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Abstract 

Wear resistant alloys are required for deployment of pressurised water reactor primary 

circuits and in this context, the corrosion behaviour of a cast cobalt-based alloy 

following exposure for 30 days in lithiated water at 300°C was investigated. Corrosion 

of the surface was observed, resulting in the formation of a ~100 nm thick chromium 

and silicon-rich oxide. Preferential corrosion of the matrix at its interface with just one 

of the carbide types was observed to a depth of ~1 µm; for the first time this was found 

not due to any inhomogeneity in the matrix but was instead an electrochemical effect.  
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1 Introduction 

The cobalt-based alloys known as Stellites® (registered trade name of Kennametal 

Inc.) are very resistant to wear and are often the materials chosen for components 

where resistance to aggressive forms of corrosion and wear are required over a wide 

temperature, such as in valve seat hardfacings in the nuclear industry [1, 2]. These 

cobalt-based alloys are manufactured in a variety of ways such as casting, powder 

metallurgy (PM) (both with and without consolidation by hot isostatic pressing (HIP)), 

weld and laser hardfacing (using powder rod or wire consumables) and thermal 

spraying [3]. 

Stellite 3 has one of the highest carbon levels of the Stellites (2.0 - 2.4 wt.% C), and 

thus a higher carbide fraction, with the carbides constituting about 30 wt.% of the 

material; the carbides are M7C3 (chromium-rich) and M6C (tungsten-rich) types [4, 5], 

with the M7C3 and the M6C being the primary and eutectic carbides formed in the 

solidification process respectively. Due to its high carbide fraction, it exhibits high wear 

and galling resistance (even when mated with other Stellites), but also some 

brittleness [6]. An investigation into the room temperature and high temperature 

(450°C) sliding wear of various alloys showed that Stellite 3 exhibited higher wear 

resistance than Stellite 6 (1.0 - 1.2 wt.% C) at both room and elevated temperature [7]. 

The alloy examined in the current study was a similar alloy to Stellite 3, namely the 

cobalt based cast alloy WT-3® (Weartech International Ltd, UK) with a composition of 

Co - 29.31Cr - 12.55W - 2.06C (wt.%). The high tungsten content of 12.55 wt.% results 

in the precipitation of tungsten-rich carbide during alloy solidification [7].  

Stellites are widely used for components subject to both wear and corrosion in the 

primary circuit of pressurised water reactors (PWR) in the nuclear industry. The 



primary circuit generally operates at temperatures between 280°C - 320°C and a 

pressure of up to around 150 bar .The water is dosed with (amongst other things) LiOH 

to keep the conditions alkaline throughout so that general corrosion and the 

transportation of corrosion products are minimized [1]. Most of the research 

concerning the wear and corrosion behaviour of Stellites in PWR conditions has 

focused on Stellite 6 with much less in the literature relating to Stellite 3. The research 

indicates that the high corrosion resistance of Stellite 6 in reactor environments is 

mainly due to the high chromium content of the alloy, which results in the formation of 

an oxide film with an enhanced chromium concentration [1]. When cast Stellite 6 was 

subjected to corrosion testing in high temperature, high pressure water replicating 

PWR conditions, x-ray photoelectron spectroscopy (XPS) revealed that the oxide layer 

formed was enriched in chromium and depleted in cobalt when compared to the matrix 

composition, indicating a preferential dissolution of cobalt at the oxide - solution 

interface [8]. It was argued that this is consistent with the significant solubility of cobalt 

and negligible solubility of chromium in these conditions. The formation and growth of 

oxide films in Stellite 6 in lithiated and borated high temperature water under reducing 

conditions has been attributed to a solid-state diffusion process due to the replacement 

of cobalt (outward diffusion) by oxygen (inward migration). Nevertheless, in the initial 

stages of oxidation before the formation of the protective oxide layer, the controlling 

factors are the kinetic reactions at the solution-surface interface [9-11]. Corrosion of 

UNS R30006 (similar to Stellite 6) in deaerated, pH-adjusted water revealed that the 

primary oxide phase composition of the surfaces was CoCr2O4; some corrosion films 

were observed to have a high cobalt content on their outermost surface indicating that 

there may be an outer film of CoFe2O4 or CoO. The corrosion films were thinner on 

the chromium-rich carbide phase than they were on the cobalt-rich matrix except 



where the carbide boundaries intersected the surface. Here, corrosion was observed 

to penetrate down and around the carbides and it was argued that this occurred due 

to chromium-depletion in the matrix material adjacent to the chromium-rich carbides, 

this depletion being associated with their precipitation [12]; however, it should be noted 

that no direct evidence of the chromium depletion in the matrix was presented.  

Despite the use of Stellite 3 (or analogues) in PWR primary circuit components, there 

is a lack of detailed research in the published literature which examines the corrosion 

behaviour of these materials under such conditions. Accordingly, the present study 

seeks to examine the corrosion behaviour of WT-3® in lithiated high temperature water 

with a focus on understanding the preferential corrosion reported in the literature by 

earlier workers. 

2 Experimental procedure 

2.1 Materials 

The alloy used for this study was a cast cobalt-based alloy WT-3 (Weartech 

International Ltd, UK). The samples were discs of 60 mm diameter and a thickness of 

3 mm, machined from a 100 mm long bar. Table 1 shows the chemical composition of 

the alloy measured by optical emission spectroscopy provided by the manufacturer. 

The WT-3 disc samples were as wet ground sequentially using silicon carbide papers, 

with the final size employed being 1200 grit. After grinding, the samples were polished 

using 6 μm and 1 μm diamond abrasive pastes. 

2.2 Pre-& post autoclave exposure 

To investigate the corrosion mechanism of WT-3® in conditions replicating PWR 

environments, samples were exposed to hydrothermal conditions for 30 days in an 



autoclave with a volume of 1.22 litres, the vessel being constructed of 316 stainless 

steel. The samples were sat on stainless steel mesh shelves and immersed in a 

solution of lithiated water (LiOH 8.5 mg / kg) with an initial pH of 10.5. The test 

conditions were a temperature of 300°C and a pressure of 90 bar. After filling the 

vessel with the lithiated water and placing the samples and jigging into the vessel, the 

solution was deoxygenated by bubbling through for 90 minutes with oxygen-free 

nitrogen before valves were finally closed off; the residual oxygen in the solution was 

3.06 ppm, measured to be with a Thermoscientific Orion Star A329 Portable meter. 

The autoclave was heated via an external electrical band heater to a temperature of 

300°C (measured via a thermowell) and held at this temperature for 30 days 

whereupon the heater was turned off and the vessel and contents were allowed to 

cool naturally.  

2.3 Sample characterization 

2.3.1 Optical microscopy 

Optical microscopy was performed with a NIKON UFX optical microscope. To enable 

the identification of the same regions of the microstructure before and after exposure, 

an indent was made on the sample using a macrohardness indenter to act as an 

identifiable marker. 

2.3.2 SEM 

Scanning electron microscopy (SEM) with energy dispersive X-ray analysis (EDX) was 

used for a detailed analysis of the microstructure. A JEOL 6490LV SEM was used at 

20kV for back scattered electron (BSE) imaging; EDX point and linescan analyses 

were carried out to identify the chemical composition. 



2.3.3 TEM 

Focused ion beam milling (FIB) was performed using an FEI Quanta 3D FIB-SEM. FIB 

sections were taken across the interfaces between both the Co-rich matrix and M7C3 

and the Co-rich matrix and M12C. FIB milling yielded thin foils with dimensions of ~ 9 

μm by 5 μm and a thickness of around 100 nm. The thin foil lift-outs were transferred 

to JEOL 2100 TEM for STEM analysis. EDX linescans were used to measure the 

compositional profiles across interfaces of interest, whilst EDX mapping (with area 

quantification where appropriate) was also performed to allow the elemental 

distribution of the different elements in the thin foil to be observed. 

2.3.4 X-ray diffraction 

X-ray diffraction (XRD) was used to characterize the phases in the WT-3 sample both 

before and after autoclave exposure. XRD analysis was undertaken using a Siemens 

D500 diffractometer equipped with DACO-MP X-ray diffractometer which was 

operated at 40 kV and 25 mA to generate Cu Kα radiation at a wavelength of 1.540 Å. 

The system was used in Bragg Brentano geometry, with a step size of 0.05° and a 

step time of 4 seconds for a range of 2θ of 30-100°. Peak identification was done using 

Eva software using the PDF database from the International Centre for Diffraction 

data. 

2.3.5 Atomic force microscopy 

An Asylum Research (California, USA) MFP-3D atomic force microscope was used in 

contact mode to collect both height maps and electrical conductance maps of a 

polished surface of an as-received WT-3 sample. In conductive atomic force 

microscopy (cAFM), current passes through a sample via a conductive AFM tip. A 

current map of the sample surface was obtained under negative bias conditions. By 



mapping topography and current on a surface at the same time, cAFM facilitated the 

qualitative measurement of the electrical conductivity of the three main microstructural 

constituents of WT-3.  

3 Results  

3.1 Microstructure and phase analysis 

Figure 1 shows a BSE image of the cast microstructure of the unexposed WT-3. The 

hypereutectic microstructure consists of a Cr-rich carbide phase (dark) and a W-rich 

carbide phase (bright) dispersed in a Co-rich matrix (mid-grey). Table 2 provides EDX 

analysis which shows the proportion of the main metallic elements present in each of 

these three phases (carbon is not included in the analysis). In accordance with 

previous research on an analogue alloy (Stellite 3), the XRD spectrum in Figure 2 

confirms that the Cr-rich carbide phase has the Cr7C3-type structure [7], with the data 

in Table 2 indicating that the metallic element in this carbide is mainly chromium with 

a small amount of cobalt. Figure 2 indicates that the W-rich carbide phase has the 

Co6W6C structure, with the data in Table 2 indicating that tungsten, cobalt and 

chromium take the metallic sites in approximately equal proportions. The Co-rich 

matrix phase was shown to be a mixture of both f.c.c and h.c.p. structures (Figure 2) 

with a composition dominated by cobalt and chromium (Table 2). Also, it can be seen 

that no additional phases were found in the XRD spectrum after autoclave exposure 

of WT-3 (Figure 2), indicating that any corrosion products formed were too thin to be 

detected. 

3.2 Corrosion testing 

Figure 3a & b are optical microscope images of the same region on a WT-3 sample 

before and after autoclave exposure for 30 days at 300°C. Figure 3b shows there was 



a change in colour in the different phases; these colour changes are due to 

interference effects (similar to those observed in heat tinting) [13] and indicate that 

oxides of different thicknesses have formed on the different phases, suggesting a 

difference in the propensity for the three phases to corrode. Both the Cr-rich carbides 

and the W-rich carbides had a blue colouration whilst the majority of the Co-rich matrix 

had a yellow-golden colour. In austenitic stainless steels oxides of different film 

thickness exhibit different colours, with yellow colours indicating thicknesses up to 75 

nm and blues indicating thicknesses in the range 100 – 175 nm [14]. Figures 3c & d 

show BSE images of the same surface region before and after autoclave exposure 

respectively, with Figure 4 presenting EDX elements maps for chromium, cobalt, 

tungsten and oxygen for the same region following autoclave exposure (corresponding 

to Figure 3d). In Figure 3d, a dark boundary layer was observed to have formed at the 

boundary between the Cr-rich carbide phase and the Co-rich matrix phase, but not at 

the boundary between the W-rich carbide and the Co-rich matrix, nor at the boundary 

between the Cr-rich carbide and the W-rich carbide. This boundary layer was 

confirmed to be oxygen-rich by EDX mapping (Figure 4d), indicating preferential 

oxidation between the Cr-rich carbide phase and the Co-rich matrix phase. Some 

morphological differences to the structure following autoclave exposure can also be 

seen on comparing Figures 3c & d, indicating that there has also been general surface 

corrosion due to the autoclave exposure. Specifically, there has been loss of matrix 

phase (with an example highlighted in Figure 3d) with these regions leaving behind a 

residual oxide (as seen in Figure 4d); also, it can be seen that the morphology of the 

W-rich carbide phase has changed, indicating a general recession of this carbide 

phase which has exposed underlying regions of matrix phase. 



Figure 5 shows a bright field STEM image of a FIB-milled TEM foil of a cross-section 

through the interface region between a Cr-rich carbide phase and the Co-rich matrix 

phase following autoclave exposure, showing the penetration of the interfacial oxide 

to a distance of just less than 1 µm below the surface. Morphologically, the shape of 

the oxide suggests that the oxide is being formed from the Co-rich matrix phase since 

the edge of Cr-rich carbide phase itself does not appear to have been altered by the 

formation of the interfacial oxide. The corresponding EDX maps are shown in Figures 

5b – g for a number of selected elements, giving an indication of their distribution 

across the three phases identified (the platinum map in Figure 5g is presented to 

indicate the position of the platinum layer that was deposited for protection against 

sputtering during preparation of the FIB sample). The elemental maps indicate that the 

interfacial oxide is Cr-rich (Figure 5c), iron-rich (Figure 5d) and oxygen-rich (Figure 

5e) but is depleted in the other metallic elements that were present in the Co-rich 

matrix, most notably cobalt (Figure 5b). The top surface oxide was also found to be 

Cr-rich (Figure 5c), iron-rich (Figure 5d) and oxygen-rich (Figure 5e), but was also Si-

rich (Figure 5f); it should be noted that this enhanced silicon level was not observed in 

the interfacial oxide. Figure 6 shows the STEM image again with regions and lines 

marked from which EDX data (excluding carbon) have been analysed. The data (atom 

fraction) from the five area regions are presented in Table 3; the interfacial oxide 

contains just over 50 at.% oxygen, with approximately half of the metallic fraction being 

chromium but also with significant amounts of iron and cobalt. The interfacial oxide is 

similar to the oxide on top of the Co-rich matrix, except that the latter contains a much 

higher fraction of silicon. Figure 5a indicates that the oxide that has grown on the Co-

rich matrix is thicker than that which has grown on the Cr-rich carbide, with the 

compositions (Table 3) indicating that different types of surface oxides may have 



formed on the Co-rich matrix and the Cr-rich carbide, with the latter exhibiting much 

higher chromium levels.  

Figure 7 & 8 presents EDX line scans (normalised across the metallic elements 

indicated) taken from the TEM-foil along the two lines shown in Figure 6, one of which 

crosses the boundary across the interfacial oxide (Figure 7) whilst the other crosses 

the boundary in a region where no oxidation has taken place (Figure 8). In the 

interfacial oxide (approximately 0.15 - 0.61 μm from the start of the scan line in Figure 

7), the Cr made up approximately 60 at. % of the metallic elements, with Fe and Co 

making up 20 at.% and 15 at.% of the metallic fraction respectively. In Figure 8 where 

the EDX line scan crosses the interface between the Cr-rich carbide phase and Co-

rich matrix phase in a region without corrosion, it can be seen that there is no 

enrichment or depletion of any metallic elements in either of the phases in the region 

close to the interface.  

To determine the type of oxide formed, further milling of an autoclave-exposed Co-rich 

matrix – Cr-rich carbide interface cross-sectional sample was performed to obtain a 

very thin foil of ~100nm thickness suitable for selected area diffraction in the TEM. The 

milling resulted in loss of certain areas of the sample (including the surface), but a 

region which contained a small amount of the interfacial oxide was preserved. Figure 

9a shows the high-resolution STEM image of the region examined, with Figure 9b 

showing the oxygen EDX map of the sample, with the interfacial oxide being indicated 

by the region of highest oxygen concentration. Table 4 shows the chemical 

composition of this fragment of interfacial oxide measured by EDX analysis, which 

indicates a similar composition to that presented in Table 3. To determine the crystal 

structure of the oxide, a selected area diffraction pattern was taken from within the 

oxide region. Figure 9c shows the selected area diffraction pattern from the oxide 



which exhibits a ring structure (indicating a very fine-grained oxide) with the rings being 

indexable to the M3O4 crystal structure. Three rings have been indexed as indicated 

in Table 5, yielding a lattice parameter of 8.584 nm; this compares favourably with the 

lattice parameter for CoCr2O4 of 8.364 nm (JCPDS file number 00-022-1084)[15], with 

this basic composition being a reasonable match to the Co : Cr ratio indicated by the 

EDX analyses (Tables 3 and 4). The calculated lattice parameter is slightly larger than 

that of the pure CoCr2O4 spinel due to the presence of other elements in the spinel 

[12].  

The BSE-SEM image of the surface following autoclave exposure (Figure 3d) along 

with the associated EDX mapping (Figure 4d) indicated that there was no preferential 

oxidation at the interface between the W-rich carbide phase and the Co-rich matrix 

phase. This interface was therefore characterized via TEM following milling of a foil ~ 

370 nm thick across this interfacial section. Figure 10a is the dark field STEM image 

of the cross-section across the two phases. Figures 10b - h show the EDX maps of 

the elements as indicated. The EDX Cr map (Figure 10c) indicates that there were 

some localised areas at the boundary that had a high chromium concentration, 

although this was not observed throughout the whole interface between the W-rich 

carbide phase and the Co-rich matrix phase. Figure 11 shows the STEM image, again 

with regions and lines marked from which EDX data (excluding carbon) have been 

analysed. The data (atom fraction) from the two area regions are presented in Table 

6 whilst Figure 12 presents the EDX line scan (normalised across the metallic 

elements indicated only) taken from the TEM-foil along the line shown in Figure 11; 

again, no clear preferential enhancement or depletion of any elements are seen in 

either the Co-rich matrix or in the W-rich carbide close to the interface. 



In order to give an indication as to whether the preferential interfacial corrosion had 

any electrochemical nature to it, conductive atomic force microscopy (cAFM) was 

conducted on a polished region of an unexposed sample which contained the three 

phases, so that their electrical conductivity could be qualitatively compared. Figure 

13a shows an optical image of the region where the cAFM was conducted, with 

Figures 13b & c showing the height (profile) map and current map respectively. Figure 

13d shows a BSE-SEM image of the same area, which allows the nature of the three 

phases to be readily identified as before.  

The height differences following polishing of a flat surface give some indication of the 

tendency to resist polishing (and therefore some indication of the relative wear 

resistance of each of the three phases). Comparison of Figure 13b and Figure 13d 

shows that there is good correlation between the height map and the microstructure; 

the high points in the profile are related to the Cr-rich carbide, with the W-rich carbide 

generally being at intermediate height and the Co-rich matrix generally exhibiting the 

lowest points in the profile map. This gives some qualitative indication that the Cr-rich 

carbide is the most wear resistant of the three phases, with the matrix exhibiting the 

lowest wear resistance.  

For current mapping in the AFM imaging, a negative bias was used to collect the 

current to avoid local anodic oxidation of the tip. The current map in Figure 13c shows 

that the material allowed different currents to be conducted at various points across 

the map, and comparison with Figure 13d indicates that this correlates well with the 

microstructural makeup; the highest current flowed in the Co-rich matrix, followed by 

that in W-rich carbide phase with the lowest current being carried in the Cr-rich carbide 

phase. However, the cAFM data does indicate significant conductivity of both carbide 

types, which may lead to electrochemically enhanced corrosion.  



4 Discussion 

The major phase in WT-3 is the Co-rich matrix phase (both f.c.c and h.c.p), with f.c.c 

being the main phase as indicated by the XRD spectrum in Figure 2 where the peak 

with the highest intensity was the cobalt f.c.c peak at 51°. In most cases, cobalt-based 

solid solutions exist in a metastable f.c.c. form at room temperature unless they have 

been subjected to mechanical deformation [16]. During the solidification of Stellites, 

large quantities of carbides form in the microstructures; cast samples have larger 

matrix areas between the carbide dendrites that are unprotected by the harder 

carbides, which have a coarse size (coarse carbide size of 5 – 20 µm). The large 

carbide size in the cast WT-3 indicates slow cooling of the casts. Image analysis of 

the cast WT-3 (using ImageJ) indicates that it has approximately 26 vol% of carbides 

(Cr-rich carbides & W-rich carbides together).  

After autoclave exposure, optical microscopy revealed that both carbide types 

exhibited a blue colour whilst the Co-rich matrix exhibited a golden yellow colouration 

(a similar colouration of the Co-rich matrix phase was seen in a similar test on the 

corrosion of wrought Stellite 6 [11]). This colouration indicates that the corrosion films 

are very thin, but that the film formed on the carbides are thicker than that formed on 

the Co-rich matrix. This is in contrast to the data from the STEM imaging (Figures 5a 

& 6) where the oxide on the carbide appears thinner than the oxide on the Co-rich 

matrix. The general recession of the M7C3 and the M12C indicated by comparison of 

Figure 3c and Figure 3d give clear indication that the carbides themselves are 

corroding, along with the Co-rich matrix. From Figure 5c, the surface of the cobalt-

matrix seems to have receded more than the surface of the carbide, although it is 

recognised that the differential heights may have existed before the corrosion testing 



(see Figure 13b). The recession of the surface occurred by general corrosion causing 

the loss of the Co-rich matrix phase by the selective dissolution of cobalt leaving 

behind an oxide film. 

Alongside this general corrosion, enhanced corrosion was seen at the interface 

between the Cr-rich carbide (M7C3-type) and the Co-rich matrix. This oxide has been 

shown to have penetrated to a depth of about 1 µm below the surface following the 30 

days autoclave exposure, and has been shown to be a spinel of the CoCr2O4-type (i.e. 

a chromite). It is also notable that this interfacial oxide occurs only at interfaces of this 

type, and not at the other interfaces. The chromite could be formed by the reaction 

between cobalt oxide and chromium oxide according to the reaction below.   

𝐶𝑜𝑂 + 𝐶𝑟2𝑂3 → 𝐶𝑜𝐶𝑟2𝑂4 [17] 

It is proposed that the interfacial oxide forms from corrosion of the Co-rich matrix in 

this region (as opposed to being a corrosion product of the carbide itself). The relative 

proportions of just the metallic elements in both the Co-rich matrix and the interfacial 

oxide are shown in the EDX line scan in Figure 7; it can be seen that (compared to the 

matrix material from which it is derived), the interfacial oxide has significantly 

enhanced levels of chromium and iron, with cobalt being significantly reduced. The 

reduction in the fraction of cobalt amongst the metals in the interfacial oxide indicates 

that there was preferential dissolution of cobalt from the Co-rich matrix with loss of 

cobalt ions to the lithiated water solution. Similar selective dissolution of cobalt from 

cobalt – chromium alloys has been previously observed under neutral or acidic 

aqueous conditions [9]. In addition, it has been shown that cobalt is considerably more 

soluble than chromium in lithiated high temperature water under reducing conditions 

[11]. The reasons for the increase of the iron content in the interfacial oxide is less 

easy to explain, but it is noted that the autoclave itself and the shelf furniture within it 



are constructed of stainless steel, and the oxide may have been in part affected by 

deposition from solution.  

When a similar preferential oxide formation between M7C3 and the Co-rich matrix has 

been observed previously in Stellite 6 [12, 18], it has been assumed (without any direct 

evidence) that this was due to chromium depletion in the matrix in the vicinity of the 

Cr-rich carbide which then led to preferential corrosion in this area (similar to the 

sensitization effect that is observed in stainless steels). However, it has been shown 

in this work that no region of depleted chromium exists in the Co-rich matrix close to 

the Cr-rich carbide (Figure 8). Alongside this preferential corrosion at the M7C3-matrix 

boundary, it is noted that there is no preferential corrosion of the matrix at the M12C-

matrix boundary. In a similar way to the boundary between the matrix and the M7C3, 

no significant enhancement or depletion of any elements are observed in the matrix 

close to the M12C boundary (Figure 12). As such, it is concluded that the enhanced 

corrosion in the matrix close at the boundary with the M7C3 is not driven by changes 

in the alloy makeup, and therefore it is proposed that the main alternative is that this 

is an electrochemical effect.  

For an electrochemical effect, the phases in question need to be electrically 

conducting. The literature indicates that the Co-rich matrix phase has an electrical 

conductivity of 17.9 MS m-1[19] with the electrical conductivity of Cr7C3 also being 

relatively high, being around only a twentieth that of the metallic matrix itself (0.91 MS 

m-1) [20]. Although no data relating to the electrical conductivity of the M12C was 

available in the literature, Figure 13c qualitatively indicates that the M12C has an 

electrical conductivity somewhere between that of the Co-rich matrix and the Cr-rich 

M7C3. It is therefore proposed all the phases in the system have electrical 

conductivities which would support electrochemical effects.  



In considering the behaviour of Stellite 6 in a chloride containing environment, it has 

been argued that the carbides (M23C6 and M7C3) are more noble than the metallic 

matrix, and thus can promote breakdown of the normal passive form and result in 

corrosion [2]. It is argued in the current work that this breakdown is promoted by the 

M7C3-type carbide, but not by the M12C-type carbide, and that this is due to the 

differences in the potential of the two carbide types. Literature values of the standard 

Gibbs free energy of formation of the two types of carbides:M12C-type carbide is Δ°G= 

-130kJ mol-1 at 1150°C [21] and the M7C3-type carbide is Δ°G= -226kJ mol-1 at 1127°C 

[22]. Comparing the literature values of the standard Gibbs free energy of the M12C-

type carbide and the M7C3-type carbide, the latter has a more negative Gibbs free 

energy, therefore set up a greater potential than the M12C-type carbide against the Co-

rich matrix. The higher electrical potential between the M7C3-type carbide against the 

Co-rich matrix enhanced the electrochemical corrosion between these two phases.  

5 Conclusion 

General surface corrosion led to loss of the Co-rich matrix phase by the selective 

dissolution of cobalt leaving behind an oxide film and there was also general recession 

of the W-rich carbide phase which revealed the underlying regions of the matrix phase. 

A thin oxide film was formed on the surface which was non-detectable by XRD. A 

thicker oxide film was observed over the Co-rich matrix compared to the Cr-rich 

carbide. 

There was interfacial corrosion between the Cr-rich carbide phase and the Co-rich 

matrix. The preferential oxide observed between the M7C3 and the Co-rich matrix is 

due to an electrochemical effect. All the phases are electrically conductive, and the 

AFM current mapping showed decreasing order of Co-rich matrix, W-rich carbide and 



Cr-rich carbide. No interfacial corrosion was found between the Co-rich matrix and 

carbides which are rich in either Cr, W or Cr. 
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