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Helical structures downstream of the breakdown-bubble of the Grabowski vortex

profile at Reynolds numbers Re ≤ 500 have been extensively studied through stability

analysis in the literature. However, the low-frequency coherent structures inside the

bubble, which have been observed in experiments, were not predicted by the stability

approach. In the present work, asymptotic stabilities of the Grabowski vortex flow

at Re ≤ 1000 are carried out to compare against previous works, and then the lin-

ear optimal inflow perturbation and the corresponding outcome are studied to unveil

the dynamics inside the bubble. It is found that low frequency inflow perturbations

penetrate the bubble and are amplified to coherent structures, while high frequency

perturbations are convected around the border of the bubble. These linearised re-

sults agree well with previous experimental observations and are validated by direct

numerical simulations.
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Nomenclature

(Nomenclature entries should have the units identified)

u, U , u′, u∗ = full, base, perturbation and adjoint velocity vectors, respectively

p, P , p′, p∗ = full, base, perturbation and adjoint pressure terms, respectively

u′i = inflow velocity perturbation

u′τ = perturbation velocity at final time τ

x, r, θ = coordinate in the streamwise, radial and azimuthal directions

S = swirl parameter

α = coflow parameter

Re = Reynolds number

U∞ = free-stream axial velocity

R = vortex core radius

m = azimuthal wavenumber

K = energy growth of the optimal inflow perturbation

σ = growth rate (real part) and frequency (imaginary part) of the eigenmode

t = time

τ = final time

ω = frequency

f = temporal function of the boundary perturbation

ε = positive relaxation factor for f

Ω = computational domain

∂Ω = inflow boundary

P = polynomial order in the spectral element method

I. Introduction

Vortex dynamics have been a focus of numerous research in fluid mechanics over the past few

decades. One of the primary motivations is the dissipation of trailing vortices shed from the wing-

tips of an airplane [1]. These vortices induce an extra drag component and detrimental effects, e.g.
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downwash and rolling moments, to the following aircraft [2]. To avoid the potential danger of rolling

moments caused by trailing vortices, air traffic control set strict spacing rules to separate aircraft

during take-off or landing. Another important area of focus is the leading-edge vortices that produce

lift and stability on non-commercial delta wing aircraft; sudden changes to the vortex structure can

produce drastic and adverse aerodynamic effects [3].

Trailing vortices have been observed to lose stability and breakdown in theoretical, experimental

and numerical studies. A widely used definition for vortex breakdown is “an abrupt change in the

(vortex) structure with a very pronounced retardation of flow along the axis and a corresponding

divergence of the stream surfaces near the axis" [4]. Vortex breakdown can be broadly classified into

two types: bubble breakdown, characterised by a recirculation region of low velocity flow occurring

immediately downstream of a stagnation point, and spiral breakdown, featuring helical structures

either independently or downstream of the bubble breakdown [6–10]. From a stability point of view,

it was found that the flow upstream of the bubble breakdown is, at worst, marginally stable, hence

the axisymmetric breakdown bubble cannot be a direct consequence of instability [5].

Numerous experimental studies have investigated the internal structure of the bubble-type

breakdown using dye visualisation [9–12]. The authors described a process of fluid exchange through

simultaneous filling and emptying at the downstream end of the bubble, and observed helical modes

within the axisymmetric bubble. As the pattern of dye is strongly affected by the structure instabil-

ity of bubble and a very weak symmetry breaking of the recirculation region is sufficient to generate

a strong symmetry breaking in the dye pattern [13, 14], it can be suspected that the asymmetric

dye structure does not demonstrate a real flow feature. However, such coherent structures within

the breakdown bubble are also observed in several other experiments as well as in the present direct

numerical simulations (DNS) studies. In Laser Doppler Anemometry measurements, it was revealed

that the interior region of the bubble is dominated by low-frequency motions [3, 15] and there is

a clear shift of the dominant frequency from upstream to downstream of the bubble [16]. Most

recently using Particle Image Velocimetry, a transient double helix mode was observed in the vortex

core upstream and inside the bubble [17].

Among the analytical forms of vortices, the Grabowski profile [18], which is a solution of the
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steady axisymmetric Navier-Stokes (NS) equations, has been widely adopted. This profile has a

uniform axial velocity beyond a characteristic radius. Scaling the length with the characteristic core

radius and the velocities with the free-stream axial velocity, the azimuthal, radial and streamwise

velocity components, denoted as w, v and u, can be expressed as

w(0 ≤ r ≤ 1) = Sr(2− r2),

w(1 ≤ r) = S/r,

v(r) = 0,

u(0 ≤ r ≤ 1) = α+ (1− α)r2(6− 8r + 3r2),

u(1 ≤ r) = 1,



(1)

where r is the non-dimensional radial coordinate. In this profile, S is the swirl parameter, defined as

the ratio of azimuthal velocity at the edge of the core to the free-stream axial velocity. The effects

of this parameter have been studied in depth [19, 20]. In the present work, S = 1.095 is adopted

to match the previous numerical setup [19]. The coflow parameter, α, represents the axial velocity

at the axis relative to the free-stream axial velocity. This study is focused on the region 1 < α < 2

where the flow is jet-like (α > 1) and not inherently stable (α > 2).

Ruith et al. [19] conducted DNS of the Grabowski profile and found that parameter combi-

nations were accurately predicted by Benjamin’s theory [21]: onset of vortex breakdown is a finite

transition between two states, upstream supercritical flow and downstream subcritical flow. More-

over, these authors showed a large pocket of absolute instability that governs the spiral breakdown

mode in the wake of the bubble, and obtained eigenfunctions related to helical and double-helical

breakdown modes (azimuthal wavenumberm = −1 andm = −2, respectively). Some of the findings

were confirmed by experimental work of Liang and Maxworthy [22].

By performing local stability analysis on the flow fields obtained by Ruith et al. [19] , Gallaire

et al. [23] found two regions of absolute instability for a particular swirl parameter. One region

is centred on the bubble and the other in the wake behind it. They interpreted the first absolute

instability as a result of presence of counterflow in the bubble, and the second one as a cause of

nonlinear global mode which triggers spiral vortex breakdown in the wake of the bubble. Meliga

and Gallaire [24] conducted a global linear stability of the axisymmetric vortex and further con-
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firmed that the spiral vortex breakdown is induced by an unstable eigenmode. Meliga et al. [25]

subsequently extend their analysis to consider weakly nonlinear mechanism that are responsible for

competition between helical and double-helical breakdown. Recently, Qadri et al. [26] performed

structure sensitivity analysis based on a low-Mach-number formulation of NS equations using the

Grabowski inlet profile. Their analysis showed that the region around the bubble is more influential

than the wake in determining the growth rate and frequency.

The above instability analysis explains the helical structures downstream of the breakdown

bubble, but is unable to account for the low frequency perturbation within the bubble observed in

experiments [3, 15, 16]. In this investigation, both initial and boundary perturbations are applied

to reveal that the internal structure of the bubble is induced by the amplification of upstream

perturbations.

II. Methodology

A. Governing equations

This study assumes the fluid is Newtonian and incompressible, hence the flow dynamics in

the cylindrical frame with x, r, and θ denoting the streamwise, radial and azimuthal coordinates,

respectively, are governed by the incompressible NS equations

∂tu = −(u ·∇)u−∇p+Re−1∇2u with ∇ · u = 0, (2)

where u denotes the velocity field, p is the pressure, ∂t is the time-derivative, and Re is the Reynolds

number defined as

Re =
U∞R

ν
, (3)

based on the free-stream velocity U∞, the vortex core radius R and the kinematic viscosity ν.

In the case of linear perturbation analysis, the flow field is decomposed into a base flow and a

perturbation, i.e. u = U + u′. Substitute this decomposition into (2) and neglect the high-order

terms of perturbations, the linearised NS (LNS) equations can be obtained:

∂tu′ = −(u′ ·∇)U − (U ·∇)u′−∇p′+Re−1∇2u′ with ∇ · u′ = 0. (4)
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The base flow is considered as a two-dimensional, steady solution of the NS equations subject to the

inflow conditions described in (1). For such an azimuthally homogeneous base flow, eigenmodes of

perturbations with different azimuthal wave numbers are decoupled and can be studied individually.

Subsequently, the perturbations can be decomposed in the azimuthal direction and considered in

the global eigenmode form:

(u′, p′) = (u′m, p′m)e(imθ+σt), (5)

where m is the azimuthal wavenumber, and Re(σ) and Im(σ) are the growth rate and frequency

of the perturbation. Hereafter, the term perturbation is referred to as the perturbation at a given

azimuthal wavenumber m and the subscript m is omitted.

B. BiGlobal stability analysis

In the global stability analysis undertaken, the most unstable mode and its growth rate at a

given azimuthal wavenumber is calculated. The LNS equations (4) are integrated iteratively to

establish a Krylov sequence, from which the leading eigenvalues and eigenmodes can be extracted

using an Arnoldi method. Such an Arnoldi approach has been extensively used in stability, transient

growth and sensitivity calculations and is not elaborated on here [27, 28].

C. Optimal inflow boundary perturbations

To investigate the influence of upstream perturbations to the vortex flow, Dirichlet-type velocity

inflow perturbations are studied. When the magnitude of inflow perturbation (relative to the base

flow) is small, so is the perturbation it induces inside the domain, and therefore the perturbation

field can be governed by the LNS equations.

The dimension of the numerically discretised velocity vector can be reduced by separating the

spatial and temporal dependence as

u′(r, x, t) = u′i(r, x)f(t) where f(t) = (1− eεt
2

)(1− e−ε(τ−t)
2

)eiωt, (6)

where ε is a positive relaxation factor. In this definition, u′i(r, x) and f(t) denote the spatial and

temporal dependences, respectively. The first two factors in the definition of f(t) are introduced to
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remove the numerical discontinuity, with relaxation factor ε used to limit the influence of these two

factors, and ω acts as the frequency of the boundary perturbation if the final time τ is large enough.

The positive relaxation factor is set to ε = 100 throughout this work to ensure convergence.

The most energetic inflow perturbation can be defined as the perturbation that induces the

maximum gain, denoted as K, over time interval τ :

K = max
u′

i

∫
Ω
u′τ · u′τdV∫
∂Ω

u′i · u′ids
, (7)

where Ω and ∂Ω denote the computational domain and the inflow boundary, respectively, and u′τ

represents the perturbation at t = τ [29].

In order to calculate the optimal boundary perturbations, the adjoint equations of the LNS

equations (4) must also be introduced:

∂tu
∗ + U ·∇u∗ −∇U · u∗ −∇p∗ +Re−1∇2u∗ = 0 with ∇ · u∗ = 0. (8)

The LNS equations (4) are used to evolve the inflow velocity perturbation over time t = 0 to

t = τ . The adjoint LNS equations (8) can then be initialised using the final condition and evolved

backwards. Similar to the system described in Section II B, a Krylov sequence can be built using

the iterative process and the optimal or most energetic inflow perturbation can be extracted using

an Arnoldi method, as has been well documented in previous literature [29].

III. Discretisation and convergence

Since the base flow is homogeneous in the azimuthal direction, it can be calculated by 2D (x−r

plane) DNS. In global stability and boundary perturbation analysis, perturbations have a specified

azimuthal wavenumber and therefore the development can be also computed in the 2D domain. In

each 2D x− r plane, the domain is decomposed into 2223 spectral elements, as shown in Figure 1.

In each element, a spectral method with order P is adopted to further decompose it into a P × P

grid. For 3D DNS, a complex Fourier decomposition is applied to discretise the azimuthal direction

and 16 Fourier modes are calculated [30].

The growth rate of the most unstable mode at Re = 1000, α = 1.2 and m = 2 is displayed in

Table 1. The growth rate at P = 7 has converged to a relative error of less than 1% with respect
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(a) (b)

Fig. 1 Discretisation of (a) the overall domain and (b) the subdomain close to inflow boundary

and vortex axis, into spectral elements.

P Re(σ) % difference

3 0.827200 321.632

4 0.265930 35.547

5 0.204930 4.455

6 0.190980 2.656

7 0.198040 0.943

8 0.196190 -

Table 1 Convergence of the growth rate Re(σ) of the most unstable mode with respect to

the polynomial order P in spectral decomposition of each element. Parameters at Re = 1000,

α = 1.2 and m = 2.

to P = 8. At lower Reynolds number, the relative error is much smaller. Therefore, for cases with

Re = 1000, P = 7 is used to ensure accuracy, whereas at lower Reynolds numbers, P = 5 is adopted

to reduce computational cost.

IV. Base flow

Previous work undertaken by Ruith et al. [19] and Grabowski and Berger [18] demonstrated

that the base flow at Re = 200 and α = 1.2 contained one breakdown bubble, located immediately

downstream of the inflow boundary. Ruith et al. [19] further evaluated base flows up to Re = 500
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(a) (b) (c)

Fig. 2 Contours of streamwise velocity in the 2D steady base flow at Re = 1000 and (a) α = 1.2,

(b) α = 1.3 and (c) α = 1.6.

with α = 1, and found two recirculation regions in the highest velocity cases used. For these

parameter selections, the current results show good agreement in terms of the location and size of

the bubble. It is noted that these Reynolds numbers are still much smaller than that in aeronautical

engineering, but the observations can be expected to shed light to the higher Reynolds number cases.

To balance the need for real applications and computational cost, the present study is focused on

Re = 1000. To compare against existing works, Re = 200 and 500 are also considered and briefly

discussed.

The 2D flow at Re = 1000 and various α is displayed in Figure 2. Multiple smaller secondary

bubbles are observed trailing the large one immediately downstream of the inflow boundary. In

this study, the primary large bubble is referred to as the breakdown bubble and all downstream

features as wake structures. The base flow at α = 1.2 features two recirculation regions in the wake

of the primary bubble centred at x ≤ 1.5. Increasing to α = 1.3 produces very similar bubbles that

form slightly further downstream. At α = 1.6 the wake structures are elongated, and even though

the recirculation region of the primary breakdown bubble is smaller, the deflection of streamlines is

larger than that of lower coflow cases.

V. Global stability analysis

In this section, stability of the base flow and how it is affected by the evolution of its most

unstable mode is investigated. The growth rate of the most unstable modes at three Reynolds

numbers of interest, i.e. Re = 200, 500 and 1000, is displayed in Figure 3. Over the parameters

considered, the growth rate increases with Reynolds number and maximises at m = 1; all unstable

modes appear at either m = 1 or m = 2, a good agreement with previous work [19, 20]. At
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Fig. 3 The growth rate Re(σ) of most unstable modes at Reynolds numbers (a) Re = 200, (b)

Re = 500 and (c) Re = 1000.

Fig. 4 Iso-surface of λ2 coloured by streamwise velocity (red for most positive and blue for

most negative) for the most unstable mode at Re = 1000, α = 1.2 and m = 1. The grey bubbles

denote the recirculation zones in the base flow.

Re = 1000, the most unstable mode is found at α = 1.3, whereas for lower Reynolds numbers,

it is at α = 1.2; α = 1.6 is consistently the least unstable case. This is reinforced by a previous

observation at Re = 200 that the growth rates reduce when the axial velocity relative to the free-

stream is increased [19].

The most unstable mode for Re = 1000, α = 1.2 is shown in Figure 4 using the iso-surface of

λ2, whose negative value can be used to identify a vortex [31]. It is clear that the most unstable

mode takes the form of helical structures and is concentrated in the wake of the primary bubble

of the base flow. The frequency of this mode is ω = 1.2, which will be denoted as the instability

frequency in the following. Qualitatively, cases at α = 1.3 and 1.6 display very similar results where

the significant region of the most unstable eigenmode is far downstream from the primary bubble.

Influences of the instability can be studied through non-linear development of the most unstable

mode using 3D DNS. The iso-surface of λ2 = −1 of the DNS result at Re = 1000, α = 1.2 andm = 1

is displayed in Figure 5. In this figure the flow can be separated into two regions: the upstream

axisymmetric breakdown and the downstream helical structures, with a dominant wavenumber
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Fig. 5 Iso-surface of λ2 = −1 coloured by streamwise velocity at Re = 1000 and α = 1.2 obtained

by 3D DNS.

(a) (b)

Fig. 6 The gain K of the optimal boundary perturbations at (a) τ = 6 and various α, and (b)

α = 1.2 and various τ . The Reynolds number and azimuthal wavenumber are Re = 1000 and

m = 1, respectively.

m = 1. Therefore, similar to previously reported [20, 23], the global instability analysis in the

present work reveals the generation of helical structures downstream of the primary bubble observed

in both experiments and simulations. However, such an analysis does not explain the experimentally

observed coherent structures inside the primary bubble [15].

VI. Inflow boundary perturbations

As addressed in the above section, perturbations inside the domain do not induce low-frequency

coherent structures in the primary bubble. In this section, the inflow boundary perturbation is

considered to model effects of upstream disturbances. Azimuthal wavenumber m = 1, at which the

perturbation growth maximises as shown in Figure 3, is adopted in the following study.

The gain of optimal inflow perturbations is illustrated in Figure 6(a). To calculate the most

energetic boundary perturbation that induces largest energy growth inside the bubble, a small final

time, τ = 6, is adopted. Over the parameters considered, this gain maximises at coflow parameter
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(a) (b) (c)

Fig. 7 Contours of azimuthal vorticity (red for most positive and blue for most negative) in

the outcomes of the optimal inflow perturbations at t = 6. The inflow perturbation is obtained

at τ = 6, Re = 1000, α = 1.2, m = 1 and frequency (a) ω = 0 (b) ω = 1.2 (c) ω = 3.8.

α = 1.2, which will be the focus of the following analysis. Furthermore, the frequency of the inflow

perturbation (ω) has a significant impact on the gain. For α = 1.3 and 1.6, the largest gain is

at ω = 0, where K = 315.4 and 164.9, respectively. Whereas, the maximum gain for α = 1.2 is

K = 322.2 at ω = 1.2, which agrees with the instability frequency observed in Section V.

Effects of τ on the gain K is illustrated in Figure 6(b), where the coflow parameter is fixed at

α = 1.2. At small values of τ , low-frequency inflow disturbances are more amplified and the gain

reduces monotonically with ω. At higher values of τ , the perturbation field is dominated by the

global instability downstream of the primary bubble, and therefore, only reiterates the previously

well studied downstream helical structures displayed in Section V.

The optimal inflow perturbations obtained at τ = 6 and α = 1.2 are then evolved from t = 0 to

t = 6 using the LNS equations (4), as illustrated in Figure 7. The inflow perturbation is convected

by the base flow and develops spatially and temporally. Therefore, the transient response of the flow

to the inflow perturbation is dramatically different with the most unstable mode over the period

considered. It is noticed that at frequencies higher than the instability frequency, e.g. ω = 3.8,

the inflow perturbation is convected around the breakdown bubble, while at low frequencies, the

perturbation penetrates into the recirculating bubble region. This frequency dependence is in good

agreement with previous experimental studies [3, 15]. Note that this frequency selection behaviour

is analogous to shielding effect of boundary layer flow to free-stream noise [32].

The cases with α = 1.3 and 1.6 display similar mechanisms, with low frequency noise inside the

breakdown bubble and high frequency noise convected around. In the case of α = 1.6, the noise

propagates less into the recirculation region due to the smaller size of the axisymmetric bubble; this
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Fig. 8 Iso-surface of λ2 = −1 coloured by streamwise velocity. The flow is calculated through

3D DNS at Re = 1000 and α = 1.2, using the Grabowski profile with a random noise as the

inflow boundary condition.

Fig. 9 Power spectrum of the spanwise velocity at (x, r, θ) = (2, 0.5, 0) (inside the bubble) and

(20, 0.5, 0) (downstream of the bubble). The other parameters are the same as in Figure 8.

is likely to be the cause of lower gain (K) shown in Figure 6.

To confirm the above linear observations, 3D DNS with a turbulent inflow velocity condition

was conducted, as illustrated in Figure 8. It is clear that the axisymmetric bubble breakdown is

accompanied by helical noise structures inside, as predicted by the linear study, and the down-

stream unstable helical instabilities are also activated by the inflow noise. 3D DNS at other coflow

parameters were tested (not shown here) and similar structures were observed.

The velocity power spectrum extracted from the 3D DNS is presented in Figure 9. Inside the

bubble at (x, r, θ) = (2, 0.5, 0), the velocity fluctuation is prominent as the instability frequency

ω = 1.2 and lower frequencies. The low-frequency fluctuation reflects the transient amplification

of inflow disturbance observed in figure 6. At downstream location (x, r, θ) = (20, 0.5, 0), the

fluctuation is dominated by the instability frequency and its higher harmonics due to nonlinear

effects.
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VII. Conclusion

A well tested Grabowski profile was adopted in this work to unveil the dynamics in the primary

breakdown bubble of a vortex flow. Linear stability, optimal inflow perturbations and DNS were

undertaken to track the source of coherent structures inside the bubble, which have been observed

in previous experiments but not captured in global stability analysis.

Evaluating the BiGlobal stability allows the flow to be defined as an upstream primary bubble

breakdown with a downstream helical mode created by absolute instability within the wake of the

bubble, as found by Gallaire et al. [23]. Global stability studies were undertaken at three Reynolds

numbers, Re = 200, 500, and 1000. The growth rate increases with Reynolds number, with the

most unstable mode always at azimuthal wavenumber m = 1. The dominant instability mode at

Re = 1000, α = 1.2 and m = 1 has a frequency ω = 1.2. All the unstable modes are in the

downstream region and have limited effects on the breakdown bubble, in good agreement with

previous stability works [19, 23].

Through calculating the optimal inflow boundary perturbations amplified over the bubble re-

gion, the response of the breakdown bubble to inflow frequency is analysed. At high frequencies

(above the instability frequency ω = 1.2) the perturbation is convected around the bubble and

produces low energy growth, whereas low frequency perturbations propagate into the bubble and

result in higher energy growth. 3D DNS with a turbulent inflow condition was conducted and the

results confirm the linear observations that low-frequency inflow perturbation penetrates into the

bubble and develops into coherent structures. This low-frequency structure inside the bubble has

previously been examined experimentally [15] but has not been investigated numerically to reveal

its mechanism until now.
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