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Abstract12

Understanding of pore-scale physics for multiphase flow in porous media
is essential for accurate description of various flow phenomena. In particular,
capillarity and wettability strongly influence capillary pressure-saturation
and relative permeability relationships. Wettability is quantified by the con-
tact angle of the fluid-fluid interface at the pore walls. In this work we focus
on the non-trivial interface equilibria in presence of non-neutral wetting and
complex geometries. We quantify the accuracy of a volume-of-fluid (VOF)
formulation, implemented in a popular open-source computational fluid dy-
namics code, compared with a new formulation of a level set (LS) method,
specifically developed for quasi-static capillarity-dominated displacement.
The methods are tested in rhomboidal packings of spheres for a range of
contact angles and for different rhomboidal configurations and the accu-
racy is evaluated against the semi-analytical solutions obtained by Mason
and Morrow (1994). While the VOF method is implemented in a general
purpose code that solves the full Navier-Stokes (NS) dynamics in a finite
volume formulation, with additional terms to model surface tension, the LS
method is optimised for the quasi-static case and, therefore, less compu-
tationally expensive. To overcome the shortcomings of the finite volume
NS-VOF system for low capillary number flows, and its computational cost,
we introduce an overdamped dynamics and a local time stepping to speed
up the convergence to the steady state, for every given imposed pressure
gradient (and therefore saturation condition). Despite these modifications,
the methods fundamentally differ in the way they capture the interface, as
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well as in the number of equations solved and in the way the mean curvature
(or equivalently capillary pressure) is computed. This study is intended to
provide a rigorous validation study and gives important indications on the
errors committed by these methods in solving more complex geometry and
dynamics, where usually many sources of errors are interplaying.
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1. Introduction13

In this work, we focus on the displacement of two immiscible phases in14

the subsurface, under variable wettability conditions, for example, in the15

context of movement of oil and water in hydrocarbon reservoirs, or water16

and non-aqueous phase liquids (NAPL) in soil. Wettability, as quantified by17

the contact angles, influences oil and gas recovery processes like waterflood-18

ing [1, 2] and other subsurface flow fields like carbon sequestration [3, 4],19

pollutant migration and remediation processes in subsurface, transport of20

dissolved minerals, colloids or contaminants, in dissolution and precipitation21

processes, modeling of groundwater aquifers and so on [5].22

Wettability is affected by rock mineralogy, organic deposits like bitumen,23

and surface roughness of the rocks [1]. Given the complexity of capturing24

this in a real rock, all modeling studies resort to simplifications. Field scale25

simulators use averaged flow equations like Darcy’s law in combination with26

mass conservation to model flow. In these simulators, wettability is incorpo-27

rated into a J-function, which relates the capillary pressure and saturation28

in a given porous medium [6, 7, 8]. The J-function is an empirical relation-29

ship whose parameters are fit to experiments, and is therefore only indirectly30

related to the actual contact angle at the pore scale. As such, it is difficult31

to relate spatial and temporal wettability changes in the porous medium to32

the final J-function for the representative elementary volume (REV). For a33

more detailed study, one can focus on a much smaller system - modeling34

flow in individual rock pores. These pore scale studies can be performed on35

two or three dimensional images of small rock samples. Upon obtaining the36

detailed pore structure of a rock via techniques such as X-ray microtomog-37

raphy [9], there are multiple approaches for simulating flow (for a review see38

Meakin and Tartakovsky [10]). There exist two broad categories of methods:39

direct simulation on the pore image, or simplifying the image into a network40

of simplified pores (openings) and throats (tight spots). The latter speeds41

up simulations due to analytical solutions for flux through each throat [11],42

allowing simulations over larger volumes than those used in direct simula-43

tion. There is a lot of network modeling work for wettability problems [11],44

but that is outside the scope of this work.45

For direct simulations, the most popular methods are Navier-Stokes46

based solvers [5]. Here, the full Navier-Stokes equations are solved in the47

pore space with an additional equation for the interface and additional terms48

to model surface tension forces. They are based on discretizing the flow do-49

main into a computational grid. The finite-volume discretization can handle50

very complex computational grids (e.g., with arbitrary shaped cells, and lo-51
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cal or adaptive refinements), but building the grids can be considered a52

delicate separate modeling step that requires accurate validation [12]. This,53

together with their direct applicability on voxelized rock microstructure im-54

ages, is the reason why simpler uniform Cartesian grids have gained popu-55

larity. These are generally less accurate due to the poor representation of56

the curved boundaries and the absence of local refinements. However they57

can have important advantages in data storage and parallelization. The lat-58

tice Boltzmann method, for example, is based on such a discretization [5].59

One of the problems associated with the direct simulation of pore images60

is the intrinsic difficulty in a robust validation, which is able to distinguish61

between the several sources of errors and uncertainties associated with the62

image pre-processing, sample size, geometry and equation discretization [13].63

This is an important reason to further develop benchmark and validation64

studies for geometries described analytically, like the one proposed in this65

work. Despite these challenges, pore scale simulation enables improvements66

of macroscopic models by taking into account different factors like topology67

of the medium, heterogeneities, and changes in wettability.68

In multiphase flow pore scale simulations, the interface represents a mov-69

ing discontinuity in the domain and is difficult to handle numerically. In70

this paper, we consider two techniques for modeling interface movement:71

a variational formulation of the level set method [14], and the volume of72

fluid method, implemented in the interFoam solver, slightly modified start-73

ing from the version released within OpenFOAM 2.3.0. The level set method74

was first proposed by Osher and Sethian in their seminal work [15]. The75

method has since been applied for a wide variety of applications: from image-76

processing and modeling flames to multiphase flows, and was introduced to77

model quasi-equilibrium fluid/fluid interface movement in porous media by78

Prodanović and Bryant [16]. The method was used for simulating drainage79

and imbibition in a porous medium of arbitrary geometry, when the con-80

tact angle is zero. By defining the location and propagation of the interface81

in an implicit manner, the level set method automatically handles opera-82

tions such as interface splitting and merging. This is particularly useful for83

tracking movement of an interface in a porous medium where phenomena84

like snap-off and trapping often take place. Doing this using an explicitly85

defined interface, such as by front tracking, would be generally more time86

consuming, due to interface complexity in the pore space [17]. The level87

set method has already been widely used for two-phase flow applications for88

incompressible fluid flow [18]. Zhao et al. [19] proposed a variational ap-89

proach for problems involving solid and fluid domains with different surface90

and bulk energies. The level set method can also be extended for modeling91
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flow of more than two phases, for example by representing each interface92

by its own level set function [20]. Level set methods suffer from mass loss,93

especially in underresolved regions. Enright et al. [21] addressed it using a94

modification called the particle level set method. For further details about95

the level set method we refer to the textbooks by Osher and Sethian on the96

topic [22, 23].97

The other technique we are using is a classical fluid dynamics solver com-98

bined with a volume of fluid (VOF) method [24] for interface propagation.99

At its core, VOF is similar to level set techniques. The original geometric100

version of VOF uses explicit reconstruction of the interface in each cell (e.g.,101

the so-called Piecewise-Linear Interface Calculation (PLIC) VOF), while the102

algebraic version implemented in the open-source code OpenFOAM is, in our103

opinion, preferable when complex meshes with arbitrary shaped cells are un-104

avoidable. This method has been recently used for pore-scale simulations105

by many authors [25, 26, 27, 28, 29]. The main limitation of this imple-106

mentation is the appearance of “parasitic” (or “spurious”) currents that can107

significantly affect the accuracy near the interface. These unphysical veloc-108

ity oscillations typically scale as the inverse of the capillary number (ratio109

of viscous to capillary forces) and cannot be removed by refining the mesh.110

They are caused by the continuous representation of surface tension forces,111

across the discontinuity represented by the interface.112

Some earlier works have focused on comparison of the level set method’s113

accuracy with respect to the volume of fluid method in classical two-phase114

flow benchmarks. For example, Sussman and Puckett (2000) [30] compared115

the two methods, and proposed a coupled level set and volume of fluid116

method. A later validation work was done by Gerlach et al. (2006) [31],117

who studied an equilibrium rod, a capillary wave and the Rayleigh-Taylor in-118

stability to compare three different volume of fluid formulations. Some other119

authors have commented on the accuracy of the volume of fluid method for120

capturing curvatures ([22]), which are independent of the capillary number121

effects, but the volume of fluid method has also evolved since then, and122

contemporary validation exercises have not been carried out. A more recent123

validation effort was by Rabbani et al. [32], who calculated drainage cur-124

vatures using the volume of fluid method in simple, constant cross section125

geometries of the type used in pore network models. However, they did126

not report on any parasitic currents which typically appear for low capillary127

number flows.128

The objective of this work is to perform a validation study in capil-129

lary dominated slow displacement (where the interface can be considered130

in equilibrium) under uniform wettability conditions in geometries where131
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either analytical solutions or reliable experimental data is available. We132

consider the semi-analytical solutions in simple 3D geometries formed by133

different sphere arrangements by Mason and Morrow [33]. These analytical134

solutions, derived from further geometrical simplifications, were proven to135

be very accurate for a wide range of contact angles and geometrical parame-136

ters, through validation against experimental curvature measurements. We137

note that when Jettestuen et al. first proposed the variational formulation138

for contact angles, they did carry out a validation exercise. However, they139

only did it for either 2D cases, or for 3D cases of constant cross-section. We140

demonstrate that the formulation needs an additional modification in order141

to get good results for 3D geometries of non-uniform cross-sections. This142

simple, yet three-dimensional, set of pore geometries are ideal for validation143

of numerical methods. A large amount of experimental work exists using144

micromodels [34], X-ray computed microtomography [35, 9] and on the lab145

scale [36, 37, 38]. X-ray tomography allows for direct imaging of fluid distri-146

butions in more complex geometries, including finding local contact angles147

([39, 40, 41]), in 3D. However, the experiments are non-trivial and flow field,148

contact angles and correct curvatures in tighter pore spaces are still difficult149

to map, which makes inter-comparison with simulation challenging. Our150

work here is a step in that direction.151

We present here results for two commonly used approaches, namely an152

equilibrium level set formulation, and a full Navier-Stokes model with al-153

gebraic VOF method. The latter, despite being designed for more gen-154

eral dynamic calculations, is here modified to be able to compute efficiently155

the steady state (equilibrium) through an over-damped pseudo-time step-156

ping. This is, to the authors’ knowledge, the first attempt to validate these157

two interface tracking methods with analytical results in an asymmetric,158

converging-diverging geometry, typical in realistic porous media. The re-159

sults can help assess the accuracy and usability of these methods for more160

complex problems or random wettability patterns, and for upscaling capil-161

lary pressure models in Darcy-scale equations. The critical curvatures for162

drainage obtained by these models can also serve as input for drainage in163

throats in pore network models.164

There are some other works based on the lattice Boltzmann method,165

which incorporate uniform and mixed wettability for predicting relative per-166

meability in porous media [42, 43]. However, they do not make attempts167

to validate small-scale multiphase displacements in a converging-diverging168

porous media geometry. Validation is usually done using a drop on flat169

surface, or a straight duct [44].170
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2. Methods171

2.1. The level set method, with imposition of contact angle172

The method introduced by Prodanovic̀ and Bryant [16] models displace-173

ment of immiscible fluids with zero contact angles in arbitrarily complex174

geometries. It is based on the following level set evolution equation:175

∂tφ+ (a− bκ)|∇φ|+ ~V · ∇φ = 0 (1)

The level set function φ is defined at each grid point throughout the176

domain of interest as the distance from the wetting/non-wetting fluid in-177

terface, which is the zero level set. The level set function φ is defined such178

that it is positive “outside”, or on the side on convexity, and negative on179

the concave side. For instance, in a two-phase porous media formulation,180

φ > 0 could denote the wetting phase, and φ < 0 denotes the non-wetting181

phase and solid grain together (the choice of sign is, of course, arbitrary).182

As the interface advances, the φ function is updated throughout the do-183

main according to the level set equation. Defining the interface implicitly184

means that changes in the topology of the fluid phases, such as snap-off and185

merging of fluid menisci, are handled automatically.186

Equation (1) governs the evolution of the function φ in space while im-187

posing interface speed. The term a is the speed of the interface normal to188

itself - it can be viewed as a pressure-like term. The curvature-dependent189

term bκ acts opposite to the imposed normal speed a. b determines how190

strong the effect of curvature is - it is an interfacial tension-like term, and191

is always positive for stability of the numerical method. ~V represents the192

external advective field. The pore-grain boundary is defined by a separate193

level set function ψ, such that the boundary is where ψ = 0.194

Based on Equation (1), Jettestuen et al. [14] proposed a variational195

approach to model contact angles in porous media. In their formulation,196

in the main pore space, the sum a − bκ represents the difference between197

imposed capillary pressure and the surface tension force (reproducing the198

Young-Laplace equation), while near the boundaries, a, b and ~V are modified199

to impose contact angles. We adopt their approach to get the following200

modified level set equation:201

φt + {H(−ψ)κ0 − S(ψ)H(ψ)Ccosβ|∇ψ|}|∇φ|
+ S(ψ)H(ψ)C∇ψ · ∇φ = H(−ψ)κφ|∇φ|

(2)

Here, H() denotes a Heaviside function, and is given by:202
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H(ψ) =


0, ψ < 0
1
2 + ψ

2ε + 1
2πsin

(
πψ
ε

)
, −ε ≤ ψ ≤ ε

1, ψ > ε

(3)

where ε is set to 1.5∆x, and ∆x is the numerical cell length. Terms203

meant to take effect in the pore space are multiplied by H(−ψ), whereas204

the solid phase terms are multiplied by H(ψ). θ = π−β is the contact angle205

imposed on the medium (see Figure 1), where β is the angle enclosed by the206

normals ~nφ and ~nψ. Thus, the modified level set equation works by impos-207

ing a velocity near the contact line such that the direction of the velocity208

vector and the gradient vector of the mask form the desired contact angle.209

Away from the boundary, we impose only the Young-Laplace equation. The210

diffusive term associated with the zero level set curvature κφ in Equation211

(2) smooths the level set function so that we get one single smooth interface212

despite having different speeds of propagation of the interface near and far213

from the boundary. The curvature κφ is given by:214

κφ = ∇ · ∇φ
|∇φ|

(4)

κ0 is the imposed normal speed on the interface in the pore space. This215

is slightly different from the quantity a in the original level set equation, as216

a includes terms both in the pore space and near the boundary. S() is the217

sign function which ensures that the contact angle propagates away from218

the walls, and hence ensures numerical stability,219

S(φ) =
φ√

φ2 + |∇φ|2(∆x)2
(5)

C is a constant that was used in Jettestuen et al. [14] to scale the220

contact angle and curvature parts of the velocity. By trial and error, we221

found it enough to set it equal to one. The level set equation must also be222

periodically reinitialized to make sure that the gradients in φ do not become223

too large. The default reinitialization equation was used, and is given by:224

φt + S(φ)(|∇φ| − 1) = 0 (6)

By imposing different values of the contact angle at different locations,225

mixed wettability conditions can be simulated. A simple example is shown226

in Jettestuen et al. [14], but we do not use it here.227

Initially, we introduce a meniscus of low initial curvature into the do-228

main, and advance it until it reaches an equilibrium position in the given229
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geometry. The speed at which the meniscus approaches the pore throat230

must be low enough so that it does not simply exit the simulation volume231

without reaching an equilibrium position. This is different from the com-232

pressible model used by Prodanović & Bryant [45], but it does not affect the233

ultimate critical curvature.234

Figure 1: Imposition of contact angle using level set methods.

To simulate a drainage process, at every step, the curvature is increased235

by ∆κ until the steady state solution is found. Therefore, the “time” t236

defined in Equation (1) is a parameter without physical meaning.237

Masking is enforced at every time step with some overlap, so that,238

φ(x, t) + p ≤ ψ, where p is the overlap, measured in the grid spacing239

∆x. This is a key difference in our methodology versus that introduced240

in Jettestuen et al. [14]. They also have an overlap in the main equation,241

but it is not enforced during the masking process. The overlap was found242

necessary for accuracy as the contact angle became larger. When the con-243

tact angle is closer to 0◦, no overlap was necessary. As the contact angle244

increased (beyond 30◦), the overlap between the pore space and the grain245

space was increased gradually, up to a maximum overlap of one grid cell.246

For 40◦, the overlap was 0.3 grid cells, then for contact angle 50◦ it was247

0.5, and finally the overlap was increased to one grid cell by contact angle248

60◦, and held constant for greater angles. The method is stable without this249

overlap, but it gave a much better match to analytical values. Having an250

overlap is not physical. However, it allows for formation of contact angles251

between different interfaces (the cusp is not a possible solution to a level set252

equation that contains a diffusive curvature term) and does not affect the253

equilibrium solution as long as overlap regions belonging to two portions of254

grain boundary do not touch. It is thus intuitive that the size of the overlap255

is related to the contact angle.256

An imbibition simulation would proceed by taking the endpoint of a257
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drainage simulation as the starting point. Curvature is decreased step by258

step, just as it was increased for the previous case. In this work, we have259

not performed any imbibition simulations.260

The equation was solved using the MATLAB level set toolbox written261

by Ian Mitchell [46, 47]. The time derivative is approximated with a third-262

order accurate total variation diminishing (TVD) Runge-Kutta integration263

scheme. The Courant-Friedrichs-Lewy (CFL) conditions restrict the size of264

the timestep. For the normal and convective terms, the gradients are approx-265

imated by an upwind third order accurate essentially non-oscillatory (ENO)266

finite difference scheme. The WENO (weighted essentially non-oscillatory)267

scheme is more accurate, but it did not improve the quality of our results,268

so we use the ENO scheme throughout. For the curvature velocity term, the269

mean curvature κ is approximated using a centered second order accurate270

finite difference approximation. This is also used in post-processing the re-271

sults when we want to compute the distribution of curvature values on the272

interface. Finally, as explained earlier, the level set equation is reinitialized273

every few time steps using the reinitialization equation in order to maintain274

|∇φ| = 1. Further details of individual numerical schemes can be found in275

the book by Osher and Fedkiw [22].276

2.2. Finite volume and volume-of-fluid methods277

The volume of fluid method is a numerical technique used in the open278

source software OpenFOAM to track interfaces in multiphase flows. In this279

implementation the location and velocity of the fluid/fluid interface is up-280

dated by using the Navier-Stokes equations, in a coupled manner. The281

motion of a single incompressible fluid is governed by the Navier-Stokes282

equation along with the mass conservation equation. For incompressible283

fluids, the mass conservation equation is given by:284

∇ · (~uρ) = 0 (7)

The Navier-Stokes equation on the other hand describes conservation of285

momentum:286

∂ρ~u

∂t
+∇ · (ρ~u~u) = −∇p+∇ · (2µ~E) + ~fb (8)

Here, ρ, ~u and µ describe the density, velocity field and viscosity of the287

fluid, respectively. ~E is the rate of strain tensor, while p is the pressure288

field. ~fb is the external body force term, which can include gravity. So,289

in the case of two immiscible fluids, the Navier-Stokes equation along with290

mass conservation are solved for each fluid separately.291
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At the interface between the fluids, we need to impose continuity of292

velocity and tangential stresses and maintain jump in the normal stress293

(equivalent to the capillary pressure). This can be done by considering the294

velocity to be continuous across the interface, Γ:295

~uΓ− = ~uΓ+ (9)

The stress field must satisfy:296

[−p~I + 2µ~E]Γ · ~n = σκ~n (10)

σ is the wetting/non-wetting fluid surface tension and ~n is the normal to297

the interface. The curvature κ is twice the mean curvature of the interface298

and is nominally the same as the one used in the level set method.299

The above system of equations can be used to solve for the pressure and300

velocity fields for each of the two fluids. The condition set on the velocity and301

stress fields at the interface can be used to advect the interface. However, in302

a numerical implementation this would lead to solving for moving boundary303

conditions which is very complex and time-consuming, especially as we are304

dealing with two separate fluid domains [26]. To get around this problem, the305

VOF method was introduced by Hirt and Nichols in 1981 [24]. Essentially,306

instead of solving two sets of Navier-Stokes equations and keeping track of307

the fluid domain and shapes, we define an indicator function that identifies308

which fluid is contained in a given fluid cell.309

If one considers a domain having two phases, wetting (Pw) and non-310

wetting (Pnw), then we can define an indicator function I(~x, t),311

I(~x, t) =

{
1, ~x ∈ Pw
0, ~x ∈ Pnw

For cells which are completely wetting phase, the liquid fraction is 1,312

while for non-wetting it is 0. The interface is located at I = 1/2, and is313

indicated by the Dirac delta function around the interface, δΓ = δ(I − 1/2).314

We then get a modified form of the Navier-Stokes equation in the entire315

domain:316

∂ρ~u

∂t
+∇ · (ρ~u~u) = −∇ · p+∇ · (2µ~E) + ~fb + ~fs (11)

where we can write for the density and viscosity fields:317

ρ(~x, t) = ρwI(~x, t) + ρnw(1− I(~x, t))

µ(~x, t) = µwI(~x, t) + µnw(1− I(~x, t))
(12)
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The additional term introduced, ~fs describes the Laplace pressure acting318

at the surface of discontinuity and is given by:319

~fs = σκ~nδΓ (13)

For numerical implementation, the term ~fs is replaced by a continuum320

surface force (CSF):321

~fv = σκ∇I (14)

~fv tends to ~fs as the thickness of the interface region tends to zero. The322

curvature κ is calculated from the indicator function. It can be seen this323

is the same as the curvature in the level set method, where the indicator324

function replaces φ in Equation (4). Using mass conservation in combina-325

tion with the modified Navier-Stokes equation (11), we finally get a simple326

advection equation for the indicator function:327

∂I

∂t
+∇ · (I~u) = 0 (15)

To counterbalance numerical diffusion, a non-linear convective term is328

added to the equation, which acts as a shock that balances numerical diffu-329

sion.330

∂I

∂t
+∇ · (I~u) +∇ · (I(1− I) ~ur) = 0 (16)

where ~ur is a compression velocity. Its choice does not affect the solution331

outside the interfacial region. Note that the indicator function defines the332

interface implicitly as the 1/2 level set of I, and the advection equation for333

the indicator function is related to the level set equation (Equation (1)). An334

example smoothed indicator function is the Heaviside function, defined in335

Equation (3).336

At the solid boundaries, the fluids are constrained in the pore space by337

requiring that the velocity component normal to the solid wall is zero. At338

the triple-contact line, Young’s law determines the contact angle:339

cosθ =
σnw,s − σw,s

σ
(17)

where σnw,s is the non-wetting fluid/solid interfacial tension, σw,s is the340

wetting fluid/solid interfacial tension.341

For imposing the contact angle in our simulation, this is equivalent to342

imposing the boundary condition:343

~nΓs = ~nscosθ + ~tssinθ (18)
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where ~ts is the unit tangential vector pointing into the wetting phase.344

OpenFOAM uses finite volume discretization for the above equations for345

mass and momentum conservation, and advection of the indicator function.346

The advection equation (Equation (16)) is used to update the indicator347

function values throughout the domain. This is then used to update fluid348

properties throughout the domain, and calculate the surface force. Finally,349

the coupling between the pressure and velocity equation (Equation (11)) is350

performed by using the Pressure Implicit with Splitting of Operators (PISO)351

implicit pressure correction procedure. Further details on the implementa-352

tion of interFoam and the numerical schemes used may be looked up in353

Deshpande et al. [48].354

In order to calculate critical curvatures, we employ a quasi-static ap-355

proach similar to the level set method presented earlier. We increase the356

pressure gradient in small steps, and allow the interface to reach equilib-357

rium at each step. Since we are interested in only the equilibrium position,358

and the equilibrium arises from the balance of the pressure gradient and359

surface tension forces, we can arbitrarily choose the physical parameters360

of the system (chosen dimensionless and unitary here). For the same rea-361

son, we are allowed to arbitrarily add to the momentum equation extra362

damping (Darcy-like) terms. In fact, despite significantly changing the dy-363

namics of the interface, this does not change the equilibrium position (being364

the additional term proportional to the velocity and, therefore vanishing365

at equilibrium). The advantage of this approach is that we can arbitrarily366

choose the Reynolds and capillary number to approach fast and smoothly367

the equilibrium position, while controlling the parasitic currents. Further368

details are shown in Appendix C. In addition, we use a special version of369

the interFoam solver, with local time stepping (LTSInterFoam), to march in370

pseudo-time with a pre-defined time step. This technique can maximize the371

time step (therefore reducing the relaxation time) in each cell. The result-372

ing iterations are therefore not physical and not related to evolution in real373

time but simply represent internal iterations to reach the steady state. At374

each equilibrium step, thanks to the equilibrium of forces guaranteed by the375

Navier-Stokes equations, we get the equivalent curvature in the pore using376

the Young-Laplace equation, with the stationary Navier-Stokes solution for377

pressure at the two flow boundaries giving the capillary pressure, and the378

surface tension value imposed by us. All these choices make the VOF solver379

under study equivalent to the quasi-static level set formulation. The remain-380

ing differences lie in the different equations solved, in the implementation of381

curvature and the boundary conditions.382

Since the finite-volume discretization is applicable both to structured383
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and unstructured grids1, we tested the solver on two types of grids: a regu-384

lar Cartesian grid (the same one used for the level set method) and a grid385

locally adapted to the interface. In both cases the mesh generator snappy-386

HexMesh has been used to automatically generate the mesh from analytical387

information on the sphere geometry. Preliminary results show no significant388

differences for the mean curvature measured. This is due to the fact that no389

explicit geometrical information about the interface is used by the solver.390

The curvature and surface tension discretization is totally done based on the391

concentration field. Therefore the shape of the cell close to the interface is392

not very important when there is no flow occurring. For this reason in the393

following results, only the simulations with the regular Cartesian grids are394

presented.395

2.3. Analytical and experimental observations396

Mason and Morrow [33] published a semi-analytical calculation of the397

maximum curvatures (also called critical curvatures) for the rhomboidal pore398

for a range of contact angles and rhomboid pore angles, and experimentally399

validated their results. In this work we compare our simulation results400

against their semi-analytical values.401

We briefly provide their methodology followed by them in Appendix B.402

Further details may be obtained in their original work. For completeness,403

we also provide their calculations in Appendix A.404

1OpenFOAM however always uses an unstructured indexing of the mesh, therefore no
significant speed-up is obtained when using structured grid. As a general note, unstruc-
tured meshes can better capture the complex curved shape of walls but the accuracy of the
numerical discretization schemes can however deteriorate for highly distorted unstructured
grids.
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(a) Default view of 3D pore throat. (b) Cross section of flow.

Figure 2: 3D pore throat geometry for rhomboid angle 45◦.

3. Results and Discussion405

The results from the quasi-static level set and the Navier-Stokes volume-406

of-fluid (OpenFOAM) solvers are compared with those obtained by Mason407

and Morrow [33] for the actual pore throat geometries, like the one in Fig. 2.408

The semi-analytical results are summarized in Table A.1. Values obtained409

from both codes are also listed in the Appendix, in Tables A.2 and A.4.410

The maximum mean curvature computation results for each contact angle411

are shown in Figure 5. Errors for each case are reported in Tables A.3 and412

A.5. The values and errors for running the level set method without the413

overlap are presented in Tables A.6 and A.7, respectively.414

Prior to performing simulations on 3D pore geometries for the level set415

formulation, the technique was first tested on 2D geometries. The results416

for those are available in [49]. The simulation results presented here follow417

the analytical cases for which Mason and Morrow [33] determined maximum418

mean curvatures. The rhomboid half-angles vary from 31◦ to 45◦. Repre-419

sentative geometry is shown for rhomboid half-angle of 45◦ in Figure 2. For420

each rhomboid half-angle, contact angle varied from 0◦ to 90◦. Errors for421

each case are reported in Table A.3.422

In the following figures, the solid walls are shown in transparent color423

while the fluid interface is shown in red. The reconstruction of the interface424

at equilibrium, with both codes, for rhomboid angles 45◦ and 31◦ and con-425

tact angles 10◦ and 80◦ is reported in Figures 3 and 4. The dimensions of426

the domain and the size of the mesh spacing are the same; however, since427

data are stored in a different format, the figures may look slightly different428
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due to different visualization algorithm. These cases represent extremities in429

contact angle as well as rhomboid half-angle and are hence good for show-430

casing the method’s accuracy. MS-P theory predicts a divided meniscus431

for rhomboid half-angle 31◦. As can be seen in Figure 4, this is effectively432

captured in the simulations.433

For performing the simulations with zero contact angle in the level set434

method, we follow the recommendations of Jettestuen et al. [14] and use the435

original LSMPQS software [50]. That code is in C/FORTRAN, and is also436

otherwise faster than the modified method due to its simplicity. We obtain437

an excellent match with the analytical solution. The OpenFOAM results438

are also very good for this case. The grid spacing used here is 0.02. Note439

that the disk/sphere radii in all examples is 1, and the reported grid spacing440

and all lengths are relative to the radii. For the other cases (with contact441

angle larger than zero) with the level set method, we used a slightly different442

(MATLAB-based) implementation, and due to higher computational costs,443

the grid spacing was set to 0.04. For consistency, the OpenFOAM results444

shown in Figure 5 were also run with the same grid size of 0.04. A grid445

convergence study was also performed for OpenFOAM, by making the grid446

twice as fine (grid size 0.02). The results did not show significant improve-447

ment. We present those results in the Appendix C. The results shown in448

Figure 5 show both methods performing well for lower contact angles, while449

the OpenFOAM solver has higher errors for high contact angles. In some450

cases, the level set method seems to overshoot the analytical predictions for451

high rhomboid angles. This is likely an artifact of the numerical overlap452

imposed. As described in the previous section, the overlap between the pore453

space and rock was used to ensure proper formation of the contact angle in454

the level set method. The overlap is going to present problems when simu-455

lating larger samples with narrow solid regions as discussed in Jettestuen et456

al. [14]. The adaptive meshing schemes that will address the problem will457

be investigated in future work. The OpenFOAM boundary conditions did458

not require an overlap.459

Another important aspect is the initial condition. A starting curvature460

that allows the interface to find a stable position within the pore space in461

general geometries is not known a priori which prompted the development462

of the compressible model in [16]. In this work with simple pore throats, we463

did not find it necessary to run the compressible model. It was enough to464

guess a sensible starting value of the normal velocity term for all cases. We465

choose a starting value of 0.15 for the normal velocity term κ0 and allow466

the interface to find the equilibrium position (steady state solution to Equa-467

tion (2)). For the OpenFOAM simulations, the relaxation to equilibrium is468
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(a) Contact angle 10◦. (b) Contact angle 80◦.

(c) Contact angle 10◦. (d) Contact angle 80◦.

Figure 3: Interfaces at the critical value of curvature for the pore throat with rhomboid
angle 45◦ for two extreme cases of contact angle, showing comparison between level set
(top - NW phase in red), and OpenFOAM (bottom - fluid/fluid interface in red). After
the critical value, the pore throat is drained and we do not observe main meniscus within
it any more. Solid surfaces are shown as transparent.
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(a) Contact angle 10◦. (b) Contact angle 80◦.

(c) Contact angle 10◦. (d) Contact angle 80◦.

Figure 4: Critical curvature interfaces (in red) for rhomboid angle 31◦: comparison be-
tween level set (top - NW phase in red) and OpenFOAM (bottom - fluid/fluid interface
in red) for two extreme cases of contact angle. The figures show divided meniscus, in
agreement with MS-P theory.
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solely driven by the imposed pressure drops at the boundaries and, for these469

particular converging-diverging pores, every initial interface position gives470

the same final equilibrium result. However, to speed up the computations,471

the interface has always been placed in the middle of the domain and the472

initial pressure drop set to a fraction (typically 0.8) of the reference analyti-473

cal results. As already mentioned in the previous section, the pressure drop474

is then increased until the interface reaches its maximum curvature posi-475

tion before being transported out of the domain when the imposed pressure476

becomes larger than the pore entry capillary pressure. We demonstrate im-477

provements in convergence to equilibrium due to the damping term for two478

extreme cases in figures C.12 and C.13 in Appendix C. The figures com-479

pare changes in saturation and velocity at each capillary pressure step, with480

and without the damping term. At each capillary pressure step, there is481

a sharp jump in both velocities and saturations. As the system moves to482

equilibrium, this dies out. Without the damping term, the jumps are more483

extreme. This clearly shows the advantage of using the damping term, as484

we achieve the same equlibrium condition faster.485

A pertinent point on the actual calculation of the curvatures is that for486

the level set method, we use the formulation proposed by Osher and Sethian487

[22] in their original work (see Equation (4)). The level set code incorporates488

that by calculating the curvatures at every grid point up to second order489

accuracy. The difficulty here is that the actual interface passes in between490

grid points, causing significant differences in accuracy of the method if one491

chooses to take the nearest grid point for calculating curvatures instead of492

the actual interface. Hence, we first found the exact interface coordinates,493

and then interpolated the curvatures given at the grid points to find the494

curvatures on all the points of the interface. The curvatures reported in495

Table A.2 are the mean values of the curvatures from all the points on the496

interface. Taking the mean value for the curvature is problematic in some of497

the simulation cases as there is a wide spread in curvature values at different498

points of the interface.499

We exemplify this for contact angles 10◦ and 90◦, and rhomboid half-500

angles 31◦ and 45◦ in Figure 6. For the first case (rhomboid angle 31◦),501

we can see that the spread in values is quite high due to tight pore spaces502

where solid surfaces are too close together and resolution should be finer.503

This results in a high error when we compare the calculated mean curvature504

with analytical values. Additionally, for the worst case of contact angle505

90◦, the change in curvature values near the boundaries is much sharper,506

but the diffusive nature of the level set method ensures a smooth interface.507

For the second case (rhomboid angle 45◦), we can see that the interface is508
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much better resolved, and we get a lower final error, though in this case509

also, a contact angle of 90◦ results in sharp changes in curvature near the510

boundaries. The case for contact angle 90◦ has the highest errors, up to511

25%. This case is like a piston moving across the pore, and this causes large512

intersection regions between solid and non-wetting fluid phase. However,513

even in this extreme contact angle, most of the cases have errors in the514

range of 10%. This also highlights the importance of adaptive meshing515

for imposition of contact angles. Near the solid-liquid-liquid contact line516

at the boundary, we can have a much finer grid, with coarser grid cells517

in the main pore space. So we can better capture the contact angle at518

the boundary, with lesser computational expense. The curvatures are more519

difficult to resolve in the same areas. Note that, for the level set method,520

we already tried higher order accurate numerical schemes without much521

improvement. For OpenFOAM, higher order accurate schemes for general522

unstructured meshes are not available. Finer grid cells near the boundary523

however can be added. Thus, adaptive meshing seems a logical course to524

follow for future work on these methods. This will surely have a beneficial525

effect in the local computations of curvatures. Whether this has an effect526

on more general displacement problems is something that requires more527

studies. The OpenFOAM results, in fact, suggest that a grid refinement528

is not improving the overall capillary pressure estimated by the balance of529

forces solved in the momentum equation. This mean that other factors (e.g.530

the way the contact angle is imposed) might be important.531

The overall results show promise for more general applications. Imaging532

has the potential of informing us of the distribution of wettability on a533

given rock sample by identification of the mineralogy and possible bitumen534

coatings [51]. In that case, we could map surfaces of different wettability535

and a method which can predict the behavior of capillary-dominated flow in536

a given rock sample can be applicable. Jettestuen et al. [14] have shown the537

method applied to simple mixed wet systems. However, it is likely that more538

general porous media geometries would be more problematic. If one were to539

attempt simulating flow in an image from a rock sample, the error margins540

would likely be larger and a relatively small error (like the ones observed541

here) might propagate to the macro-scale in a unpredictable way. Our future542

work will also benchmark with other methods (such as the lattice Boltzmann543

method) to increase awareness of potential limitations and to provide better544

accuracy assessment of the methods.545
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(a) Rhomboid angle= 31◦, θ = 10◦ (b) Rhomboid angle= 45◦, θ = 10◦

(c) Rhomboid angle= 31◦, θ = 90◦ (d) Rhomboid angle= 45◦, θ = 90◦

Figure 6: Curvature distribution for rhomboid angles 31◦ and 45◦, for contact angle 10◦

and 90◦, for the level set simulations.
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4. Conclusion546

We have quantified the accuracy of two popular methods for capillarity547

dominated quasi-static displacements in a set of converging-diverging pore548

throat geometries, namely a level set method and an algebraic volume of fluid549

(within the OpenFOAM software). Both methods perform well for lower550

contact angles, though we observed better accuracy for the level set method551

for contact angles more than 70◦, while both methods struggle with 90◦552

contact angle. For other problems where viscosity (or gravity) plays a more553

dominant role certainly Navier-Stokes based solvers such as OpenFOAM554

are more appropriate, and this version of the level set method should not555

be used.556

Validation of numerical methods is most commonly done in constant557

cross-section geometries since that is where analytical solutions exist. Sim-558

ilar is true for widely accepted lattice Boltzmann methods. There is a gap559

between testing in tubes [32] and simulation in larger geometries [43]. The560

only way to test larger geometries is against experiments, which are not561

always available.562

This kind of validation is particularly important in larger geometries,563

where it if often required to sacrifice some accuracy for much lower com-564

putational time. One also may choose to use a lower precision numerical565

scheme (like first order accuracy in time) to get results faster. The pre-566

sented implementation of the level set method has not been optimized for567

running large cases. In future work, an optimized code will be used to study568

larger geometries as well as real rock images, where convergence criteria569

could be relaxed a little for much lower computational time. Determining570

when the simulation has converged is usually the judgment of the individual571

user. Hence, as direct pore scale modeling approaches become more popu-572

lar, validation against other codes and experimental results will be crucial573

to check the overall reliability of the results.574

We expect that these kind of validation studies will also become in-575

creasingly important in other problems such as imbibition in porous media,576

where most larger-scale models fail. Imbibition is more difficult to model577

with quasi-static approaches than drainage. In the future we will quan-578

tify the differences between quasi-static and dynamic approaches in imbi-579

bition: while most of imbibition studies have been done using quasi-static580

approaches due to computational complexity, it remains an open question if581

they are adequate in describing ultimate fluid configuration (and also rela-582

tive permeability).583

23



5. Acknowledgements584

This work was supported by the Gas EOR consortium at UT Austin585

(RV), by NSF CAREER grant 1255622 (MP) and by the King Abdullah586

University of Science and Technology (KAUST) (MI). MI was supported by587

the Academic Excellency Alliance (AEA) UT Austin-KAUST project “Un-588

certainty quantification for predictive modeling of the dissolution of porous589

and fractured media” and by the KAUST SRI Center for Uncertainty Quan-590

tification in Computational Science and Engineering.591

24



6. References592

[1] N. Morrow, Wettability and its effect on oil recovery, Journal of593

Petroleum Technology 42 (12). doi:10.2118/21621-PA.594

[2] N. Morrow, H. Lim, J. Ward, Effect of crude-oil-induced wetta-595

bility changes on oil recovery, SPE Formation Evaluation 1 (1).596

doi:10.2118/13215-PA.597

[3] C. H. Pentland, R. El-Maghraby, S. Iglauer, M. J. Blunt, Measurements598

of the capillary trapping of super-critical carbon dioxide in berea sand-599

stone, Geophysical Research Letters 38 (6).600

[4] S. Iglauer, A. Paluszny, C. H. Pentland, M. J. Blunt, Residual CO2601

imaged with X-ray micro-tomography, Geophysical Research Letters602

38 (21).603

[5] M. J. Blunt, B. Bijeljic, H. Dong, O. Gharbi, S. Iglauer,604

P. Mostaghimi, A. Paluszny, C. Pentland, Pore-scale imaging605

and modelling, Advances in Water Resources 51 (2013) 197–216.606

doi:10.1016/j.advwatres.2012.03.003.607

[6] Y.-S. Wu, B. Bai, et al., Efficient simulation for low salinity waterflood-608

ing in porous and fractured reservoirs, in: SPE Reservoir Simulation609

Symposium, Society of Petroleum Engineers, 2009.610

[7] M. Cil, J. C. Reis, M. A. Miller, D. Misra, et al., An examination of611

countercurrent capillary imbibition recovery from single matrix blocks612

and recovery predictions by analytical matrix/fracture transfer func-613

tions, in: SPE Annual Technical Conference and Exhibition, Society of614

Petroleum Engineers, 1998.615

[8] A. Gupta, F. Civan, et al., An improved model for laboratory measure-616

ment of matrix to fracture transfer function parameters in immiscible617

displacement, in: SPE Annual Technical Conference and Exhibition,618

Society of Petroleum Engineers, 1994.619

[9] D. Wildenschild, A. P. Sheppard, X-ray imaging and analysis techniques620

for quantifying pore-scale structure and processes in subsurface porous621

medium systems, Advances in Water Resources 51 (2013) 217–246.622

[10] P. Meakin, A. M. Tartakovsky, Modeling and simulation of pore-623

scale multiphase fluid flow and reactive transport in fractured624

25



and porous media, Reviews of Geophysics 47 (3) (2009) n/a–n/a.625

doi:10.1029/2008RG000263.626

[11] M. J. Blunt, M. D. Jackson, M. Piri, P. H. Valvatne, Detailed physics,627

predictive capabilities and macroscopic consequences for pore-network628

models of multiphase flow, Advances in Water Resources 25 (8–12)629

(2002) 1069–1089. doi:10.1016/S0309-1708(02)00049-0.630

[12] T. J. Baker, Mesh generation: Art or science?, Progress in Aerospace631

Sciences 41 (1) (2005) 29–63.632

[13] M. Icardi, G. Boccardo, R. Tempone, On the predictivity of pore-scale633

simulations: Estimating uncertainties with multilevel monte carlo, Ad-634

vances in Water Resources 95 (2016) 46–60.635

[14] E. Jettestuen, J. O. Helland, M. Prodanović, A level set method for636

simulating capillary-controlled displacements at the pore scale with637

nonzero contact angles, Water Resources Research 49 (8) (2013) 4645–638

4661. doi:10.1002/wrcr.20334.639

[15] S. Osher, J. A. Sethian, Fronts propagating with curvature-dependent640

speed: Algorithms based on Hamilton-Jacobi formulations, Journal641

of Computational Physics 79 (1) (1988) 12–49. doi:10.1016/0021-642

9991(88)90002-2.643
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Appendix A. Tables for analytical and calculated values768

In this section, critical curvature values obtained by Mason and Morrow769

[33] are presented, alongwith the values obtained from the level set method,770

and the OpenFOAM VOF method. We also present the errors for each case771

of the numerical methods, with respect to Mason and Morrow’s values. The772

cases where errors are larger than 25% are in bold, while cases with errors773

between 15-25% are italicized.774

Table A.1: Critical curvature values calculated by Mason and Morrow [33].

Contact angle θ in degrees

Rhomboid half-angle 0 10 20 30 40 50 60 70 80 90

45 4.49 4.48 4.43 4.32 4.16 3.92 3.64 3.30 2.93 2.54

44 4.51 4.50 4.44 4.37 4.17 3.94 3.64 3.31 2.94 2.54

43 4.56 4.54 4.49 4.38 4.21 3.97 3.67 3.33 2.95 2.55

42 4.64 4.62 4.57 4.45 4.27 4.03 3.72 3.37 2.98 2.57

41 4.76 4.74 4.68 4.56 4.37 4.11 3.79 3.42 3.02 2.60

40 4.92 4.90 4.84 4.70 4.50 4.22 3.88 3.50 3.08 2.64

39 5.14 5.11 5.04 4.89 4.67 4.37 4.01 3.60 3.15 2.69

38 5.41 5.38 5.29 5.13 4.88 4.56 4.16 3.72 3.25 2.76

37 5.75 5.72 5.62 5.43 5.15 4.79 4.36 3.87 3.36 2.83

36 6.19 6.15 6.03 5.81 5.50 5.09 4.61 4.06 3.50 2.93

35 6.75 6.70 6.56 6.30 5.94 5.47 4.92 4.31 3.67 3.04

34 7.47 7.42 7.24 6.94 6.51 5.96 5.32 4.61 3.89 3.19

33 8.44 8.37 8.15 7.78 7.26 6.61 5.84 5.02 4.18 3.37

32 9.71 9.65 9.40 8.93 8.29 7.48 6.55 5.55 4.54 3.59

31 10.49 10.42 10.20 9.80 9.22 8.44 7.51 6.30 5.05 3.89
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Table A.2: Critical curvature values calculated from the level set method.

Contact angle θ in degrees

Rhombus half-angle 0 10 20 30 40 50 60 70 80 90

45 4.49 4.58 4.67 4.53 4.4 4.1 3.43 3.23 3.05 2.81

44 4.5 4.64 4.7 4.76 4.55 4.22 3.43 3.19 2.97 2.81

43 4.54 4.69 4.69 4.75 4.58 4.06 3.38 3.23 3.06 2.8

42 4.63 4.67 4.68 4.81 4.37 4.17 3.48 3.27 3.08 2.84

41 4.72 4.83 4.85 4.94 4.49 4.19 3.5 3.36 3.1 2.89

40 4.87 4.82 4.79 4.68 4.47 4.3 3.53 3.38 3.13 2.83

39 5.05 4.69 4.77 4.53 4.63 4.39 3.71 3.46 3.21 2.97

38 5.32 5.04 5.02 4.65 4.83 4.59 3.84 3.65 3.3 3.05

37 5.65 5.21 5.28 4.97 5.08 4.77 3.98 3.79 3.35 3.19

36 6.05 5.72 5.76 5.36 5.38 5.09 4.25 3.89 3.56 3.25

35 6.63 6.11 6.13 5.65 5.72 5.51 4.55 4.22 3.63 3.47

34 7.4 6.72 6.68 6.49 6.4 6 4.81 4.57 4.08 3.64

33 8.41 7.5 7.52 7.15 6.91 6.56 5.33 4.9 4.25 3.83

32 9.5 8.43 8.44 8.75 7.95 7.33 5.97 5.57 4.96 4.49

31 10.39 9.04 9.04 9.13 8.57 8.06 6.44 6.01 5.46 5.01

Table A.3: Relative errors for each case for level set method, in %.

Contact angle θ, in degrees

Rhombus half-angle 0 10 20 30 40 50 60 70 80 90

45 0.00 -2.23 -5.42 -4.86 -5.77 -4.59 5.77 2.12 -4.10 -10.63

44 0.22 -3.11 -5.86 -8.89 -9.11 -7.11 5.77 3.63 -1.02 -10.63

43 0.44 -3.30 -4.45 -8.45 -8.79 -2.27 7.90 3.00 -3.73 -9.8

42 0.22 -1.08 -2.41 -8.05 -2.34 -3.47 6.45 2.97 -3.36 -10.51

41 0.84 -1.90 -3.63 -8.26 -2.75 -1.95 7.65 1.75 -2.65 -11.15

40 1.02 1.63 1.03 0.43 0.67 -1.90 9.02 3.43 -1.62 -7.02

39 1.75 8.22 5.36 7.36 0.86 -0.46 7.48 3.89 -1.90 -10.41

38 1.66 6.32 5.10 9.36 1.02 -0.66 7.69 1.88 -1.54 -10.51

37 1.74 8.92 6.05 8.47 1.36 0.42 8.72 2.07 0.30 -12.72

36 2.26 6.99 4.48 7.75 2.18 0.00 7.81 4.19 -1.71 -10.92

35 1.78 8.81 6.55 10.32 3.70 -0.73 7.52 2.09 1.09 -14.14

34 0.94 9.43 7.73 6.48 1.69 -0.67 9.59 0.87 -4.88 -14.11

33 0.36 10.39 7.73 8.10 4.82 0.76 8.73 2.39 -1.67 -13.65

32 2.16 12.64 10.21 2.02 4.10 2.01 8.85 -0.36 -9.25 -25.07

31 0.95 13.24 11.37 6.84 7.05 4.50 14.22 4.60 -8.12 -28.79
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Table A.4: Critical curvature values calculated from the OpenFOAM VOF method.

Contact angle θ in degrees

Rhombus half-angle 0 10 20 30 40 50 60 70 80 90

45 4.34 4.18 4.04 3.88 3.74 3.40 3.06 2.65 2.31 1.88

44 4.46 4.36 4.10 3.88 3.68 3.38 3.02 2.66 2.25 1.90

43 4.50 4.34 4.14 3.98 3.77 3.40 3.00 2.68 2.35 1.91

42 4.58 4.39 4.18 4.09 3.80 3.42 3.08 2.80 2.30 2.00

41 4.66 4.52 4.31 4.06 3.86 3.52 3.07 2.74 2.30 2.04

40 4.84 4.61 4.37 4.21 3.95 3.64 3.20 2.77 2.30 1.99

39 5.06 4.78 4.62 4.44 4.18 3.78 3.31 2.84 2.37 2.00

38 5.31 5.08 4.82 4.58 4.25 3.90 3.40 2.91 2.43 2.04

37 5.59 5.23 4.95 4.82 4.51 4.07 3.52 3.10 2.50 2.08

36 5.99 5.63 5.34 5.07 4.82 4.36 3.77 3.11 2.68 2.14

35 6.38 5.99 5.79 5.47 5.22 4.68 3.94 3.39 2.72 2.21

34 7.56 6.89 6.64 6.32 5.82 5.06 4.37 3.59 2.92 2.39

33 8.05 7.50 7.31 6.99 6.54 5.71 4.76 3.93 3.08 2.40

32 9.57 9.19 8.80 8.24 7.60 6.75 5.59 4.49 3.56 2.63

31 10.38 9.96 9.64 9.08 8.25 7.16 6.16 5.34 4.13 3.05

Table A.5: Relative errors for each case for OpenFOAM VOF method, in %.

Contact angle θ in degrees

Rhombus half-angle 0 10 20 30 40 50 60 70 80 90

45 3.34 6.70 8.80 10.19 10.10 13.27 15.93 19.70 21.16 25.98

44 1.11 3.11 7.66 11.21 11.75 14.21 17.03 19.64 23.47 25.20

43 1.32 4.41 7.80 9.13 10.45 14.36 18.26 19.52 20.34 25.10

42 1.29 4.98 8.53 8.09 11.01 15.14 17.20 16.91 22.82 22.18

41 2.10 4.64 7.91 10.96 11.67 14.36 19.00 19.88 23.84 21.54

40 1.63 5.92 9.71 10.43 12.22 13.74 17.53 20.86 25.32 24.62

39 1.56 6.46 8.33 9.20 10.49 13.50 17.46 21.11 24.76 25.65

38 1.85 5.58 8.88 10.72 12.91 14.47 18.27 21.77 25.23 26.09

37 2.78 8.57 11.92 11.23 12.43 15.03 19.27 19.90 25.60 26.50

36 3.23 8.46 11.44 12.74 12.36 14.34 18.22 23.40 23.43 26.96

35 5.48 10.60 11.74 13.17 12.12 14.44 19.92 21.35 25.89 27.30

34 -1.20 7.14 8.29 8.93 10.60 15.10 17.86 22.13 24.94 25.08

33 4.62 10.39 10.31 10.15 9.92 13.62 18.49 21.71 26.32 28.78

32 1.44 4.77 6.38 7.73 8.32 9.76 14.66 19.10 21.59 26.74

31 1.05 4.41 5.49 7.35 10.52 15.17 17.98 15.24 18.22 21.59
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Table A.6: Level set values for five cases with no overlap

Contact angle

Rhomboid half-angle 50 60 70 80 90

45 4.80 4.86 4.86 4.88 4.94

44 4.78 4.83 4.85 4.91 4.91

43 4.87 4.93 4.93 5.00 5.00

42 4.94 4.97 5.00 5.01 5.06

41 5.07 5.13 5.13 5.16 5.21

40 5.03 5.10 5.10 5.14 5.17

39 5.04 5.08 5.10 5.15 5.17

38 5.33 5.36 5.43 5.50 5.50

37 5.58 5.64 5.70 5.75 5.80

36 6.02 6.09 6.17 6.19 6.27

35 6.54 6.64 6.77 6.82 6.78

34 7.25 7.38 7.48 7.67 7.68

33 7.99 8.17 8.35 8.38 8.54

32 8.90 9.05 9.29 9.45 9.59

31 9.48 9.72 9.95 10.11 10.38

Table A.7: Errors for five cases with no overlap

Contact angles

Rhomboid half-angle 50 60 70 80 90

45 22.46 33.49 47.25 66.52 94.35

44 21.43 32.69 46.64 66.90 93.18

43 22.59 34.27 48.10 69.36 96.20

42 22.58 33.61 48.51 68.03 96.73

41 23.46 35.29 50.01 70.96 100.26

40 19.20 31.33 45.61 66.72 95.87

39 15.40 26.56 41.69 63.55 92.10

38 16.91 28.78 46.01 69.35 99.32

37 16.56 29.32 47.41 71.06 104.88

36 18.19 32.21 51.87 76.73 114.16

35 19.49 34.89 56.99 85.72 122.87

34 21.60 38.75 62.27 97.07 140.90

33 20.93 39.89 66.24 100.47 153.35

32 19.04 38.19 67.47 108.11 167.27

31 12.27 29.36 57.88 100.28 166.92
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Figure A.7: Comparison of values calculated with and without overlap, for the level set
method.
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Appendix B. Formulae for MS-P method used by Mason and Mor-775

row (1994)776

This section briefly describes the methodology and formulae used by777

Mason and Morrow (1994) to derive the critical curvatures in rhomboidal778

pore geometries. Further details may be found in their original paper.779

The calculation in [33] combined analysis of interface curvatures in a780

converging-diverging pore throat modeled as a toroid ring, with a pore781

throat formed by parallel rods and thus of a non-axisymmetric cross sec-782

tion. The curvatures in a converging-diverging toroidal pore throat were783

determined using Purcell’s toroidal approximation [52]. On the other hand,784

for non-axisymmetric pore throats of uniform cross section, authors used785

the Mayer-Stowe-Princen (MS-P) theory to determine critical displacement786

curvatures. The validity of using MS-P theory results for a constant cross-787

section tube equivalent of a converging-diverging nonaxysymmetric pore788

throat was demonstrated experimentally for perfectly wetting liquids in [53].789

Figure B.8 shows the geometry of the rhomboid pore being used (in the790

plane of the sphere centers), and the definitions of cell angle φ and inscribed791

circle ri. A series of steps were devised to calculate the analytical curvatures792

for this geometry. In step 1, the spheres (of radius R) are replaced by rods of793

the same radius, at the same centers. In step 2, the MS-P curvature in the794

tube formed by the parallel rods is calculated for that contact angle. After795

that, the non-axisymmetric tube is replaced by an equivalent cylindrical796

tube that has the same MS-P meniscus curvature.797

This tube is then used to generate a toroid, with a hole radius equal798

to that of the cylindrical tube, and a body radius the same as the original799

spheres. The MS-P curvature determined from step 2, κMS−P , gives the800

radius of the equivalent cylindrical tube, re by:801

re
R

=
2cosθ

κMS−P
(B.1)

This radius re sets the inner radius of the equivalent Purcell toroid, which802

has a body radius of R. The three-phase contact line subtends an angle α803

at the center of the spheres. This is referred to as the filling angle. At the804

position of maximum curvature in the toroid throat, the angle αmax is given805

by:806

αmax = θ − sin−1

(
sinθ

1 + (re/R)

)
(B.2)
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This toroid is finally used to calculate the maximum normalized curva-807

ture κmax using:808

κmax =
2cos(θ − αmax)

1 + (re/R)− cos(αmax)
(B.3)

These formulas were used to calculate the maximum displacement curva-809

tures for a range of cell angles φ and contact angles θ, reproduced in Table810

A.1. It may also be noted that the case of contact angle 90◦ is treated811

separately in the paper as these formulae don’t apply in that case. Figure812

B.9a shows the curvatures calculated versus the contact angle. Figure B.9b813

shows the relative meniscus curvature, normalized with the θ = 0◦ value,814

against the contact angle. This demonstrates that the maximum curvatures815

depend on the contact angle as cos(2
3θ), not as cosθ. This was a significant816

conclusion of the paper, and has implications for upscaled implementation817

of contact angles.818

Figure B.8: Sketch of rhomboidal pore used in Morrow’s experiments.

Appendix C. Convergence study for OpenFOAM819

An attempt was made to improve the OpenFOAM results by refining820

the grid size. The grid size was halved for running these simulations. These821

results are presented here, with comparison with analytical values from Mor-822

row, level set values, and those with coarses grid size. As can be seen, not823

much improvement is seen with these values. All simulations for contact824

angles 80◦ and 90◦ were not performed, and are not reported here.825

In addition, we also present convergence results for two cases: rhomboid826

angle 45◦, contact angle 10◦; and rhomboid angle 30◦ and contact angle 90◦,827
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(a) Experimental results.

(b) Relative curvature versus contact angle.

Figure B.9: Results reprinted from Mason and Morrow [33]: maximum curvatures do
not depend on the contact angle as cos(θ) (as is commonly assumed based on simplified
theoretical assumptions), but as cos( 2

3
θ). Figure reprint permission is currently being

processed.

with and without the damping term. Figures C.12a and C.13a show the sat-828

uration changing in the domain as we increase the capillary pressure step by829

step. Similarly, figures C.12b and C.13b show how the velocities have sharp830

jumps each time capillary pressure is increased, and then these oscillations831

die out towards equilibrium. The results demonstrate that the damping832

term stabilizes the transition to equilibrium and significantly reduces the833

velocity fluctuations.834
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Figure C.10: Analytical vs. numerical values, incorporating values from finer grids for
OpenFOAM

39



30 35 40 45
0

2

4

6

8

10

Rhomboid half−angle, degrees

M
a

x
im

u
m

 m
e

a
n

 c
u

rv
a

tu
re

Contact angle = 40
o

 

 

Analytical

LSM

OF−0.04

OF−0.02

30 35 40 45
3

4

5

6

7

8

9

Rhomboid half−angle, degrees

M
a

x
im

u
m

 m
e

a
n

 c
u

rv
a

tu
re

Contact angle = 50
o

 

 

Analytical

LSM

OF−0.04

OF−0.02

30 35 40 45
3

4

5

6

7

8

Rhomboid half−angle, degrees

M
a

x
im

u
m

 m
e

a
n

 c
u

rv
a

tu
re

Contact angle = 60
o

 

 

Analytical

LSM

OF−0.04

OF−0.02

30 35 40 45
2

3

4

5

6

7

Rhomboid half−angle, degrees

M
a

x
im

u
m

 m
e

a
n

 c
u

rv
a

tu
re

Contact angle = 70
o

 

 

Analytical

LSM

OF−0.04

OF−0.02

Figure C.11: Analytical vs. numerical values (continued), incorporating values from finer
grids for OpenFOAM
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Figure C.12: Comparison of saturation and velocity convergence, with and without damp-
ing, for rhomboid angle 30◦ and contact angle 90◦.
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Figure C.13: Comparison of saturation and velocity convergence, with and without damp-
ing, for rhomboid angle 45◦ and contact angle 10◦.
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