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Abstract

Neurons in the primary visual cortex respond to oriented stimuli placed in the center

of their receptive field, yet their response is modulated by stimuli outside the receptive

field (the surround). Classically, this surround modulation is assumed to be strongest if

the orientation of the surround stimulus aligns with the neuron’s preferred orientation

- irrespective of the actual center stimulus. This neuron-dependent surround modula-

tion has been used to explain a wide range of psychophysical phenomena, such as biased

tilt perception and saliency of stimuli with contrasting orientation. However, several

neurophysiological studies have shown that for most neurons surround modulation is in-

stead center-dependent: it is strongest if the surround orientation aligns with the center
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stimulus. As the impact of such center-dependent modulation on the population level

is unknown, we examine this using computational models. We find that with neuron-

dependent modulation the biases in orientation coding, commonly used to explain the tilt

illusion, are larger than psychophysically reported, but disappear with center-dependent

modulation. Therefore we suggest that a mixture of the two modulation types is neces-

sary to quantitatively explain the psychophysically observed biases. Next, we find that

under center-dependent modulation average population responses are more sensitive to

orientation differences between stimuli, which in theory could improve saliency detection.

However, this effect depends on the specific saliency model. Overall, our results thus

show that center-dependent modulation reduces coding bias, while possibly increasing the

sensitivity to salient features.

Keywords: surround modulation, population coding, tilt illusion, orientation saliency

New & Noteworthy

Neural responses in the primary visual cortex are modulated by stimuli surrounding the re-

ceptive field. Most earlier studies assume this modulation depends on the neuron’s tuning

properties, but experiments have shown that instead it depends mostly on the stimulus char-

acteristics. We show that this simple change leads to neural coding which is less biased and

under some conditions more sensitive to salient features.

Introduction

Neurons in the primary visual cortex (V1) of mammals respond to stimuli in the center of

their receptive field (RF). While stimuli that are in the surround outside the RF do not cause

a response by themselves, they can strongly modulate the response, as has been shown by

stimulation with center-surround grating pairs, Fig. 1A (Blakemore and Tobin, 1972; Maffei

and Fiorentini, 1976; Nelson and Frost, 1978; Fries et al., 1977; Gilbert and Wiesel, 1990;

Sillito and Jones, 1996; Girman et al., 1999; Jones et al., 2001; Freeman et al., 2001; Seriès

et al., 2003; Shushruth et al., 2012). Such surround modulation is thought to underlie many

perceptual phenomena, such as contrast perception of center-surround gratings (Shushruth et
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al., 2013), the saliency of a differently oriented bar among a background of identically oriented

bars (Sillito et al., 1995; Zhaoping, 1999; Petrov and McKee, 2006), and contour integration

(Zhaoping, 1998; Keemink and van Rossum, 2016). Furthermore, surround modulation has

been proposed to underlie the tilt illusion in which the center orientation is misjudged in the

presence of a surround grating (Clifford et al., 2000; Schwartz et al., 2009; Qiu et al., 2013;

Keemink and van Rossum, 2016). Crucially, the vast majority of studies investigating the

functional consequences of surround modulation assume that modulation depends on the an-

gular difference between the orientation of the surround stimulus and the preferred orientation

of the neuron. We term this type of modulation ‘neuron-dependent modulation’, Fig. 1B.

However, a number of experimental studies has found that when both the center and sur-

round orientations are varied, only a minority of neurons is modulated this way. For the

majority of V1 neurons the modulation depends instead on the difference between the orien-

tation of the surround stimulus and the center stimulus (Sillito et al., 1995; Cavanaugh et al.,

2002a; Shushruth et al., 2012). This has previously been succinctly expressed as: “The sur-

round maximally suppresses responses to what the center sees, not to what the center prefers”

(Cavanaugh et al., 2002a). We term this form of modulation ‘center-dependent modulation’,

Fig. 1C. Center-dependent modulation also emerges naturally from Bayesian models of per-

ception (Lochmann and Deneve, 2011; Lochmann et al., 2012) and neural models trained by

image statistics (Coen-Cagli et al., 2012), but despite being a well known phenomenon, the

functional consequences of center-dependent modulation are largely unknown.

In this study we compare neuron-dependent to center-dependent modulation using a phe-

nomenological model of V1 in which the surround modulation tuning can be set to either

variant, without affecting other properties of the model, so that any functional difference can

be solely attributed to the difference in modulation tuning. First, we consider the response to

center-surround stimuli and reproduce the well-known result that neuron-dependent modula-

tion leads to a bias in the decoding of the center orientation. This bias has been interpreted

as a possible neurophysiological correlate of the tilt illusion. In contrast, we find that center-

dependent modulation yields an unbiased representation of the center orientation (i.e. no
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tilt illusion). A mixed population with both modulation types quantitatively explains the

psychophysically observed tilt illusion magnitude.

Secondly, Shushruth et al. (2012) predicted that center-dependent modulation might lead

to increased relative responses to salient features (e.g. a single deviant bar amongst a field of

homogeneous bars). We test this by examining the effect of surround modulation on the coding

and saliency of fields of bars. As the exact mechanism for saliency detection is unknown, we

consider two extremes: the saliency of a bar either depends on its mean population response

relative to that of other bars, or on its maximum population response relative to that of

other bars. With the former saliency computation, center-dependent modulation leads to a

higher saliency signal than neuron-dependent modulation. With the latter, neuron-dependent

modulation leads to slightly higher saliency. Thus, center-dependent modulation could indeed

potentially lead to a stronger saliency signal than neuron-dependent modulation, but this

depends on the exact saliency computation.

Methods

Encoding model

Center surround model

To examine the functional differences between neuron-dependent and center-dependent sur-

round modulation, we compare two phenomenological models consisting of N = 32 neurons

with preferred orientations equally spaced in the interval [0, π]. Presented with just a center

grating, a neuron’s firing rate as a function of the orientation of the center stimulus, θc, is

modeled by a von Mises function (von Mises, 1918)

g(φi, θc) = Ac exp [kc{cos 2(φi − θc)− 1}] ,

where φi is the neuron’s preferred orientation, Ac is the peak firing rate (set to 20 Hz) which

is reached when the center equals the preferred orientation (φi = θc), and kc determines the

tuning width.
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Presented with both a center and surround stimulus the response f() is modeled as

fi(φi, θc, θs) = g(φi, θc)h(θref, θs),

where θref is the reference orientation (see below), θs is the surround orientation, and h()models

multiplicative modulation (Cavanaugh et al., 2002b). As surround modulation is typically

suppressive at medium and high contrast (Shushruth et al., 2012), we model it as

h(θref, θs) = 1−As exp [ks{cos 2(θref − θs)− 1}] , (1)

where As (0 ≤ As ≤ 1) determines the modulation strength, and ks sets the surround mod-

ulation tuning width. The strongest suppression is 1 − As. We fitted the parameters to the

average normalized tuning and modulation curves in Fig. 3D of Cavanaugh et al. (2002a) in

the region θ = −π/2 . . . π/2, which yielded As = 0.5, kc = 0.6, ks = 0.5. Note that the center

and surround tuning widths are quite similar in those data, however, this is not required for

our findings.

Crucially, θref in the modulation function h() can be set to either: 1) the neuron’s preferred

orientation (θref = φi), reflecting neuron-dependent modulation, or 2) the center orientation

(θref = θc), reflecting center-dependent modulation.

To test if the results hold more generally, in addition to this multiplicative modulation we

also examined a model with subtractive modulation (i.e. f = g − h), as has been observed in

a minor fraction of neurons (Cavanaugh et al., 2002b). This gave qualitatively similar results

(not shown).

In some cases noise was introduced by modeling the observed neural spike count as a

Poisson processes with a rate given by the tuning functions f(), such that ri = Poisson(fiT ).

The observation time T was set to 0.5s unless indicated otherwise. Qualitatively, the results

extend to Gaussian additive and multiplicative noise models (not shown).

Using an explicit model as above allows for both qualitative and quantitative analysis. It is

phenomenological, and includes neither biophysical mechanisms nor any dynamics, making it
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easy and intuitive to analyze. However, in the visual cortex surround modulation is mediated

through other neurons, thus involving recurrent interactions. Indeed, Shushruth et al. (2012)

demonstrated that center dependent modulation can be achieved through strong local recurrent

connections. However, in such a model it is not possible to clearly dissociate the modulation

strength from its degree of center dependency. Using the phenomenological model allows us

to study the effect of center-dependent modulation in isolation, without needing to resort to

lower level recurrent models.

Encoding configurations of multiple bars

The above model describes the response of a population of neurons with identical receptive

field locations to a center-surround grating pair. To encode stimuli consisting of arbitrary fields

of bars, we extend the model so that a neuron’s surround modulation is a product composed

of the modulation from the surrounding bars. The modulation is assumed distance-dependent

so that far away bars have little influence. The response of neuron i at 2D location x with

orientation θi, surrounded by K bars at locations yk is

fi = g(φi, θx)
K∏
k=1

[1− c2

|x− yk|2
h(θref, θk)],

where c is a length scaling factor set to one, the product is over all other bars, and θk is the

orientation of bar k. As before, θref is either the preferred orientation of neuron i at location

x, or the presented bar orientation at location x.

Decoding models

Population vector decoding

The population vector is given by the sum of the neurons’ preferred orientation vectors

weighted by their firing rate (Georgopoulos et al., 1986; Schwartz et al., 2009),

v̂c =
∑
i

riui, (2)

6

Downloaded from www.physiology.org/journal/jn by ${individualUser.givenNames} ${individualUser.surname} (128.243.002.030) on July 11, 2018.
Copyright © 2018 American Physiological Society. All rights reserved.



where ri is the firing rate, and ui = (sin 2φi, cos 2φi) is the unit vector pointing in neuron i’s

preferred orientation (multiplied by two to ensure circularity). The estimated center orienta-

tion θ̂c follows from the angle of the population vector

θ̂c =
1

2
∠v̂c ,

where ∠ denotes a vector’s angle.

In the absence of surround stimulation, the estimated center orientation is unbiased. Sym-

metry and circularity arguments yield that any orientation tuning curve g() that is symmetric

around its preferred orientation, i.e. a function of |φi − θc| only, yields a bias-free estimator.

This can be shown explicitly by using that for dense coding with many neurons, Eq.2 can be

written as

v̂c =

ˆ π

0
f(2[φ− θc])uφdφ,

where f(x) is an arbitrary function symmetric around 0 with periodicity in 2π, and uφ =

[sin 2φ, cos 2φ]T is the unit vector with angle φ. We make the substitution x = φ − θc such

that v̂c =
´ π
0 f(2x)ux+θcdx, where due to the circularity of f(2x) the integral limits are

unaltered. Considering the first vector element of v̂c

v̂(1)c =

ˆ π

0
f(2x)(cos 2x sin 2θc + cos 2θc sin 2x)dx

= sin 2θc

ˆ π

0
f(2x) cos 2xdx+ cos 2θc

ˆ π

0
f(2x) sin 2xdx

∝ sin 2θc.

Similarly, v̂(2)c =
´ π
0 f(2x) cos 2[x + θc]dφ ∝ cos 2θc. Resulting in v̂c ∝ vc, where vc =

[sin 2θc, cos 2θc]
T is the vector representation of the center orientation. Hence, unsurprisingly,

it is unbiased.
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Population vector decoding of center-surround stimuli

Next, we derive the bias in the presence of a surround grating. For neuron-dependent surround

modulation the estimated center orientation vector can be written as

v̂ndepc =

ˆ
g(φ, θc)h(φ, θs)uφdφ

= α(vc − βvshift), (3)

where α = 2πAch(θc, θs)I1(kc) is a scalar that does not affect the amount of bias, I1 is the

Bessel function of the first kind, and β = As exp(−ks)I1(|kcvc+ksvs|)/I1(kc). The shift vector

vshift = kcvc + ksvs biases the decoded orientation, where vs = [sin 2θs, cos 2θs]
T is the unit

vector associated to the surround. The bias is absent only when the surround is parallel or

orthogonal to the center. To our knowledge no such exact expression for the population vector

for von Mises tuning curves was published before.

In contrast, for center-dependent surround modulation, the estimated center orientation

vector becomes

v̂cdepc =

ˆ
g(φ, θc)h(θc, θs)uφdφ

= h(θc, θs)

ˆ
g(φ, θc)uφdφ

= αvc,

which is always unbiased.

Maximum likelihood decoding

With maximum likelihood decoding the likelihood of finding a particular population response

is maximized over all possible stimuli to find the most likely stimulus parameters θ̂ = (θs, θc)

as

θ̂ = argmaxθL(r|θ),
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where L indicates the log likelihood and r is the population response.

Under Poisson noise the log likelihood L(r|θc) = T
∑N

i=1 ri log(Tf(φi, θc, θs)) −

T
∑N

i=1 f(φi, θc, θs) −
∑N

i=1(riT )!. Without surround modulation
∑N

i=1 f(φi, θc, θs) =∑N
i=1 g(φi, θc) is approximately constant for dense tuning curves, and the stimulus depen-

dent part of the log likelihood L(r|θc) = T
∑N

i=1 ri log g(φi, θc). In the limit of low noise, so

that there are no secondary maxima (Xie, 2002), the estimated center orientation θ̂c can be

found by setting the derivative of the likelihood with respect to θc to zero, resulting in

θ̂c = arctan

(∑N
i=1 ri sinφi∑N
i=1 ri cosφi

)
, (4)

which is the angle of the population vector, Eq. 2. Hence at low noise the naive ML decoder

and the population vector decoder give fully identical results.

To decode the full center-surround stimulus we use an ML decoder which decodes both

the center and surround orientations. Under this condition
∑N

i=1 f(φi, θc, θs) is no longer

approximately constant, and the stimulus dependent part of the log likelihood becomes

L(r|θc , θs) = T
N∑
i=1

ri log [g(φi, θc)hi(θref, θs)]− T
N∑
i=1

g(φi, θc)hi(θref, θs).

To find the estimate of both center and surround orientation, (θ̂c, θ̂s), the likelihood needs to be

maximized with respect to both θc and θs. As to our knowledge there is no closed expression

for its solution, we maximized the log likelihood numerically, starting from different initial

conditions for the estimated stimulus to avoid local maxima. We generated several noisy

realizations of the population response r, and used gradient descent to find the stimulus pair

which maximized the likelihood.

Computer simulations

All data analysis and models were implemented in Python 2.7.13, using the Numpy 1.13.1 and

SciPy 0.19.1 toolboxes. The figures were plotted using the HoloViews toolbox (Stevens et al.,

2015).
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Results

To examine the functional differences between neuron-dependent and center-dependent sur-

round modulation, we compare two phenomenological models of V1, with parameters con-

strained by experimental data (Methods). The response of a neuron is modeled as the combi-

nation of the tuning curve for the orientation at the center, g(), and a multiplicative modulation

term h(). Apart from the surround orientation θs, the modulation term depends either on the

center orientation θc, or on the preferred orientation of the neuron φi. This leads to two subtly

different tuning curve variants:

f
ndep
i (φi, θc, θs) = g(φi, θc)h(φi, θs) neuron-dependent (5)

f
cdep
i (φi, θc, θs) = g(φi, θc)h(θc, θs) center-dependent (6)

These two variants can be seen as two extreme types of modulation; intermediate forms have

also been observed (Shushruth et al., 2012).

The single neuron responses of the two models are illustrated in Fig. 2. For neuron-

dependent modulation the suppression depends on the surround orientation and the preferred

orientation, and thus is strongest at the preferred orientation, Fig. 2A. In contrast, for the

center-dependent model, the modulation is strongest whenever center and surround orienta-

tions are aligned, Fig. 2B.

Tilt illusion and center orientation decoding

To examine the effect of the modulation type on coding biases, we decode the center orientation

from the population response. While many population coding studies concern the decoding

accuracy, i.e. the trial-to-trial variation and its relation to the neural noise model (e.g. Shamir,

2014), here we are interested in the biases in decoding, that is, the systematic mis-estimation

of the stimulus that remains after averaging over many trials (Seriès et al., 2009; Cortes et al.,

2012; Keemink and van Rossum, 2017).

A well-known perceptual bias is the tilt illusion (e.g. Westheimer, 1990; Clifford, 2014).
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In the tilt illusion the perceived orientation of a center grating is influenced by the presence

of a surround grating. For small and intermediate angles the tilt illusion is repulsive, and for

larger angles the illusion becomes weakly attractive. A shift in the population response under

neuron-dependent modulation has been hypothesized to underlie the tilt illusion (Clifford et

al., 2000; Schwartz et al., 2009; Qiu et al., 2013).

First, we decode the center orientation from the population response using the population

vector decoder (see Methods, Georgopoulos et al., 1986; Schwartz et al., 2009). We present a

center grating and a range of surround orientations and decode the center orientation. The

biases for both models are plotted against surround orientation, Fig. 3A. As expected and in

line with previous models, we find that the neuron-dependent model has a strong repulsive

bias. However, with center-dependent modulation this bias completely disappears.

These results can be understood from how the two modulation types affect the population

response, Fig. 4. Neuron-dependent modulation depends on the preferred orientation of each

neuron, thus modulating each neuron differently and shifting the population response away

from the surround orientation, resulting in a repulsive illusion (Fig. 4solid curves in the middle

and bottom rows). Center-dependent modulation instead depends on the center stimulus,

irrespective of the preferred orientation, thus modulating each neuron equally. This reduces,

but does not shift, the population response, resulting in zero bias, (Fig. 4 dashed curves in

the middle and bottom rows). The absence of bias extends to all models where surround

modulation is felt equally across neurons, whether the surround modulation is multiplicative,

subtractive or some combination of both, that is, for all models of the form fi(φi, θc, θs) =

g(φi, θc)h(θc, θs) + k(θc, θs), where k() is a function describing subtractive modulation.

The bias for neuron-dependent modulation can be calculated exactly. The population

vector v̂ndepc is a function of both the center stimulus (represented by unit vector vc) and the

surround stimulus (Methods, Eq. 3),

v̂fixc ∝ (vc − βvshift), (7)

where β is a positive number. The shift vector vshift = kcvc + ksvs lies between vc and vs
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(except if θc = θs +
1
2πn, when it points at vc). Due to the minus sign in Eq. 7, the vector

v̂fixc is repelled from vshift. The amount of repulsion, given by β and vshift, depends on the

modulation strength As, as well as the tuning widths, as given by kc and ks. The bias increases

with decreasing kc (broader tuning curves) and increasing ks (sharper surround modulation).

The above results use the population vector, which does not take the effect of the surround

modulation into account. To get a better idea of what the population can in principle encode

we use the maximum likelihood (ML) decoder, which finds the stimulus that most likely caused

the observed response (Kay, 1993; Xie, 2002; Pilarski and Pokora, 2015). When the ML decoder

is constructed such that it is naive to the effects of surround modulation, it performs identically

to the population vector (see Methods). Next, we implement an ML decoder that takes the

full encoding model into account and infers both the center and surround orientation from the

population response. The ML decoder is applied to responses drawn from a Poisson process

(see Methods, Eq. 4). The estimate (θ̂c, θ̂s) is found by maximizing the likelihood with respect

to both angles, and the corresponding center biases is given by bc = 〈θ̂c〉 − θc.

For neuron-dependent modulation the ML decoder bias is still present, but reduced com-

pared to the population vector decoder, Fig. 3B. The average bias across surround orientations

is shown as a function of stimulus duration in Fig. 3C, assuming perfect temporal integration

by the decoder. In the limit of very long measurement time (i.e. zero noise) the likelihood

landscape becomes very steep and is maximal when (θ̂c, θ̂s) = (θc, θs), i.e. the estimate equals

the true value and hence the bias is zero for both neuron- and center-dependent modulation.

In contrast, the bias of the population vector decoder is independent of stimulus duration (gray

curves). For center-dependent modulation the estimates are again bias-free, independent of

decoding model, Fig. 3B+C.

Decoding from a mixed population

While a majority of neurons seems to exhibit center-dependent modulation, some neurons

exhibit neuron-dependent modulation, while others show intermediate tuning (Shushruth et

al., 2012). We measure the bias in such a mixed population by varying the percentage of
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center-dependent vs. neuron-dependent neurons. We model 3200 neurons, such that there

are a 100 neurons per preferred orientation. When we decode the center orientation using

the population vector, the amount of bias strength is simply proportional to the percentage

of neurons with neuron-dependent modulation, Fig. 3D. The ML decoder qualitatively shows

the same dependence on neurons with neuron-dependent modulation, with a lower overall bias

(not shown). In the Discussion we use these results to compare psychophysical to neural data.

Saliency based on orientation contrast

Surround modulation is thought to underlie the saliency of stimuli that have an orientation

different from their surround (Sillito et al., 1995; Zhaoping, 1999; Petrov and McKee, 2006).

While saliency computation likely includes feedback from higher areas, it has been proposed

that part of the saliency is computed from the V1 responses in a feed-forward manner, so-called

bottom-up saliency (Zhaoping, 1999, 2002). In this model salient feature have a higher response

than less salient features. Compared to neuron-dependent modulation, center-dependent mod-

ulation has previously been hypothesized to increase the response to salient features relative

to less salient features (Shushruth et al., 2012).

We examined how surround modulation type affects visual saliency, using stimuli consisting

of multiple bars. A population of orientation selective neurons is associated to each bar; the

neurons’ surround consists of the other bars, which individually modulate its response in a dis-

tance dependent manner (Methods). We present the neuron-dependent and center-dependent

modulation variants of this model with various bar configurations, Fig. 5 left column.

As the exact nature of saliency computation is unknown, we define two measures of saliency.

First, we assume that the saliency of a given bar (the target) is given by the maximum response

across all orientations at the target location, relative to the average maximum response to all

bars in the image,

smax =
max(rt)

〈max(rx)〉
,

where rt and rx are the population responses at the target and x locations respectively,
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max(r) is the maximum across a local population response, and 〈〉 denotes an average across

all locations. Thus if the maximum response to a bar is higher than most other bars in an

image, its saliency will be larger than one.

Secondly, we consider a saliency measure which compares the mean response of a target-bar

population to the mean response of all bars in the image (Zhaoping, 1999),

smean =
mean(rt)
〈mean(rx)〉

.

Both averaging and max-like pooling have been proposed as canonical computations for

the visual cortex. The two types of saliency computation can be seen as extremes of the more

generic computation where the saliency is a non-linear sum of firing rates in a population

s(p) ∝ [
∑

i r
p
i ]

1/p, where the exponent p = 1 for average-based salience, and p → ∞ for

max-based saliency.

Using either saliency signal, under either surround modulation type, features of interest

have increasing saliency as the orientation differences increase. This is illustrated for a single

contrasting bar or central set of bars (Figs. 5A+B), for a simple contour (Fig. 5C), and a

boundary region between two differing groups (Fig. 5D). These results are consistent with the

experimentally observed increase in neural responses and the perceived contrast of a deviant

central grating (Cannon and Fullenkamp, 1990; Shushruth et al., 2013), as well as with previous

saliency models using neuron-dependent modulation (e.g. Zhaoping, 1999; Keemink and van

Rossum, 2016). The increase in saliency is due to target populations being less strongly

suppressed than background populations (which have many surrounding stimuli of the same

orientation).

With max-based saliency, neuron-dependent modulation will lead to slightly higher saliency

for intermediate orientation differences and the same saliency for perpendicular orientation

differences, Fig. 5 middle column. The saliences are very similar because either modulation

type leads to similar changes in the maximum firing rates when the orientation difference is

increased, see the insets of the middle column.

Mean-based saliency leads to the opposite scenario, with center-dependent modulation
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leading to higher saliency across all orientation differences, Fig. 5 right column. This is

due to center-dependent modulation leading to stronger mean response changes than neuron-

dependent modulation, see the insets of the right column. Similarly to the bias results, this

occurs because center-dependent modulation is the same across a population. In the case of

parallel bars, with center-dependent modulation, all neurons responding to one bar will be

suppressed as strongly as the most suppressed neuron under neuron-dependent modulation

(Fig. 4 left column), and as weakly as the least suppressed neuron under neuron-dependent

modulation for perpendicular bars (Fig. 4 right column).

While here we used experimentally constrained parameters, by assuming that bars in the

feature have negligible influence on the responses to the rest of the image (as is the case for

small features such as a single bar), we show that these results hold more generally (Appendix):

smean is always larger for center-dependent modulation at perpendicular orientations, while

under some broad assumptions smax is always lower for intermediate orientations.

Discussion

We compared two types of surround modulation in V1: 1) neuron-dependent modulation,

which is strongest when the surround orientation equals the neuron’s preferred orientation,

and 2) center-dependent modulation, which is strongest when the center and surround stimuli

are aligned. Surround modulation is often used to explain observed perceptual biases and

orientation saliency, assuming neuron-dependent modulation. In this paper we asked how

center-dependent modulation, the biologically more prevalent modulation, impacts these find-

ings.

We first examined orientation coding biases by decoding the center orientation from the

population response. Under neuron-dependent surround modulation, due to each neuron being

modulated differently, a population vector decoder has a strong repulsive tilt bias, irrespective

of the observation time or number of neurons in the population, as is well known from existing

tilt illusion models (Blakemore et al., 1970; Clifford et al., 2000; Schwartz et al., 2009). For a

maximum likelihood (ML) decoder that takes the effect of surround modulation into account,
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a similar bias emerges. However, in this case the bias depends on the neuronal noise level and

disappears in the zero noise limit. In contrast, for a center-dependent modulation, where the

modulation is identical across the population, bias is completely absent for either decoder.

In the tilt-after effect, where the orientation of a full field grating is misjudged when pre-

sented after a differently oriented adapter grating (Schwartz et al., 2007), similar dependences

of the bias on modulation type have previously been described. Seriès et al. (2009) showed

that an ML decoder with no knowledge of the adapter is biased if the adaptation depends on

the preferred orientation, but that if the adaptation instead depends on the test orientation

(the equivalent of center-dependent modulation), the bias disappears (see their Fig. 6C). Jin et

al. (2005) investigated the effect of specific tuning curve changes on the tilt-after-effect. They

found that tuning curve shifts away from the adapter cause an attractive bias, and tuning

curve magnitude changes cause a repulsive bias. For neuron-dependent surround modulation,

the tuning curves are modulated, but not shifted, resulting in the repulsive bias. For center-

dependent modulation both tuning curve shifts and magnitude changes occur, with the net

effect of these two tuning curve changes resulting in zero bias.

What do our results mean for the origin and magnitude of the tilt illusion? Using a model

based on the majority of V1 neurons, i.e. with center-dependent modulation, the illusion dis-

appears. Using our neuron-dependent model and with parameters fitted to monkey V1 data,

a population vector decoder leads to a repulsive bias of maximally 12 degrees, compared to

about 3 degrees psychophysically (Clifford, 2014). We therefore propose that the tilt illusion

stems from a mix of center and neuron-dependent modulated neurons, Fig. 3D. A maximum

repulsive bias of 3 degrees would correspond to a population with about 75% center-dependent

and 25% neuron-dependent modulation. While extracting a quantitative match between mon-

key neural tuning curve properties and human psychophysics is full of pitfalls, and depends

on the decoder used, this ratio is reasonable. Similar arguments would hold for a population

which is not strictly binary in its modulation type, but has some distribution of modulation

ranging from fully center- to neuron-dependent. Both types of modulation (as well as inter-

mediate cases) have been observed electro-physiologically and although a specific ratio is hard
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to infer from current literature, center-dependent modulation is indeed more prevalent (Sillito

et al., 1995; Cavanaugh et al., 2002a; Shushruth et al., 2012).

The bias of an ML decoder decoding only from neuron-dependent neurons was smaller

than that of the population vector, providing an alternative explanation for the magnitude

of the psychophysically observed bias. In contrast to the population vector (and modulation-

naive ML decoders), the bias in the ML decoder depends on the noise and disappears at lower

noise levels, Fig. 3C. While several studies have reported effects of the presentation time on

the bias magnitude, the results are conflicting. Several studies indeed reported a decrease in

bias magnitude with presentation time (Calvert and Harris, 1985; Wenderoth and Johnston,

1988b; Wenderoth and van der Zwan, 1989), but some studies found an increase in tilt illusion

with presentation time (O’Toole, 1979) or an increase for shorter timescales and a decrease

for longer time scales (Calvert and Harris, 1988). The illusion was present in all these studies,

even when subjects were free to rotate a test grating until it matched the perceived vertical

(Wenderoth and Johnston, 1988a), thus arguing against a ML decoder with perfect temporal

integration and rendering this explanation of reduced tilt illusion less parsimonious.

The full tilt illusion has both a repulsive (for most orientation differences) and a weakly

attractive effect (for larger orientation differences). However, our current model does not

exhibit an attractive bias. While the origin of the attractive illusion is debated, in our model

it could be achieved by adding an excitatory term similar to the current h term. Excitatory

modulation from a surround stimulus does exist with low stimulation (a low contrast center

grating with a thin surround annulus), but is also mainly center dependent (Shushruth et al.,

2012). Yet in preliminary work we were not able to construct modulation curves that would

lead to an attractive tilt illusion and also reasonably fit the Cavanaugh data; a bias only

appeared for neuron-dependent modulation (whether inhibitory or excitatory).

Center-dependent modulation has previously been hypothesized to increase the relative re-

sponse to more salient features (Shushruth et al., 2012). We examined the saliency of a variety

of stimuli consisting of bar configurations containing differing features amongst a homogeneous

background. Either surround modulation type results in a bottom-up saliency signal as the
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response to the target is higher than the background response. For saliency based on the max-

imum response there was only a small difference between the two surround modulation types,

while for saliency based on the mean population response, the larger response differences be-

tween salient and non-salient locations leads to a stronger saliency signal for center-dependent

modulation. These results confirm that center-dependent modulation might lead to stronger

saliency signals, but show that this depends strongly on the exact saliency computation.

Recent work has argued that center-dependent modulation emerges from a normative per-

spective. Lochmann and Deneve (2011) and Lochmann et al. (2012) built a spiking network

model with connections that are loosely derived from a Bayesian probability model. Similarly,

Coen-Cagli et al. (2012) based the connectivity in a neural model on the image statistics at

several surround locations. In both models center dependent modulation seems to emerge

automatically, from which one could argue that that center dependence follows from these

theories. One reason their models are center-dependent could be that they implicitly assumed

an unbiased encoding of the stimulus, as they are defined as probabilistic representations of

an unbiased scene; the only way to fit parameters under such a decoder, is for the surround

modulations to be center-dependent. We predict that in both these models the tilt illusion is

absent.

In summary, seemingly minor changes in the modulation of neuronal tuning curves, can

have important functional consequences. Recurrent effects are currently not explicitly included

in the model, and it would be of interest if the model responses to more complex inputs (e.g.

Fig. 5D) correctly predict electrophysiological or psychophysical data. It would be of interest

to know whether our arguments translate to other domains and levels of sensory processing,

where most experimental studies have examined contextual modulation while presenting the

preferred stimulus in the RF.
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Appendix

Maximum-based saliency

Here we show that under some assumptions center-dependent modulation leads to a lower

saliency signal for saliency based on the maximum response. In other words, the solid line in

the inset of Fig. 5A, middle column, lies above the dashed line.

We denote the response of a neuron with neuron-dependent modulation by

fndep(φ, θs) = g(φ, 0)h(φ, θs),

and a center-dependent neuron by

fcdep(φ, θs) = g(φ, 0)h(0, θs),

where we treat the preferred orientation φ as a continuous variable (i.e. in the limit of infinite

neurons) and assumed θc = 0. In other words, θs equals the center-surround orientation

difference. We assume negligible influence from the target on the overall responses to the image,

such that background bars only experience parallel surrounds, and target bars experience only

the background as a surround. The saliences of the target are then

19

Downloaded from www.physiology.org/journal/jn by ${individualUser.givenNames} ${individualUser.surname} (128.243.002.030) on July 11, 2018.
Copyright © 2018 American Physiological Society. All rights reserved.



sndep(θs) =
maxφf

ndep(φ, θs)

maxφ fndep(φ, 0)
neuron-dependent

and

scdep(θs) =
maxφ f

cdep(φ, θs)

maxφ fcdep(φ, 0)
center-dependent.

First we note that across the population f cdep(φ, θs) is maximal when φ = 0, i.e. when the

center stimulus aligns with the preferred orientation, independent of the surround orientation.

This maximum is g(0, 0)h(0, θs).Meanwhile, in the neuron-dependent model the activity of the

neuron with preferred orientation θc is

fndep(0, θs) = g(0, 0)h(0, θs) = max
φ

fcdep(φ, θs).

In other words, the neuron with the highest activity in the center-dependent model always

has the same activity as the corresponding neuron in the neuron-dependent model, as can be

observed from the intersection of solid and dashed curves at φ = 0 in the inset of the middle

column of Fig.4.

However, in the neuron-dependent model the corresponding neuron is not the neuron with

the highest activity. To see this, consider the derivative of the activity with respect to the

preferred orientation

d

dφ
fndep(φ, θs) = −kc sin(φ)fndep(φ, θs) + ks sin(φ− θs)g(φ, 0)m(φ, θs)

which at φ = 0 equals

d

dφ
fndep(0, θs) = −ks sin(θs)g(0, 0)m(0, θs).

This is only zero if θs = 0+nπ, showing that fndep(0, 0) is generally not an extremum. There

must therefore be a preferred orientation where fndep(φ, θs) > fcdep(0, θs). Under the reason-

able assumption that in the background condition the maximum response fndep(φ, θs) occurs
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when φ = 0, center-dependent modulation thus leads to a lower maximum-based saliency

signal for intermediate orientations.

Mean-based saliency

Here we demonstrate that saliency based on the mean responses always gives higher saliency

with center-dependent modulation at perpendicular orientations, than with neuron-dependent

modulation, as in Fig. 5A. We assume negligible influence from the target on the overall

responses to the image, such that background bars only experience parallel surrounds, and

target bars experience only the background as a surround.

For dense coding across many neurons the mean response to a single bar with orientation

θc = 0 can be written as an integral

1

π

ˆ π

0
g(φ, 0)dφ = 2Ac exp(−kc)I0(kc).

For a background bar (which is surrounded by equally oriented bars, and thus θc = θs) the

mean response is

mean(rb) =
1

π

ˆ π

0
g(φ, 0)h(θref, θs)dφ.

Substituting θc = 0 and φi for θref we find

mean(rb) = 2Ac exp(−kc)I0(kc)h(0, 0) center-dependent

and

mean(rb) = 2Ac exp(−kc) [I0(kc)−As exp(−ks)I0(|(kc + ks)vc|)] neuron-dependent.

The mean response to the target bar (which has a different orientation from the surrounding
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bars) meanwhile is

mean(rt) = 2Ac exp(−kc)I0(kc) [1−m(0, θs)] center-dependent

and

mean(rt) = 2Ac exp(−kc) [I0(kc)−As exp(−ks)I0(|kcvc + ksvs|)] neuron-dependent.

The saliency of a deviant bar follows as

scdep(θs) =
h(0, θs)

h(0, 0)
center-dependent

and

sndep(θs) =
1−As exp(−ks)I0(|kcvc + ksvs|)/I0(kc)

1−As exp(−ks)I0(kc + ks)/I0(kc)
neuron-dependent.

While we found no proof that sndep < scdep for all orientations θs, we can compare the

non-salient to the most salient condition. In the non-salient co-linear condition , i.e. θs = 0

the saliency is the same for both modulation types:

sndep(0) = scdep(0) = 1.

In the most salient condition of orthogonality, i.e. θs = π/2, the saliences are given by

scdep(
π

2
) =

1−As exp(−2ks)
1−As

center-dependent

and

sndep(
π

2
) =

1−As exp(−ks)I0(kc − ks)/I0(kc)
1−As exp(−ks)I0(kc + ks)/I0(kc)

neuron-dependent.

Assuming that kc, ks > 0 and ks > 0, it follows that 1 − As exp(−2ks) > 1 −

As exp(−ks) I0(kc−ks)I0(kc)
and 1−As < 1−As exp(−ks) I0(kc+ks)I0(kc)

, and thus

scdep
(π
2

)
> sndep

(π
2

)
.
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In other words, the relative change in firing rate from iso-oriented to perpendicular orientations

in Fig. 4A is larger for center-dependent modulation than for neuron-dependent modulation.
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Figure 1: Two types of V1 surround modulation. (A) Center-surround stimuli consisting of a
center grating covering the neuron’s classical receptive field and a larger grating covering the
surround. (B) Responses of an example cell with neuron-dependent modulation. Modulation
is strongest when the surround matches the neuron’s preferred orientation (stars indicate the
strongest suppression for each center orientation). The height of the boxes is proportional to
the neural response. ‘Opt’ corresponds to the neuron’s preferred center orientation, ‘Orth’ to
the orthogonal orientation, and ‘Sub’ and ‘Wk’ correspond to two intermediate orientations.
(C) Same as B, but for the more common case of a neuron with center-dependent modulation.
Here the stars shift with the center orientation, indicating that suppression is strongest when
the center and surround stimulus orientations are aligned. Data in B and C courtesy of
Shushruth and Angelucci (Shushruth et al., 2012).

Figure 2: Modeled single neuron responses to center-surround gratings, for neuron-dependent
and center-dependent surround modulation. (A) The neural response for different center
orientations (0, 30, and 60 degrees) against the surround orientation, for neuron-dependent
surround modulation. The center orientations are indicated by the dashed lines and their
respective colors. The curves do not shift horizontally, since modulation does not depend on the
center orientation. (B) Same as A, but for center-dependent modulation. As modulation is now
strongest when center and surround are aligned, the curves shift with the center orientation.

Figure 3: Decoding biases in the estimate of the center stimulus orientation with neuron- and
center-dependent modulation. (A) Center orientation bias of the population vector decoder
(derived and measured curves overlap exactly in absence of noise). (B) The bias for the
Maximum Likelihood (ML) decoder, which takes the influence from the surround into account.
The bias was averaged across presentation angles over 5000 realizations and 0.5s measurement
time. (C) The measurement time dependence of the absolute bias averaged over all surround
orientation. The bias for each measurement time was averaged over 500 trials. Neuron-
dependent modulation always leads to a bias, which decreases for longer measurement times
for the ML decoder. Center-dependent modulation never results in a bias (black and gray
dashed curves overlap). (D) The bias in the population vector decoder pooling from a mixed
population with both types of surround modulation.

Figure 4: Population responses for either surround modulation model. The stimuli for each
column are shown in the top panels. Top: center drive across the population. Middle: amount
of surround modulation across the population for neuron-dependent modulation (solid curve),
and center-dependent modulation (dashed curve). A modulation strength of one corresponds
to no suppression. Bottom: resulting population responses.
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Figure 5: Saliency for center-dependent and neuron-dependent modulation and for two saliency
measures. (A) A single deviant bar amongst a homogeneous background. Left: Presented
scene. Middle: The saliency of the central deviant bar as a function of its orientation difference
with the background, calculated from the maximum responses. The inset shows how the
maximum firing rate to the central bar changes under the two modulation types. Right: Same
as the middle panel, but with the saliency calculated from the mean responses. The inset shows
the mean firing rates to the central bar. (B) A group of deviant bars amongst a homogeneous
background. The saliency and firing rates were averaged over the 9 deviant bars. (C) A
set of diagonal bars amongst a homogeneous background. The saliency and firing rates were
averaged over the bars on the diagonal. (D) Two groups of bars with differing orientations,
creating a boundary region. The saliency and firing rates were averaged over the bars at the
boundary region. Periodic boundary conditions were imposed in all panels to prevent edge
effects.
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