethylether three times. Finally, the polymer was dried 

under vacuum overnight. The yield of the polymer was 72%. 

ATR-IR: υ (cm-1) 3269, 3070, 2865, 1643, 1551, 1494, 1457, 

1355, 1295, 1099, 1024, 819, 755. 
1H NMR (500 MHz, d6-DMSO, ppm):   2.50-2.53 (m, 2, -

OCOCH2CH2- ), 2.72-2.79 (m, 2, -NCH2CH2O-), 2.78-2.81 (t, 2, J= 

15 Hz, -SSCH2CH2O-), 2.94-3.04 (m, 2, -OCOCH2CH2- ), 3.21-3.24 

(m, 2, -OCH2CH2NH2), 3.41-3.44 (m, 2, -OCH2CH2NH2), 3.54-3.57 

(m, 2, -NCH2CH2O-), 3.58-3.60 (m, 4, -OCH2CH2O-, -OCH2CH2 O- ),  

3.61-3.63 (m, 2, -SSCH2CH2O-), 8.27 (br, 3, -OCH2CH2NH3+). 
13C NMR (500 MHz, d6-DMSO, ppm): C  32.4 (s, 1, -OCOCH2C H 2-

), 39.0 (s, 1, -OCH2CH2NH2- ), 41.5 (s, 2, -SSCH2CH2O-), 44.3 (s, 1,  

-OCOCH2CH2-), 51.4 (s, 1, -NCH2CH2O-), 60.1 (s, 2, -SSCH2CH2 O-

), 69.4 (s, 2, -OCH2CH2O-, -OCH2CH2O-), 69.8 (s, 1, -OCH2CH2 NH 2-

), 70.0 (s,1, -NCH2CH2O-), 170.3 (s, 2, -OCOCH2CH2- ). 

m/z found [M-H]- (A):2331 ; (B): 1434; (C): 560 

 

Characterization of OBAE 
1H-, 13C-NMR, 2D-NMR (COSY, HSQC, HMBC) spectra were 

recorded at 25 °C on a Bruker Advance III 500 MHz 

spectrometer. All chemical shifts are reported in ppm (δ) 

relative to tetramethylsilane or referenced to the chemica l  

shifts of residual solvent resonances. Multiplicities are 

described with the following abbreviations: s = singlet, br = 

broad, d = doublet, t = triplet, m = multiplet, dd= doublet of  

doublets. Chemical shifts were assigned in parts per million 

(ppm). MestReNova 6.0.2 copyright 2009 (Mestrelab Research 

S. L.) was used for analysing the spectra. 

FT-IR spectra were recorded with an Attenuated Tota l  

Reflection spectrophotometer (Agilent Technologies Cary 630 

FTIR) equipped with a diamond single reflection ATR unit.  

Spectra were acquired with a resolution of 4 cm-1 by co-adding 

32 interferograms, in the range 4000-650 cm-1. 

IR analysis were performed by using SpectraGryph version1.0. 

Mass spectra were carried out using a Micromass LCT ToF with 

electrospray ionization and OpenLynx software. 

 

Fluorescamine assays for amine content determination  

The intensity of fluorophore resulting from the reaction of  

fluorescamine with primary amine was measured using a Cary 

Eclipse Fluorescence Spectrophotometer and glycine as  

standard. To a 2 ml sample of polymer solution (concentrati o n 

10 μg.ml-1, in borate buffer pH 8.7), 0.5 ml of fluorescamine in 

acetone (0.3 mg.ml-1) were added and vortexed for 10 seconds . 

After incubation of the reagents in the dark for 20 minutes, the 



 

 

 

emission from the resulting solution was measured at a 

wavelength of 480 nm using an excitation wavelength of  

385 nm against a blank of borate buffer with fluorescamine. 

 

Buffer capacity of OBAE 

The buffer capacity of OBAE was determined by acid-base 

titration. Acid–base titration was performed using a 

Fisherbrand pH meter with a Hydrus 600 electrode. Briefly, 0.5 

mg of PBAE were dissolved in 1 mL of NaCl 0.1 M and the pH of  

the polymer solution was adjusted with 0.1 M HCl to 3. Then, 

the solution was titrated with NaOH 0.1 M and the pH value of  

solution was measured.  

The buffering capacity was defined as the percentage of the 

protonated amine groups from pH 7.4 to 5.0 and calculated 

according to the following equation:  

 

Buffer capacity (%) = 100 (ΔVNaOH × 0.1M) / N mol 

 

Where, ΔVNaOH is the volume of 0.1M NaOH, which changes  

the pH of the polymer sample from 5 to 7.4, and N mol is the 

total moles of amine groups in the sample. 

For total amine content, the volume of NaOH required to ionize 

all the amine groups based on the first derivative analysis of  

titration curve was used and multiplied by the concentrati o n 

(0.1 M). As the concentration of NaOH is the same, it can be 

removed from the above equation. 

 

Printing set-up and work flow conditions  

Prior to dispensing the siRNA aqueous solutions into a 96-

wellplate filled with 100 µl of water solutions of OBAEs for each 

well, the target had to be defined. Firstly, the outer dimens ions  

of the wellplate were added to the software sciFLEXARRAY E R 

(Scienion AG, version 2.09.002) followed by defining the 

number of wells, well distance, well depth and the spot area  

(area within the target designated for spotting). SiRNA solutions  

were dispensed via a piezo electric inkjet printer (Sciflexarra y 

S5, Scienion) through a 90 µm orifice nozzle. Each droplet was  

dispensed with a rate of 30-40 drop/µs with sizes ranging in 

between 250 and 280 pL. Droplet volume was altered by tuning 

the values of the voltage (98-105 Volt) and electrical pulse (45-

55 µs). Images of the drop formation and droplet size were 

obtained using the printer software. The final spots were 

imaged using the Leica MZ16 stereomicroscope.  

Depending on the siRNA/oligomer ratios to be reached, the 

number of drops per spot was adjusted accordingly. The nozz le 

was washed with Milli-Q water, in between each printing cycle, 

as part of the automated printing-washing loop. The nozzle was  

programmed to dispense the siRNA solutions into the well from 

a vertical distance of circa 10-20 mm from the well-plate, no 

contact between the nozzle tip and the water surface was  

allowed.  

 

Polyplexes characterization 

The hydrodynamic diameter (DH), polydispersi ty index (PI) and 

zeta potential of polyplexes were determined on a Zetasizer 

Nano ZS (Malvern Instruments Ltd.). A NP dispersion was  

diluted in Milli-Q water at intensity in the range 104-

106 counts/s and measurements were performed at 25°C on 

90° angle. Results are reported as mean of three separate 

measurements of three different batches (n=9) ± standard 

deviation (SD). Morphology and shape of polyplexes were 

monitored through Atomic Force Microscopy (Bruke n 

Dimension Fast Scan Bio).  

SiRNA complexation was confirmed by agarose gel retardation . 

Polyplexes containing 1 µg of siRNA were loaded on 2% agarose 

gel in Tris-Acetate-EDTA (TAE) buffer and subjected to 

electrophoresis for 45 min at 70 V. SiRNA bands were stained 

with EtBr and finally visualized with an UV illuminator. 

 

Ethidium bromide displacement assay 

In this assay, Calf thymus DNA (50 μg/ml in PBS) was incubated 

with ethidium bromide (2 μg/ml) for 30 minutes . 

Thereafter, aliquots of 100 μl were mixed with 100 μl of  

polymer solutions at different concentrations. The samples  

were incubated under stirring for 30 minutes, and then the 

fluorescence intensity of DNA-Ethidium bromide complexes  

was measured at a wavelength of 590 nm using an excitation 

wavelength of 520 nm. 

 

Cell culture 

A549 lung cancer cells were obtained from the American Type 

Culture Collection, cultured at 37°C in a humidified atmospher e 

containing 5% CO2 and grown continuously in DMEM 

supplemented with 10% FBS, 100 unit/mL penicillin and 

100 g/mL streptomycin. 

 

Cell metabolic activity (viability) assay  

A549 luciferase expressing cells (2 x 104) were placed in 96-wel l  

plates and cultured in 200 μL of cell medium with or without 

FBS at 10%. After 24 h, cells were treated with free OBAEs in the 

concentration range 0.005-5 mg/mL. As control, cells were 

treated as well as with an aqueous solution of free 

Polyethylenimine (PEI) at the same concentration range. Cell s  

treated with 0.1% (v/v) Triton-X 100 and fresh media were used 

as a positive and a negative control, respectively. After 24 h of  

incubation, cells were washed with PBS and treated with 

CellTiter 96® Aqueous One Solution Cell Proliferation Assay 

(MTS, Promega) (20 μL per well). After further incubation (3 h),  

the absorbance was read at 490 nm in a microplate reader 

(Tecan Platereader). The percentage of metabolic activity (%) 

was calculated according to the equation: 

 

Cell viability (%) = [(OD sample-OD CTR+)/ (OD CTR--OD 

CTR+]x100 

 
Transfection studies 

For transfection studies, A549 luciferase expressing cells (5 x 

104) were seeded into 24-well plates and cultured in 500 μL of  

cell medium with FBS at 10%. After 24h, the culture medium 

was replaced with 0.5 mL of fresh serum-free DMEM and 

treated with siRNA/OBAE polyplexes containing 1 g of  

siRNA/well. After 4h of incubation, cells were washed three 

https://www.google.co.uk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwjc6IXA0O7OAhXsIMAKHV1OAHoQFggcMAA&url=https%3A%2F%2Fwww.promega.com%2Fproducts%2Fcell-health-and-metabolism%2Fcell-viability-assays%2Fcelltiter-96-aqueous-one-solution-cell-proliferation-assay-_mts_%2F&usg=AFQjCNGcBxk6WcogugW8q_pYY0LdUtiYJg
https://www.google.co.uk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwjc6IXA0O7OAhXsIMAKHV1OAHoQFggcMAA&url=https%3A%2F%2Fwww.promega.com%2Fproducts%2Fcell-health-and-metabolism%2Fcell-viability-assays%2Fcelltiter-96-aqueous-one-solution-cell-proliferation-assay-_mts_%2F&usg=AFQjCNGcBxk6WcogugW8q_pYY0LdUtiYJg


 

  

times with fresh medium in order to remove NPs and incubated 

again at 37°C until 48h. Finally, after transfection, luciferase 

activity was measured as RLU/mg protein using the luciferase 

assay system (Luciferase Assay System with Reporter Lysis  

Buffer, Promega) and BCA reagent (Sigma, UK).  

 

Uptake and Endolysosomal escape 

A549 luciferase expressing cells (2 x 104) were seeded in eight 

well chamber slides (Nunc, Thermo Fisher Scientific Inc., UK) 

and cultured in 300 μL of cell medium with FBS at 10%. After 

24 h, the culture medium was replaced with 0.3 mL of fresh 

serum-free DMEM and treated with 10 mg/mL of polyplexes  

formed by OBAEs and Cy3-siRNA at 10:1 polymer/siRNA weight 

ratio. After 4h of incubation, cells were washed three times with 

fresh medium without Phenol Red and treated with Lysotracke r 

Green DND-26 (Invitrogen Life Technologies , UK) containin g 

media (100nM) and then with DAPI (Invitrogen Life 

Technologies, UK) containing media (1 g/mL) for 10 minutes at 

rt in the dark according to the manufacturer's specifications . 

Live cells were finally imaged through confocal microscop y 

(Zeiss LSM 700 Confocal Laser Scanning Microscope equipped 

with Argon and HeNe lasers and a 40X/1.2 NA water objective) . 

Zen 2009 image Software was utilized for image processing. 

 

Statistical analysis  

Unless otherwise stated, all data are shown as mean ± standard 

deviation (SD), two-way analysis of variance (ANOVA) was  

applied for comparison of three or more group means (Tukey' s  

multiple comparisons test). P value of <0.05 was considered 

statistically significant. ****, ***, **, and * display p < 0.0001, 

p < 0.001, p < 0.01, and p < 0.05, respectively. GraphPad Prism 

6 software was used for data analysis. 

 

 

 

 

 

 

Results and discussion 

The initial focus for the study was to develop oligomers and 

polymers with properties suitable for rapid condensation of  

siRNA via inkjet printing and also triggered degradatio n 

properties. Accordingly, OBAEs were synthesized through 

Michael-type addition reaction between the acrylate groups of  

a disulfanediylbis (ethane-2,1-diyl ) diacrylate (DSD), and the 

terminal amino groups of ethylene-dioxy-bis-ethylamine.  

The bioreducible disulfide-containing monomer DSD was  

synthesized through reaction of dithiodiethanol with acryloyl  

chloride and its structure confirmed by 1H, 13C and 2D- NMR 

spectroscopy (Fig. S1), as previously reported27. Then, DSD was  

employed in a Aza-Michael addition reaction with the diamine 

ethylen-bioxy-bis-ethylamine, using different molar ratios of  

the starting materials (1:1, 1:1.25 and 1:1.5 DSD/ ethylene-

dioxy-bis-ethylamine ratio), thus yielding three different OBAEs  

(A, B and C, respectively). The ratios of the diacrylate and 

diamine were varied in order to modulate the final properties  

of the products. The higher diamine ratio was intended to 

produce a lower molar mass product and the 1:1 mixture the 

highest molar mass, which we anticipated would affect their 

‘printability’. 

 

 
Figure 1: Synthetic reaction of OBAEs.  

The condensation reactions were allowed to proceed for 5 days  

at 30 °C (Fig. 1). All the OBAEs synthesized were characterize d 

through 1H, 13C and 2D-NMR spectroscopy in d6-DMSO (Fig. 2,  

S2 and S3 ), Electron Spray Ionization (ESI) mass spectra (Fig. S5) 

and FT-ATR-IR spectroscopy (Fig. S6).  

The 1H-NMR spectra of the three OBAEs synthesised gave very 

similar NMR spectra (Fig. 2, S2A and S3A). In particular, the 

resonances of the protons of the methyl groups at 2.25-2.2 7 

ppm and 2.90-3.02 ppm (n. 5 and 6 respectively) confi rmed 

the presence of a secondary amine in the OBAE backbone. The 

signal of the protons of the methyl groups adjacent to the 

disulfide bond at 3.41-3.43 ppm (n. 1) demonstrated the 

integrity of the disulfide bond after the reaction with ethylene-

dioxy-bis-ethylamine. The lack of a resonance at =5.00-7.0 0 

ppm associated with the vinyl protons denoted complete 

conversion of the terminal double bonds during the Michael  

addition reaction and the presence of a peak at δ=8.27 ppm 

indicated a protonated primary amine at the chain terminus . 

However, it is possible to notice in Fig. S4 that the relative 

intensities of the signals of the proton adjacent to the di-

sulphide bond (yellow circle) and the protons in proximity of the 

newly formed secondary amine (pink circle) changes. This  

change was not proportional to the variation in feed ratio of  

ethylene-dioxy-bis-ethylamine and could be explained by 

hydrolysis of the ester bond on inter/intra molecular amidation 

reaction occurring between NH2 and ester bond in line with 13C 

and 2D-NMR spectroscopy.  
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Figure 2. Characterization of OBAE C. A) 1H NMR spectrum; B) 13C NMR spectrum 
collected for 6h; C) 1H- 1H COSY NMR spectrum and D) 1H- 13C HSQC NMR spectrum. 

Spectra recorded at 500 MHZ in d6-DMSO. 

 

Due to the intrinsic chemical similarity in terms of  

functionalities, the three OBAEs showed essential ly 

superimposable ATR-IR spectra as evidenced in figure S6. FT-

ATR-IR spectra of the OBAEs showed a broad signal at 3250 cm -

1, typical of the stretching resonance of an extended H-bonde d 

network of both secondary and primary amine groups, in 

contrast to the two sharp peaks at 3400 cm-1 and 3200 cm-1 in 

the spectrum of ethylene-dioxy- bis-ethylamine starting 

material due to primary amine functionality. The formation of a 

secondary amine was also confirmed by the shift of the N- H 

bending resonance from 1595 cm-1 to 1551 cm-1. The frequency 

of the C=O stretching band moved from 1725 cm-1 in the 

spectrum of DSD to 1643 cm-1 in the spectrum of OBAEs, as a 

result of the Michael addition reaction. Additionally, as for DSD, 

OBAEs showed a weak transition at around 670 cm -1  

characteristics of C-S stretching.  

ESI mass spectroscopy suggested molar masses ranging from 

560 Da (OBAE C, Figure S5C) to 1434 Da (OBAE B, Figure S5B) 

and 2331 Da (OBAE A, Figure S5A) for the OBAEs synthesized, as  

expected from a step growth polymerization under the 

conditions employed. GPC data were difficult to interpret, 

perhaps owing to adsorption of the oligomers to the columns  

used, and thus additional characterisation methods were 

required. The number of reactive primary amines on the OBAEs  

were determined by fluorescamine assays, and the tota l  

number of basic amines was determined by acid-base titration 

(Fig. S7). The values for the amine content of the oligomers  

were A: 0.85 mmol/g; B 1.39 mmol/g and C: 3.27 mmol/g. These 

results were in excellent agreement with fluorescamine assay 

data for OBAE C (also 3.27 mmol/g), but less well-correlated for 

A and B, most likely due to their lower overall amine content.  

Taken together, these data suggested a series of different 

materials, for which the theoretical structures derived from the 

most common fragments detected in mass spectrometry are 

shown in figure 3.  

 

Figure 3: Putative structures of the OBAEs A, B and C based on the most common  

fragments from mass spectrometry and amine titration data. 

Prior papers describing poly(beta-aminoesters ) have suggested 

structures deduced from the molar ratios of the functional  

groups of the monomers used, and have not always taken into 

account the potential formation of branches in the polymeric 

structure, even if diacrylate/diamine monomers have been 

used.28, 29 In our case, we aimed for a variety of structures , 

including possible branching, such that the oligomers might 

condense with siRNA in different architectures during the ink-

jet printing process. 

We next explored the possibility to Inkjet print the oligomers  

with siRNA. This method has been exploited for biomateria ls  

and drug discovery30 -3 2, cell based therapies33 and for screening 

amorphous solid dispersions11 but to date only a few examples  

have been demonstrated for the formulation of micro- and 

nano- drug delivery systems.34-3 6 We thus screened the 

capability of the OBAEs to condense with siRNA by ink-jet 

printing in a 96-well plate starting from aqueous stock solutions  

of polymers and siRNA at different concentrations (Fig. 4), The 

amount of siRNA used was minimised by adoption of this  

method. For example, it was possible to perform 100 different 

experiments, with nine repeats of each OBAE/siRNA polyplex 

formulation (at each explored ratio), with as little as 800 ng of  

siRNA. The use of diluted solution of siRNA (0.01 % w/v) allowed 

to work with ink formulations presenting low viscosity, close to 

the one of pure water (video as supporting data). By handl ing 

inks with such low viscosity, well-defined droplets were 

produced. Consequently, it has been simple to prevent the 

unwanted production of satellite droplets, as showed in Figure 

S9. 
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Figure 4. Schematic illustration of OBAE/siRNA polyplexes formation through ink -

jet printing technique. 

The full set of polyplexes was prepared in less than 20 min by 

adopting a fully automated loop, and with the further 

advantage of storing all the samples in the compact space of a 

single 96-wellplate.  The properties of the obtained polyplexes  

were compared with those made by conventional manual  

nanoprecipitation routes in order to confirm the potential and 

the reproducibility of this technique in the formation of drug 

delivery systems (Fig. S8A-B). Polyplexes at different 

polymer/siRNA ratios were characterized in terms of size and 

polydispersi ty index through dynamic light scattering (DLS) (Fig. 

5A). AFM analysis were also carried out, as shown for the OBAE 

C/siRNA polyplex at polymer/siRNA 10:1 weight ratio to better 

clarify the morphology, size and shape of the polyplexes. As  

evident in Fig. 5B, the OBAE/siRNA polyplexes were of spherica l  

shape with size distributions in line with DLS data (between 200 

nm and 500 nm).  
 

 

Figure 5. Characterization of OBAE/siRNApolyplexes (A) Size and polydispersity index of 

OBAE/siRNA polyplexes at different polymer/siRNA weight ratios. (B) AFM images of 

OBAE C/siRNApolyplex at polymer/siRNA 10:1 weight ratio. 

The OBAEs were found to exhibit different behaviours in terms  

of complexation with siRNA, as expected from their chemica l  

structures and charge densities. In particular, OBAE A formed 

polyplexes ranging from 600 to 1000 nm characterized by high 

polydispersi ty indexes, depending on the amount of siRNA 

condensed. In contrast, OBAE C showed the best performa nc e 

in terms of complexation, thus forming polyplexes from 200 to 

450 nm with an uniform size distribution in all the siRNA 

concentrations tested.  

The ability of the OBAEs to form complexes with siRNA was  

investigated by agarose gel retardation (Fig. 6A) and ethidium 

bromide displacement assays (Fig. 6B). For the latter 

experiment, calf thymus DNA was incubated with ethidium 

bromide for 30 min and thereafter mixed with polyplexes at 

different polymer/siRNA ratio. Ethidium bromide displacemen t 

was monitored by fluorescence spectroscopy. In addition, 

experiments were carried out to simulate the behaviour of the 

polyplexes in an intracellular reducing environme nt . 

Accordingly, polyplexes were dispersed in buffer solutions  

containing GSH (10 mM) and their size was monitore d 

throughout 2h of incubation. As apparent from Fig. 6C, a 

marked change in the median diameters of particles in solution 

from ~ 100 nm to ~ 10 nm was observed after addition of GSH, 

indicating disassembly of the polyplexes following reductive 

stimulus. 

 

Figure 6. (A) siRNA condensation by A, B and C at different polymer/siRNA weight ratios  

as evaluated by the gel retardation assay. N represents naked siRNA. (B) Ethidium 

bromide displacement assay. (C) Stability of of PBAE C/siRNApolyplex at polymer/siR N A 

10:1 weight ratios incubated in GSH 10 mM for 2h. 

The obtained results combined with the gel retention assays , 

confirmed the different condensation capabilities of OBAEs  

with siRNA, in line with their different charge densities. In 

particular, it was evident from the dye displacement and gel  

retardation assays that the siRNA binding affinity per unit mass  

of OBAEs increased from sample A to sample C, and that the 

polyplexes were disassembled in reducing environments. No 

significant difference in siRNA condensation capacity of OBAEs  

via jet printing or manual method was found (Fig. S8C). 

The biological effects of the OBAE-siRNA polyplexes were 

investigated in A549 lung cancer cells. In this study we designed 



 

 

 

disulfide- linked OBAEs of intermediate molar mass such that 

the oligomers would have sufficient charge to associate with 

siRNA during transit across cellular barriers, but also have an 

ability to depolymerise rapidly in the reducing intracellular 

environments to fragments which would have low affinity for 

siRNA and also low cytotoxicity.1 6, 37, 38 We therefore compare d 

the effects of free OBAEs on the metabolic activities of A549 

cells to those of the widely-used transfection agent branched 

PEI (25kDa) after 4 h of treatment (Fig 7A). Gene knockd o w n 

was then evaluated in an A549 cell line which constitutivel y 

expressed luciferase, using an anti-Luciferase siRNA 

(CCGCAAGAUCCGCGAGAUU) and a control siRNA with a non-

coding (scrambled) sequence. Cells were incubated for 4h with 

OBAE-siRNA polyplexes at OBAE/siRNA 10:1 weight ratio (10 

g/mL of polyplexes ) (Fig 7B). 

 

Figure 7: A) Cytotoxicity of free OBAEs and B) In vitro luciferase siRNA transfection from 

polyplexes vs free siRNA (ctr) in A549-luciferase expressing cells after 4h of incubation. 

RLU= relative light units, a measure for luciferase expression. Results are expressed as 

mean ± SD of three experiments. ****P<0.0001, ***P<0.001, **P<0.01, *P<0.05 two -

way ANOVA test. 

The A549 cells retained ~ 80% metabolic activity even when 

treated with the higher concentration of OBAEs and were 

significantly less toxic compared to PEI, which caused cell death 

at similar concentrations . As expected from the different siRNA 

binding properties of the OBAEs developed, a progress iv e 

increase in transfection efficiency was observed from oligomer 

A to oligomer C, with an overall knockdown activity of OBAE C 

greater than that of PEI at the same weight ratio (Fig. 7B),  

independently by the preparation method (Fig. S8D). The 

intracellular transport of the polyplexes was probed in 

preliminary confocal microscopy experiments using a 

fluorescent Cy™3-tagged siRNA (Figure 8). Inspection of the 

micrographs indicated that a progressive increase in siRNA 

internalization occurred ranging from oligomer A to oligomer C 

at the same concentration and time frame, in line with the  

expected trend based on the transfection results.  

 

Figure 8: Confocal images of A549-luciferase expressing cells after 4h of incubation with 10 g/mL of polyplexes. A) Uptake of OBAE/Cy3-siRNA polyplexes at 10:1 polymer/siRN A 

weight ratio. Cell nuclei were stained with DAPI (blue) and the images were acquired with 545 nm excitation and LP 560 nm spectral filters for Cy3-siRNA detection (red). a) untreated  

cells, b) naked siRNA, c) OBAE A polyplexes, d) OBAE B polyplexes, e) OBAE C polyplexes. Zen 2009 image Software was utilized  for image processing. Scale bar: 20 m. 

The successful knockdown indicated that some of the 

polyplexes were able to escape to the reducing cytosolic regions  

where oligomer breakdown enabled delivery of the siRNA. 

Based on the previously described titration curves, the buffering 

capacities of the polymers were calculated to be 17, 24 and 56% 

for OBAE A, B and C respectively. Thus it was expected that 

OBAE C might be the most effective as an endosomal buffering 

agent to exploit the ‘proton sponge’ effect. As apparent from 

Figure 9, a partial co-localization of the delivered siRNA with the 

lysosomes was found for OBAE C, suggesting that these 

complexes were initially trafficked to endolysoso m al  

compartments. The subsequent enhanced knockdown achieved 

by these complexes was indicative that the OBAE C polyplexes  

were more stable in these regions compare d to those of A and 

B, and were hence able to deliver siRNA more effectively 

following endo-lysosomal escape. 

 

Figure 9: Intracellular trafficking of OBAE C/Cy3-siRNA polyplexes at 10:1 polymer/siRNA weight ratio. a) nucleus stained with DAPI, b) Cy3 -siRNA emission (ex: 555 nm excitation, 

em: LP 560), c) Lysotracker Green DND-26 emission (ex: 488 nm, em: SP 555), d) merge. Zen 2009 image Software was utilized for image processing. Scale bar: 20 m 



 

 

The data together indicated that the lowest molar mass OBAE 

was the most effective in terms of ease of formulation via ink -

jet printing, and also in delivering siRNA to knock down the 

activity of luciferase. Based on NMR and mass spectromet r y 

data, OBAE C was identified as the adduct of 2 ethylene-dio x y-

bis-ethylamine monomers bridged by a single DSD unit, and 

would therefore have the highest number of basic amines per 

unit mass of the three OBAEs prepared. The titration data  

confirmed this assertion, and it was thus not surprising that 

OBAE C was the most effective of the candidates in siRNA 

condensation and polyplex formation. Our aim in this study was  

not to optimise the delivery systems, but to identify early in a 

synthesis/formulation cycle which, out of a pool of potentia l  

nucleic acid carriers, might be best from a printing and primary 

efficacy perspective. The fact that we were able to identi fy 

rapidly an oligo-beta-amino ester, which was as active as PEI in 

transfection but with much reduced effects on metabol ic 

activity, using this method is indicative of its promise for future 

synthesis and formulation strategies. 

 

Conclusions 

Here we have shown the synthesis and characterisation of  

redox responsive oligoaminoesters for siRNA delivery into 

cancer cells. Through an appropriate modulation of the molar 

ratio of the starting materials, we obtained 

oligoaminoesters with different structures and charge 

densities. These cationic materials were rapidly condensed with 

siRNA through a facile and versatile high-throughput inkjet 

method, thus forming polyplexes with different siRNA binding 

affinities as well as colloidal properties. The new OBAEs showed 

reduced toxicity against cancer cells compared to the standard 

comparator PEI, yet retained a comparable high efficacy for 

transfection of siRNA in A549 cells. Future work will investigate 

the in vivo activities of these promising materials. 
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