
Real-Time Monitoring for Explosive

Financial Bubbles∗

Sam Astilla, David I. Harveyb, Stephen J. Leybourneb, Robert Sollisc and A.M. Robert Taylora

a. Essex Business School, University of Essex.

b. Granger Centre for Time Series Econometrics and School of Economics, University of Nottingham.

c. Newcastle University Business School.

May 24, 2018

Abstract

We propose new methods for the real-time detection of explosive bubbles in financial time

series. Most extant methods are constructed for a fixed sample of data and, as such, are

only appropriate when applied as one-shot tests. Sequential application of these, declaring

the presence of a bubble as soon as one of these statistics exceeds the one-shot critical

value, would yield a detection procedure with an unknown false positive rate likely to be

far in excess of the nominal level. Our approach sequentially applies the one-shot tests

of Astill et al. (2017), comparing sub-sample statistics calculated in real time during the

monitoring period with corresponding sub-sample statistics obtained from a prior training

period. We propose two procedures: one based on comparing the real time monitoring

period statistics with the maximum statistic over the training period, and another which

compares the number of consecutive exceedances of a threshold value in the monitoring

and training periods, the threshold value obtained from the training period. Both allow

the practitioner to determine the false positive rate for any given monitoring horizon, or to

ensure this rate does not exceed a specified level by setting a maximum monitoring horizon.

Monte Carlo simulations suggest that the finite sample false positive rates lie close to their

theoretical counterparts, even in the presence of time-varying volatility and serial correlation

in the shocks. The procedures are shown to perform well in the presence of a bubble in the

monitoring period, offering the possibility of rapid detection of an emerging bubble in a real

time setting. An empirical application to monthly stock market index data is considered.
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1 Introduction

The presence of historical asset price bubbles, in which asset prices rise well above their fun-

damental value at a particular point in time, is widely documented. Well-known historical

episodes include the South Sea bubble of 1720, the Dot-Com bubble that originated in the mid

1990s and the US housing market bubble of the late 1990s and early 2000s, while the Bitcoin

price can be seen as a very recent example. In all instances asset prices, having risen to un-

sustainable levels, were subject to large crashes, causing significant economic damage. Given

the damage caused by the collapse of asset price bubbles it is of vital importance for policy

makers to be able to identify asset price bubbles as they occur in order to attempt to limit their

economic damage.

In light of this, a number of tests for asset price bubbles have been proposed in the economic

and financial literature. The seminal paper of Diba and Grossman (1998) proposed testing for

asset price bubbles using standard left-tailed augmented Dickey-Fuller [ADF] test statistics

applied to both the levels and first differences of a series. More recently, the detection of asset

price bubbles using right-tailed ADF tests applied to the levels of a series has been discussed

in depth. The first contribution in the literature was made by Phillips et al. (2011), who

developed a test of the null of no explosive behaviour against the alternative of explosivity

based on a sequence of forward recursive right-tailed ADF statistics applied to both the price

and dividend series of a particular asset, with a bubble signalled if explosivity is found in the

price series but not in the corresponding dividend series.

While early contributions, such as those of Diba and Grossman (1998) and Phillips et al.

(2011), were designed to detect a historical asset price bubble in a series, the policy relevance

of detecting an historical bubble episode is perhaps limited given that the subsequent collapse

of such bubbles will already have occurred. Arguably of considerably more empirical interest

is the detection of on-going asset price bubbles. As such, recent developments in the literature

have focussed on detecting end-of-sample asset price bubbles prior to their collapse. Phillips et

al. (2015) proposed tests for an end-of-sample bubble based on a sequence of backward recursive

ADF statistics applied to the price and dividend levels of a series, and show that performing a

recursion in this manner yields a test with better power to detect end-of-sample bubbles than

the tests of Phillips et al. (2011). More recently, Astill et al. (2017) [AHLT] proposed a test for

end-of-sample asset price bubbles in which a test statistic is applied to the first differences of

a small number of end-of-sample observations. Critical values for the test are estimated using

the sub-sampling method of Andrews (2003) and Andrews and Kim (2006), whereby a large

number of statistics analogous to the statistic of interest are calculated over a training period

within which the null hypothesis of no explosivity is assumed to hold. AHLT show that this

method displays greater power than the tests of Phillips et al. (2015) for the sort of short-lived

end-of-sample bubble episodes that are arguably of most interest to practitioners.

A major limitation of the tests described above is that they are designed for use as one-shot
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tests applied at a given nominal significance level. In practice, it would arguably be more useful

for practitioners to be able to sequentially apply a test for asset price bubbles as new data points

are obtained as part of an on-going real-time monitoring exercise. While sequential application

of the tests of Phillips et al. (2015) or AHLT using the critical values appropriate for their use

as one-shot tests could be considered for such a monitoring exercise, these would not be size

controlled because the overall false positive rate (FPR), defined to be the probability of at least

one test in the sequence rejecting when the null was true and, hence, no bubble was present,

of such a monitoring procedure would be unknown. Sequentially performing these tests in this

manner would lead to an FPR that would likely be well above the nominal level at which the

individual tests are performed, and would increase, other things being equal, as the monitoring

horizon grew, because of the usual multiple testing problem.

In response to the multiple testing issues discussed above, Homm and Breitung (2012) intro-

duce a CUSUM-based monitoring procedure which under certain conditions controls the FPR

when monitoring multiple periods into the future. A limitation of their CUSUM procedure,

however, is that using critical values based on asymptotic theory leads to an overly conserva-

tive test. Homm and Breitung (2012) therefore recommend using finite sample critical values

simulated from a Gaussian random walk. Although in large samples the FPR of this procedure

is not dependent on the Gaussianity assumption, non-normality could have an impact with

small sample sizes. Moreover, their recommended approach is based on the assumptions that

the driving shocks are unconditionally homoskedastic and are serially uncorrelated. The for-

mer is especially relevant when testing for the presence of bubbles; see, for example, Harvey et

al. (2016, p.549) who argue that “...volatility changes in innovations to price series processes

could be induced by the presence of a speculative bubble, but equally it could be the case that

changes in volatility occur without an explosive bubble period occurring.” They show that the

ADF-based bubble detection tests of Phillips et al. (2011) can display severe over-rejections of

the null when time-varying volatility, rather than an explosive bubble, is present in the data. As

we will show in section 4 this is also the case for the CUSUM procedure whose empirical FPR

can be severely inflated in the presence of time-varying volatility. This is especially problematic

for bubble detection procedures because time-varying volatility appears to be a common trait

exhibited by financial time series data.

We propose a solution to the real time inference problems outlined above using the monitor-

ing procedure methodology recently proposed by Harvey et al. (2018) [HLST] for the purposes

of predictive regime detection. Specifically, HLST propose a monitoring procedure for predictive

behaviour that involves the sequential application of one-shot t-tests for the null of no predic-

tive behaviour in a small number of observations applied at multiple sequential points in time

over a given monitoring horizon. In the scenario considered in HLST the null of no predictive

behaviour in the monitoring period is rejected if the number of contiguous rejections signalled

by individual t-tests in the monitoring period exceeds some threshold value when performed at

a given nominal significance level. Critical values for the individual t-tests are obtained using
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the sub-sampling method of Andrews (2003) and Andrews and Kim (2006) where it is assumed

a training period of observations in which the null of no predictive behaviour holds is available

to the practitioner. The methods of HLST allow the theoretical FPR of the procedures to be

determined for any given monitoring horizon, or, equally, can be used to ensure that the FPR

does not exceed a specified level by setting a maximum monitoring horizon.

Using the approach developed in HLST, we develop a monitoring procedure for the detec-

tion of asset price bubbles in which an explosive bubble is detected in the monitoring period

if the number of contiguous rejections signalled by the AHLT test performed at some pre-

determined significance level exceeds some threshold value. We also propose a modification to

the methodology of HLST in which a bubble is identified if any given test statistic calculated

in the monitoring period exceeds the largest analogous sub-sample statistic calculated in the

training period, thereby obviating the need to calculate a training period critical value. In

line with the HLST methodology, both procedures permit calculation of the FPR at any given

point in the monitoring period. The theoretical FPR for the procedure does not require us to

assume that the driving shocks are homoskedastic or serially uncorrelated. We also propose

a union-of-rejections approach in which an asset price bubble is signalled if either of our two

proposed monitoring procedures signals the presence of a bubble. Simulations show that both

approaches have finite sample empirical FPR properties that closely mimic the asymptotic re-

sults under the null of no explosivity, including cases where the series under investigation is

driven by shocks that may exhibit time-varying volatility and/or serial correlation. Under the

alternative hypothesis where a bubble occurs in the monitoring period, both procedures are

shown to have an appealing true positive rate (TPR), defined as the probability of correctly

detecting a bubble having monitored up to a given point in the monitoring period. The pro-

cedures therefore offer the possibility of rapid detection of an emerging bubble in a real time

setting.

The remainder of this paper is structured as follows. Section 2 outlines the data generating

process [DGP] assumed for end-of-sample asset price bubbles. Here we also outline the sub-

sample based test of AHLT. Section 3 discusses how the AHLT test can be adapted to construct

monitoring procedures for detecting asset price bubbles with a known FPR at any given point.

Section 4 presents results of finite sample simulations in which we examine the empirical FPR

and TPR of our proposed monitoring procedures. Section 5 presents results from an empirical

application to monthly stock market index data. Section 6 concludes.

2 The Model and the AHLT Test

It is well known in the rational bubble literature that where bubbles are present they should

manifest explosive characteristics in prices; see, for example, Diba and Grossman (1988). This

statistical property has motivated the use of an autoregressive model which in some periods

admits a unit root while in other periods exhibits explosive autoregressive behaviour; see, inter
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alia, Diba and Grossman (1988), Phillips et al. (2011), Homm and Breitung (2012), Phillips et

al. (2015), Harvey et al. (2016), Harvey et al. (2017), and AHLT. Following these authors, we

will consider the time series process {yt} generated according to the following DGP

yt = µ+ ut (1)

ut =


ut−1 + εt, t = 1, ..., bτ1T c,
(1 + δ)ut−1 + εt, t = bτ1T c+ 1, ..., bτ2T c,
ubτ2T c + κ1(δ > 0)(ubτ1T c − ubτ2T c) + εt, t = bτ2T c+ 1,

ut−1 + εt, t = bτ2T c+ 2, ..., T

(2)

where 1(.) denotes the indicator function and b·c denotes the integer part of its argument.

The driving shocks, εt, in (2) are assumed to be such that εt = σtzt where zt is mean zero

stationary and ergodic and where, following Harvey et al. (2016), the volatility term σt satisfies

σt = ω (t/T ), where ω (·) ∈ D is non-stochastic and strictly positive. For t ≤ 0, σt ≤ σ̆ < ∞.

The DGP is assumed to be initialised at u0 = c, where c is some positive constant.

In the context of (1)-(2), if δ = 0, then yt admits a unit autoregressive root throughout the

sample period. This forms our null hypothesis, denoted H0. In contrast, if δ > 0, yt admits

a unit autoregressive root up until time bτ1T c, after which yt displays explosive autoregressive

behaviour up until time bτ2T c. In the case where the bubble episode terminates before the

end of the sample, i.e. where τ2 < 1, the parameter κ ∈ {0, 1} determines the mechanism by

which the bubble terminates. Where κ = 0 the period of explosive behaviour is followed by an

immediate return to autoregressive unit root behaviour. A single period correction (crash) to

the pre-explosive level of the series before the return to an autoregressive unit root obtains if

κ = 1. In either of these scenarios, δ > 0 forms the alternative hypothesis which we denote as

Hκ
1 . For τ2 = 1, only the first two equations apply in (2) and the explosive phase is on-going

at the end of the sample. In this case there is no distinction between κ = 0 and κ = 1, but for

convenience we will still denote the alternative here as Hκ
1 when δ > 0.

The conditions placed on εt above allow for both conditional and unconditional heteroskedas-

ticity and for stationary serial correlation in the driving shocks. The conditions placed on σt

imply that the unconditional volatility of ε is bounded and displays a countable number of

jumps. This allows for processes displaying (possibly) multiple one-time volatility shifts (which

need not be located at the same point in the sample as the putative regime associated with

bubble behaviour), polynomially (possibly piecewise) trending volatility and smooth transition

variance breaks, among others. The conventional homoskedasticity assumption, that σt = σ for

all t, is also permitted, since here ω(s) = σ for all s.

In developing a real-time monitoring exercise our interest lies in the early detection of an

explosive regime. That is, we wish to rapidly detect departures from the null hypothesis H0 and

make claim to have entered an explosive regime alternative, Hκ
1 . We will consider y1, ..., yT ∗ ,

T ∗ = bλT c ≤ bτ1T c for some λ ∈ (0, 1), as a training period (or training sample). The

assumption that T ∗ ≤ bτ1T c implies that no explosive behaviour is present in the training
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period.1 We will subsequently consider monitoring for an explosive regime from some time

period T † onwards (with T † > T ∗), employing the training period data in a calibration role.

Our approach is based on the test suggested by AHLT. This is a heteroskedasticity-robust

sub-sample test statistic for upward explosive behaviour, and in AHLT was proposed as a one-

shot test for an end-of-sample financial bubble. In generic notation, this sub-sample statistic is

constructed from a user-chosen finite length window ofm first differences ∆ye−m+1,∆ye−m+2, ...,

∆ye (where e indicates the most recent value of yt used in the statistic’s construction) and is

given by

Se,m :=

∑e
t=e−m+1(t− e+m)∆yt√∑e
t=e−m+1{(t− e+m)∆yt}2

.

The one-shot test in AHLT is based on the use of the sub-sampling method for estimating

critical values developed in a general context in Andrews (2003) and applied to the case of tests

for end-of-sample breakdown of co-integration in Andrews and Kim (2006). This approach

involves calculating analogous sub-sample statistics for all possible date windows within the

training period (over which H0 is assumed to hold); that is, calculating Se,m for e = m+1, ..., T ∗,

and then calculating an upper-tail empirical critical value from these statistics for a significance

level π, say, which we denote by cvπ.2 It follows from Andrews (2003) and Andrews and Kim

(2006) that cvπ is a consistent estimate for the true π significance level critical value as T →∞.

The AHLT test statistic is then ST ∗+m,m, i.e. Se,m applied to the first available window of m

periods that does not include data from the training period. The one-shot test simply compares

ST ∗+m,m with the critical value cvπ, and under H0 has a FPR of π for large T without requiring

knowledge of the joint null distribution of the Se,m statistics. Note also that under Hκ
1 , the test

will reject with probability equal to π if the explosive regime has not commenced within the

testing window, i.e. T ∗ +m ≤ bτ1T c.

3 Real-Time Monitoring Procedures

Our goal in this paper is to develop a real-time monitoring procedure for detecting the emergence

of an explosive bubble and, hence, we move beyond the one-shot testing framework to consider

a sequence of Se,m statistics. Suppose we wish to begin monitoring at the present time period,

say t = T †. We would then set the training sample end-date to be T ∗ = T † − m, allowing

1We will investigate the impact that violations of this maintained assumption, such that explosive autoregres-

sive behaviour is present in the training period, have on our proposed monitoring procedures in section 4.3. In

practice we recommend using an historical bubble detection test, such as the wild bootstrap implementation of

the Phillips et al. (2011) test proposed in Harvey et al. (2016), to test the null hypothesis that no bubbles are

present in the chosen training period. Any bubble small enough not to be detected by these tests is unlikely to

have a large impact on the detection properties of our monitoring procedure. Where such tests detect a bubble,

the training period could simply be redefined to exclude the detected bubble periods.
2Note that cvπ can be defined such that cvπ = S(b(1−π)(T∗−m)c) where S(j), j = 1, ..., T ∗−m are the ascending

order statistics of Se,m, e = m+ 1, ..., T ∗.
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the calculation of the first monitoring statistic Se,m with e = T † = T ∗ + m, which uses data

from T ∗ + 1 to T † = T ∗ +m. In the next period (t = T † + 1), the second monitoring statistic

Se,m with e = T † + 1 = T ∗ + m + 1 can be calculated (which uses data from T ∗ + 2 to

T † + 1 = T ∗ + m + 1). Now suppose that the monitoring continues in this manner, then at

any given point in the monitoring period t = T ′, the sequence of monitoring statistics Se,m for

e = T ∗+m, ..., T ′ will have been calculated. Of course, if one were to conduct the one-shot test

at a marginal π significance level repeatedly through the monitoring period, i.e. a detection

procedure based on sequentially comparing Se,m with cvπ, e = T ∗ + m, ..., T ′, then the FPR

of the detection procedure at time period t = T ′ (that is, the probability of falsely detecting a

bubble having monitored up to time period t = T ′) would exceed π due to the multiple testing

involved, increasing monotonically with T ′. Moreover, for any given T ′, the precise asymptotic

FPR associated with such a procedure cannot be ascertained without knowing the joint null

distribution of the Se,m statistics. Instead, we adapt alternative procedures recently developed

by HLST (in the context of predictive regression testing) to allow real-time monitoring for a

bubble while being able to determine the FPR for a given value of T ′, or, equivalently, to

determine the appropriate time period t = T ′ at which the FPR reaches a pre-determined

desired level.

To begin, we again consider the training period statistics Se,m, e = m + 1, ..., T ∗, but

now rather than obtaining an upper-tail empirical critical value cvπ, we instead consider the

maximum Se,m statistic, i.e. S∗max := maxe∈[m+1,T ∗] Se,m. In the spirit of section 3 of HLST,

we can then devise a real-time monitoring procedure based on comparing the Se,m statistics,

calculated in real time over the monitoring period, with the training period maximum statistic

S∗max. That is, in the first monitoring time period T † = T ∗ + m, we calculate ST ∗+m,m and

conclude that a bubble is detected, i.e. H0 is rejected, if ST ∗+m,m > S∗max, at which point we

would terminate the monitoring procedure. If H0 is not rejected, in the next time period we

continue monitoring and calculate ST ∗+m+1,m, rejecting H0 and terminating the procedure if

ST ∗+m+1,m > S∗max. Real-time monitoring continues in this manner, with a bubble detected

at time T ′ if ST ′,m > S∗max. So in general the monitoring procedure is terminated at the first

point where Se,m, e = T ∗ + m, ... exceeds S∗max. Of course, continued monitoring in this way

indefinitely will eventually lead to a rejection of H0 even when the null is true, hence for such a

procedure to be statistically rigorous, it is critical to understand the FPR of such a procedure

at each monitoring point.

Consider an arbitrary point in time during the monitoring period t = T ′. Defining S′max :=

maxe∈[T ∗+m,T ′] Se,m, the procedure described above can equivalently be expressed as

Reject H0 at time t = T ′ if S′max > S∗max

with the monitoring terminating at time t = T ′ if a rejection occurs. HLST present uniformity

arguments relating to the location of the maximum value of Se,m to show that, under H0, the

limiting probability that the maximum Se,m statistic lies in the monitoring period, as opposed
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to the training period, is simply the limit ratio of the number of test statistics calculated in the

monitoring period (T ′ − T ∗ −m+ 1) to the number of test statistics calculated across the two

periods combined ((T ′ − T ∗ −m+ 1) + (T ∗ −m) = T ′ − 2m+ 1). So, on defining

α = lim
T ∗,T ′→∞

T ′ − T ∗ −m+ 1

T ′ − 2m+ 1
(3)

it follows that, under H0,

lim
T ∗,T ′→∞

Pr
(
S′max > S∗max

)
= α. (4)

The asymptotic FPR for the monitoring procedure run up to time t = T ′ is therefore given by

α, and in practice for a given for T ′, T ∗ and m, we would approximate α using

α ≈ T ′ − T ∗ −m+ 1

T ′ − 2m+ 1
. (5)

Hence, if a bubble is detected at some time t = T ′, the corresponding FPR can immediately

be computed. In what follows, we will denote this real-time bubble detection procedure by

MAXm.

As HLST show, the function (5) is monotonically increasing in T ′, hence the FPR increases

as monitoring continues. In practice, it may be desirable to specify a monitoring end-point that

ensures the FPR does not exceed a certain pre-determined desired level. On rearranging (5) we

can obtain T ′ as a function of α:

T ′ ≈ T ∗ +m− 1− α(2m− 1)

1− α
. (6)

Hence, for a given choice of α, we can identify the monitoring time period at which the FPR will

reach the level α. If the intention is to ensure that the FPR does not exceed this pre-determined

level, (6) can be used to calculate the appropriate monitoring end-point.

In addition to the MAXm procedure, we also consider an alternative real-time monitoring

procedure related to the method proposed in section 4 of HLST. Following the approach of

HLST, we consider comparison of the Se,m statistics over both the training and monitoring

periods with the critical value cvπ, which is obtained from the training period as in AHLT (see

section 2 above). First, let Re := 1(Se,m > cvπ) record whether or not a statistic for a given

value of e exceeds cvπ, and define the following measure over e = L to e = U with U ≥ L:

R(L,U) := (U − L+ 1)
U∏
e=L

Re.

If Se,m exceeds cvπ for all e = L, ..., U , then R(L,U) = U − L + 1 represents the length of

a sequence of contiguous exceedances; otherwise, R(L,U) = 0. Next, we define the longest

contiguous sequence of exceedances in the training period as

m∗ := max
L,U∈[m+1,T ∗]

R(L,U).
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Then, in the real-time monitoring period, at a given monitoring time t = T ′, we define the

longest contiguous sequence of exceedances in the monitoring period thus far (that is, up to

t = T ′) as

m′ := max
L,U∈[T ∗+m,T ′]

R(L,U).

The real-time detection procedure is then given by:

Reject H0 at time t = T ′ if m′ > m∗

with the monitoring terminating at time t = T ′ if a rejection occurs. Hence a bubble is

detected if there exists a longer continuous sequence of exceedances in the monitoring period

than is obtained in the training period.

Using the uniformity arguments outlined in HLST pertaining to the location of the longest

contiguous sequence of exceedances, we can show that for α defined by (3), the analogous result

to (4) is that, under H0,

lim
T ∗,T ′→∞

Pr
(
m′ > m∗

)
= α.

The results in equations (5) and (6) pertaining to the relationships between T ′ and α also hold

here, allowing practical control of the procedure’s FPR. In what follows, we will denote this

second procedure by SEQm.3

Note that for SEQm, the first time period at which it would be possible to reject H0 is

t = T † + m∗, because this is the first occasion in the monitoring period where R(L,U) can

exceed m∗. However, for MAXm, the first time period at which it would be possible to reject

H0 is t = T †, i.e. the period at which monitoring begins, which is m∗ periods earlier than for

SEQm, giving the potential for MAXm to deliver an earlier detection outcome under Hκ
1 if the

bubble originates very early in the monitoring period.

One interpretation of the MAXm procedure is that it is a special case of SEQm where we

set cvπ := maxe∈[m+1,T ∗] Se,m (the largest order statistic in the training period). Then m∗ is

by definition zero (as no Se,m exceeds cvπ in the training period), and we detect an explosive

regime in the monitoring period if we obtain a Se,m statistic that exceeds maxe∈[m+1,T ∗] Se,m,

which can be seen as a monitoring period “contiguous exceedance” of 1, which is greater than

m∗ = 0; cf. the decision rule for SEQm.

As an interesting side issue, suppose we have obtained no rejection of H0 up to some

time period T ∗∗ > T ∗ + m. We might then consider “resetting” the monitoring procedure by

updating the training period from y1, ..., yT ∗ to y1, ..., yT ∗∗ . To evaluate the effect of this,

consider the MAXm procedure. For any T ′ > T ∗∗ + m our new decision rule would be to

reject H0 if S′max > S∗∗max where S∗∗max := maxe∈[m+1,T ∗∗] Se,m. However, since we have found

3Notice that the dependence of the procedure on the choice of significance level π at which the individual

Se,m tests are conducted is implicit. The value of π influences the lengths of the contiguous exceedances: the

larger is π, the smaller is cvπ and the longer we would expect the sequences of contiguous exceedances to be.

Other things being equal, this will have the effect of increasing both m′ and m∗.
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no rejections of H0 up to time T ∗∗, i.e. Se,m < S∗max for all e ∈ [T ∗ + m,T ∗∗], it follows that

maxe∈[m+1,T ∗]∪[T ∗+m,T ∗∗] Se,m = S∗max, and hence asymptotically (given finite m), S∗∗max = S∗max.

Hence, trivially, in the limit we can write

Pr(S′max > S∗∗max) = Pr(S′max > S∗max)

so that the rejection probability at time t = T ′ associated with the original training period and

the updated training period procedures are identical. The practical implication of this result

is that, asymptotically, both the FPR under the null and the TPR under the alternative are

unaffected by updating the training period, hence there is no virtue in updating the training

period in any attempt to improve the FPR or TPR of the monitoring procedure. Similar

arguments can be made for the SEQm procedure in the limit also.

Finally, our discussion in this section assumes for simplicity that there is no separation

between the data period used for the training period and the data used for monitoring, with

the former spanning t = 1, ..., T ∗ and the latter starting at t = T † −m + 1 = T ∗ + 1. More

generally, the last time period included in the training sample could be T ∗ − k for some k > 0,

thereby allowing for a separation between the training period and the start of the monitoring

period. This might be relevant in cases where an historical bubble episode was thought to have

occurred towards the end of the training period; cf. footnote 1. In this case the expressions for

α and T ′ in (5) and (6) become

α ≈ T ′ − T ∗ −m+ 1

T ′ − 2m+ 1− k

T ′ ≈ T ∗ +m− 1− α(2m− 1 + k)

1− α
.

Note that, relative to k = 0, the FPR α is now increased for a given T ′.

4 Finite Sample Simulations

In this section we examine the finite sample properties of our proposed MAXm and SEQm

monitoring procedures. The results we present suggest that the TPR of the MAXm procedure

is generally higher when a bubble is beginning to emerge, whereas it is higher for the SEQm

procedure as we move further into the bubble phase. Therefore, in addition to the MAXm and

SEQm procedures we also report the properties of a “union of rejections procedure”, denoted

Um, in which a bubble episode is signalled if either the MAXm or SEQm procedures reject

H0, potentially allowing us to exploit the favourable TPR properties of the MAXm and SEQm

procedures for detecting shorter or longer duration bubbles, respectively. The Um procedure will

clearly, however, not have its FPR controlled in the same way as the two constituent procedures.

If the MAXm and SEQm procedures are both performed with a FPR of α then the FPR of the

Um monitoring procedure will be no smaller than α. However, as MAXm and SEQm make use

of the same underlying test statistics they are not independent of one another and we will show
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that the increase in the empirical FPR from using a union of rejections approach is relatively

modest.

We also compare the performance of our monitoring procedures to the CUSUM monitoring

procedure of Homm and Breitung (2012). Assuming a training period of length T ∗, they propose

using the following monitoring statistic

StT ∗ :=
1

σ̂t
(yt − yT ∗) , with σ̂t :=

√√√√(t− 1)−1
t∑

j=1

(∆yj)2

where t > T ∗ is the monitoring observation. Homm and Breitung show that, under the as-

sumptions of serially uncorrelated and homoskedastic εt, if StT ∗ is computed multiple times at

dates T ∗ + 1, ..., E then under H0 for any k > 1

lim
T ∗→∞

Pr
(
|StT ∗ | >

(
ct ×
√
t
)

for some t ∈ {T ∗ + 1, ..., kT ∗}
)
< exp (−bα/2) (7)

where ct :=
√
bα + log(t/T ∗). The monitoring procedure proposed in Homm and Breitung

(2012) rejects H0 if StT ∗ > ct
√

(t) for some t > T ∗. For a test performed at the nominal

asymptotic significance level α = 0.05, for instance, the value of bα used to compute ct is equal

to 4.6.

Here and throughout this section, we generate data according to (1)-(2) with T = 300 and

T ∗+m = 220, and examine the behaviour of our proposed monitoring procedures using window

widths of m = 5, 10, 15. We set µ = 0 (all procedures are invariant to µ under H0 and Hκ
1 )

and set u0 = 100 so that under Hκ
1 the bubbles generated are generally upwardly explosive (all

procedures are invariant to u0 under H0).

4.1 Empirical False Positive Rate

We begin by analysing the empirical FPR of the monitoring procedures for data generated under

the null hypothesis, H0. We will consider the cases where εt: is a Gaussian white noise in section

4.1.1; displays time-varying volatility in section 4.1.2; and is serially correlated in section 4.1.3.

We assume a common monitoring start date for all procedures of T ∗ +m = 220 and treat the

sample t = 1, ..., T ∗+m−1 as the training period for the CUSUM procedure, with the training

period for the MAXm, SEQm, and Um procedures given by the sample t = 1, ..., T ∗. Homm and

Breitung (2012) note that choosing the critical value, bα, for the CUSUM monitoring procedure

according to (7) can lead to a very conservative test and recommend using finite sample critical

values based on simulated data generated under H0 with Gaussian white noise innovations.

As such, in the simulations that follow, we select finite sample critical values for the CUSUM

monitoring procedure such that the empirical FPR of the CUSUM procedure is equal to the

theoretical FPR of the MAXm and SEQm when the latter procedures have a theoretical FPR

of 0.10 when the data are generated under the null hypothesis with NIID(0, 1) innovations.
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4.1.1 Gaussian White Noise Innovations

Figure 1 (a) reports the empirical FPR of the three proposed procedures as a function of

the monitoring period when εt ∼ NIID(0, 1) throughout the sample, with each point on the

figure representing the empirical FPR of a particular monitoring procedure if run from time

t = T ∗ + m to t = T ′. Also plotted on the figure is the theoretical FPR of MAXm and

SEQm run up to time t = T ′, calculated from equation (3). As expected, the empirical FPRs

of the monitoring procedures all closely track the theoretical FPR, with the empirical FPR

of the MAXm procedure tracking the theoretical FPR the closest. The empirical FPR of

SEQm is slightly lower than the level implied by theory. Interestingly, the empirical FPR of

Um is not much higher than the theoretical FPR of the two monitoring procedures used in its

construction which is likely due to the high degree of correlation between MAXm and SEQm.

The empirical FPR of the CUSUM procedure is lower than that of our proposed procedures for

short monitoring horizons and greater than that of all but Um for longer monitoring periods.

By construction, as detailed above, the empirical FPR of the CUSUM procedure is set equal

to the theoretical FPR of MAXm and SEQm when the latter is equal to 0.10.

4.1.2 Time-Varying Volatility

We next examine the empirical FPR of our proposed monitoring procedures and of the CUSUM

procedure in the case where a structural change in the volatility of the shocks, εt, occurs either

in the training period or in the monitoring period. While the procedures developed in this

paper are (asymptotically) robust to heteroskedasticity of the form specified in section 2, the

CUSUM-based monitoring procedure of Homm and Breitung (2012) is based on the assumption

that εt is homoskedastic, as noted above.

We consider first the case where εt follows a time varying GARCH(1,1) process. Specifically,

we generate data under the null hypothesis with the shocks generated as εt = h
1/2
t vt where

vt ∼ NIID(0, 1) and ht = 1.00 + 0.05ε2t−1 + βtht−1. We examine the empirical FPR of the

various monitoring procedures in the case where a switch to a higher volatility regime occurs

in the monitoring period, with the time-varying parameter βt satisfying:4

βt =

{
0.64, t = 1, ..., T ∗ +m− 1,

0.95, t = T ∗ +m, ..., T.

Figure 1 (b) reports the empirical FPR of all procedures when εt follows this time varying

GARCH(1,1) process. The robustness of our proposed monitoring procedures to this pattern of

time-varying volatility is clearly demonstrated in the results with the empirical FPRs of MAXm,

SEQm and Um being almost identical to those observed for the corresponding homoskedastic

4To control for dependence on initialisation effects, vt was generated for t = −299, ..., T and the conditional

variance, ht was initialised at its unconditional value (when βt = 0.64) at time t = −299, with βt = 0.64 for

t = −299, ..., 0. The first 300 observations on εt were then discarded.
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Gaussian case in Figure 1 (a). In contrast, the empirical FPR for the CUSUM procedure is

much higher at all monitoring points than was seen in the homoskedastic case.

We next investigate the empirical FPR of the various monitoring procedures when a one-

time shift in unconditional volatility occurs in either the monitoring period or the training

period. To that end we generated data under the null hypothesis with the shocks such that

εt ∼ NIID(0, σ2t ) where

σt =

{
σ1, t = 1, ..., tv,

σ2, t = tv + 1, ..., T.

We first examine the case where a shift in volatility occurs at the start of the monitoring

period by setting tv = 219. Figure 2 reports the empirical FPR of the various monitoring

procedures for the cases of an upward shift in volatility at the start of the monitoring period

(σ1 = 1, σ2 = 3) and of a downward shift in volatility at the start of the monitoring period

(σ1 = 3, σ2 = 1). The results, again, show the robustness of MAXm, SEQm and Um to

shifts in volatility in that the empirical FPR of each of these procedures is almost identical to

the corresponding empirical FPR seen for the homoskedastic case. The empirical FPR of the

CUSUM procedure is, in contrast, markedly different to the homoskedastic case. In particular

it is larger (smaller) than in the homoskedastic case for an upward (downward) volatility shift

at the beginning of the monitoring period.

Figure 3 reports corresponding results for the case where the shift in volatility occurs in

the training period, with tv = 110. Results are again reported for an upward shift in volatility

(σ1 = 1, σ2 = 3) and a downward shift in volatility (σ1 = 3, σ2 = 1). Again, the robustness of

our monitoring procedures to time-varying volatility is clearly demonstrated, with the empirical

FPRs being almost identical to the homoskedastic case once again. The empirical FPR of the

CUSUM is, again, impacted by the volatility shift, being higher (lower) than the homoskedastic

case for an upward (downward) shift in volatility, although a comparison with Figure 2 shows

that the impact of a volatility shift in the training period is less drastic than a shift in volatility

at the start of the monitoring period.

4.1.3 Serial Correlation

The theoretical FPR of the monitoring procedures we have developed in this paper is unaffected

by serial correlation in the shocks, εt, in contrast to the CUSUM-based monitoring procedure

of Homm and Breitung (2012). To investigate the impact of serial correlation on the empirical

FPR of the various procedures, we generated εt according to the MA(1) process εt = vt−θvt−1,
with vt ∼ NIID(0, 1) and initialised at v0 = 0. Results for θ = ±0.5 are reported in Figure 4.

It can be seen from these results that the empirical FPRs of our proposed procedures are robust

to serial correlation with the empirical FPR of MAXm, SEQm and Um being near identical to

those seen in Figure 1 (a) for the case where εt ∼ NIID(0, 1). In contrast, the empirical FPR of

the CUSUM procedure is severely impacted by the presence of serial correlation, being inflated

relative to the baseline case of no serial correlation when θ = −0.5, and reduced to almost zero
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for all monitoring periods when θ = 0.5. Depending on the pattern of serial correlation in the

data, the CUSUM procedure is therefore more likely to spuriously indicate the presence of a

bubble when θ < 0, and less likely to detect a bubble when it is present when θ > 0.

The results in this section have highlighted the lack of robustness of the empirical FPR of

the CUSUM procedure to both time-varying volatility and serial correlation. As a result, we

will not consider it further in this paper.

4.2 Empirical True Positive Rate

We now proceed to examine the TPR (the probability of correctly detecting a bubble having

monitored up to a given time period t = T ′) of our proposed monitoring procedures to detect a

bubble episode emerging in the monitoring period. We generate εt ∼ NIID(0, 1) throughout,

and initially examine a bubble of length 10 observations, generating data according to (1)-(2)

with δ > 0, bτ1T c = 230 and bτ2T c = 240.

Figure 5 reports the empirical TPRs when δ = 0.01 for both the case where the series reverts

to a unit root process following the bubble, i.e. H0
1 , and the case where the bubble collapses, i.e.

H1
1 . The results show that, for a given value of m, MAXm has a higher TPR than SEQm when

monitoring close to the bubble inception date, with the TPR differential being most pronounced

for larger values of m. As noted previously, the rationale behind this result is that the earliest

possible date that the number of contiguous exceedances in the monitoring period for the

SEQm procedure could exceed m∗ is at time t = T ∗ +m+m∗, the point at which m∗ + 1 test

statistics have been calculated in the monitoring period. In contrast, MAXm has the potential

to reject the null as early as t = T ∗ + m. As the bubble episode continues the difference in

TPR between the two procedures becomes less pronounced, with SEQm eventually displaying

the higher TPR nearer to the termination of the bubble for m = 5. The Um procedure has a

uniformly higher TPR than both MAXm and SEQm (by construction) and is well equipped to

detect the bubble both when it is close to inception or termination. Under H0
1 , where the series

reverts to a unit root process without collapse following the bubble, the TPR of each individual

procedure to detect the bubble still increases with the monitoring horizon, even when evaluating

the procedure at T ′ > bτ2T c, as the Se,m test statistic evaluated at time e = T ′ will still contain

explosive observations when bτ2T c < T ′ ≤ bτ2T c+m− 1. Under H1
1 , the collapse ensures that

there are no further rejections signalled by any procedure after T ′ = bτ2T c, indicated by the

curves in the figures flattening out to horizontal lines for T ′ > bτ2T c. This is due to the fact

that the constituent Se,m test statistics calculated for e > bτ2T c will be computed using the

large negative value of ∆ybτ2T c+1 caused by the collapse, giving them a very small probability

of exceeding the relevant critical value.

With regard to the choice of m, a trade-off clearly exists. Other things being equal, the

TPRs of the procedures early in the bubble regime are higher for smaller values of m compared

to larger values of m, so that bubbles are detected more rapidly for smaller m. On the other
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hand, the eventual TPRs that the procedures attain by the end of the bubble regime are higher

for larger m.

Figure 6 reports results for a bubble again of length 10 observations with δ > 0, bτ1T c = 230

and bτ2T c = 240, but now with the bubble driven by an explosive offset of δ = 0.015. The TPR

of each procedure at any given time t = T ′ is, as we would expect, larger than when δ = 0.01.

We observe a broadly similar pattern with regard to the relative TPRs of the procedures, with

MAXm best suited to detecting bubbles early on, and SEQm only displaying a higher TPR

closer to the end of the bubble when m = 5.

Figure 7 reports the empirical TPRs for a bubble of length 5 observations with bτ1T c = 230

and bτ2T c = 235 driven by an explosive offset of δ = 0.02. The difference in TPR between

MAXm and SEQm is much more pronounced than for a bubble of length 10. This is likely

caused by the fact that there are relatively few bubble observations which can contribute to

SEQm delivering more than m∗ contiguous exceedances before the bubble terminates. The

difference between MAXm and SEQm is particularly highlighted for the bubble with collapse

(H1
1 ) cases; while MAXm has some ability to detect a bubble before its termination, SEQm

clearly struggles here. These observations are reinforced by the results in Figure 8 in which the

same bubble is driven by an explosive offset of δ = 0.03; here, the low TPR of SEQm under

H1
1 is not improved by the larger magnitude of δ.

Figure 9 reports the empirical TPRs for a bubble of length 15 observations with bτ1T c = 230

and bτ2T c = 245 driven by an explosive offset of δ = 0.02. The relative TPRs of MAXm and

SEQm are broadly similar to those seen for a bubble of length 10 with, once again, MAXm

having greater ability to detect a bubble early on. The real difference is that SEQm now has

a higher TPR than MAXm before the bubble terminates for both m = 10 and m = 5. Finally,

results for a bubble of length 15 observations driven by an explosive offset of δ = 0.01 are

reported in Figure 10. These results follow the same pattern as those in Figure 9, but with the

TPRs of all procedures being uniformly higher.

4.3 Training Period Bubbles

The construction of our monitoring procedures is based on the assumption that the training

period data t = 1, ..., T ∗ adheres to the null hypothesis of no explosivity. Clearly this assumption

could be violated in practice. While one could pre-test the training period data for the presence

of a bubble using, for instance, the wild bootstrap implementations of the Phillips et al. (2011)

test developed in Harvey et al. (2016), such a pre-test is not guaranteed to detect earlier

explosive episodes, particularly ones that are relatively short in duration and/or display only a

small deviation from an autoregressive unit root. In light of this, we now present Monte Carlo

simulation results to assess the impact that a single collapsed bubble in the training period has

on the empirical FPR and TPR of our detection procedures. To that end, data were generated

15



according to yt = ut with

ut =



ut−1 + εt, t = 1, ..., 100,

1.03ut−1 + εt, t = 101, ..., 105,

u100 + ε106, t = 106,

ut−1 + εt, t = 107, ..., bτ1T c,
(1 + δ)ut−1 + εt, t = bτ1T c+ 1, ..., bτ2T c,
ubτ2T c + κ1(δ > 0)(ubτ1T c − ubτ2T c) + εt, t = bτ2T c+ 1,

ut−1 + εt, t = bτ2T c+ 2, ..., T

with εt ∼ NIID(0, 1). The series yt therefore admits a single collapsed explosive episode in

the training period of length five observations driven by an autoregressive parameter of 1.03.

This bubble length and magnitude were chosen as the relatively high explosive autoregressive

parameter of 1.03 will clearly impact upon the empirical FPR and TPR of our tests, whilst

the duration mimics short-lived bubbles that would be difficult to detect using a pre-test for

explosivity performed on the training period data.

Figure 11 reports the empirical FPR of our proposed monitoring procedures when a training

period bubble is present but no bubble is present in the monitoring period (δ = 0). Relative

to the analogous results in Figure 1 (a) for the case where the training period does not admit

any explosive behaviour, the empirical FPR of all procedures are seen to be decreased. The

presence of a training period bubble, on average, inflates the value of m∗ used in the decision

rule for SEQm and the maximum value of Se,m calculated in the training period used in the

decision rule for MAXm procedure, and so this effect is to be expected.

Figures 12-14 report results for the TPRs of the monitoring procedures when a training

period bubble is present for monitoring period bubbles of length 10, 5 and 15, respectively. The

monitoring period bubble location, and the autoregressive parameter driving its magnitude,

are identical to those given in Figures 5, 7 and 9 in order to directly compare the TPR of the

monitoring procedures when a training period bubble is present to the case where no training

period bubble is present. In all cases we see that the TPR of the monitoring procedures when a

training period bubble is present is lower than the case where the training period data follows

a unit root process throughout, which is to be expected given the impact of the training period

bubble on the empirical FPR of the procedures seen in Figure 11. While there is some reduction

in TPR relative to the case where the training period is free of explosivity, this reduction is

relatively modest showing that our procedures are still useful in detecting explosive episodes in

the monitoring period in cases where the training period data contains a short-lived historical

bubble.

5 Empirical Application

This section discusses an empirical application of the MAXm and SEQm procedures for real-

time monitoring. Each procedure is applied to five monthly data series on stock market indices
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collected from Thomson Reuters Datastream; the DAX 30 index (Germany), FTSE All Share

index (U.K.), Nasdaq Composite index (U.S.), Nikkei 225 index (Japan), and the S&P 500 index

(U.S.). Our full data set covers the period January 1973-January 2002. The training period

starts in January 1973 and we assume that monitoring starts in January 1995 (T ∗ +m = 265)

and continues sequentially through to January 2002, unless the monitoring terminates upon

detection of a bubble. The nominal stock market index data is converted to real values using

the consumer price index for each country collected from the Federal Reserve Bank of St Louis

FRED database. We choose to examine data over this period since in previous research on

detecting bubbles in stock market indices using a test statistic based on the recursive augmented

Dickey-Fuller tests (sup-ADF tests), explosive behaviour associated with the Dot-Com bubble

has previously been detected during this period. For example, using sup-ADF tests Phillips et al.

(2011) find that the Nasdaq Composite stock market index became explosive in mid-1995. The

results obtained using our methods are not directly comparable with those obtained by Phillips

et al. (2011), because the sup-ADF tests they use are “one-shot” tests for retrospectively

detecting periods of explosive behaviour in a fixed sample of data and are not designed to be

used for real-time monitoring. It is interesting to see if our methods, which are designed for

real-time monitoring, also reveal shifts to explosive behaviour during this period for the indices

considered.

Figure 15 contains plots of the first differences of each of the stock market indices. Visual

inspection of these plots is suggestive that the variances of these stock indices are not constant

across the sample. Therefore, prior to the application of our MAXm and SEQm procedures,

as a first step we apply several tests to each stock market index to assess the presence of

heteroskedasticity and non-normality in the data. Table 1 contains the results from a Jarque-

Bera test (JB; Jarque and Bera, 1980) and Engle’s LM test for conditional heteroskedasticity

(LMc; Engle, 1982) applied to the first-difference of each series (demeaned), and four tests for

stationary volatility proposed by Cavaliere and Taylor (2008, pp. 311–312). The test statistics

are denoted by HKS , HR, HCVM and HAD. Critical values for these four tests are given in

Shorack and Wellner (1987): Table 1, p. 413; Table 2, p. 144; Table 4, p. 147 and Table 5, p.

148; respectively. When computing the stationary volatility test statistics a Bartlett long run

variance estimator with lag truncation parameter of four is employed. The results in Table 1

show that for all of the stock market indices the null hypotheses of normality and conditional

homoskedasticity are rejected at conventional significance levels by JB and LMc, respectively.

Moreover, for three of the indices (FTSE All share index, Nasdaq Composite index, Nikkei 225

index) the null hypothesis of stationary volatility is rejected by one or more of the Cavaliere

and Taylor (2008) tests at conventional significance levels.

We also report an application of the wild bootstrap implementation of the Phillips et al.

(2011) test developed in Harvey et al. (2016) as a pre-test for the presence of bubbles in the

training period for each of the data sets being considered. We apply the PWY ∗ and PWY ∗B

bootstrap test procedures outlined in Harvey et al. (2016) with the lag order for the PWY ∗
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and PWY ∗B bootstrap statistics set to zero, and the lag order for the original PWY statistic

chosen using the familiar Schwartz Bayes Information Criteria [BIC] with a maximum lag length

of 6. Table 2 reports p-values for the bootstrap PWY ∗ and PWY ∗B tests with the lag order

chosen by the BIC when calculating the sub-sample statistic using the largest possible window

of observations in the PWY test, denoted k̂BIC. The results in Table 2 suggest that for all

but the Nikkei 225 index there is no significant evidence of a bubble in the training period,

with p-values for these series lying well above conventional significance levels. For the Nikkei

index the PWY ∗B test rejects the null of no explosivity at the 0.05 significance level, whereas

the PWY ∗ test marginally fails to reject at the 0.05 level. We therefore note that there is

some evidence for the presence of explosive episodes in the Nikkei 225 index training period

data which could potentially have some impact on the TPR of our test procedures to detect a

bubble in the monitoring period.

We apply the MAXm and SEQm procedures to each index with window lengths of m =

5, 10, 15. For cases where a bubble is detected, the month when the MAXm and SEQm

procedures first detect explosive behaviour when used sequentially from January 1995 are given

in Table 3, along with the associated FPRs at those months where detection occurs. A plot of

each stock market index over the full potential monitoring period, along with a plot of the test

statistic Se,m over the same period for the largest window size considered, m = 15, is given in

Figure 16(a)-Figure 20(b). Also indicated on each plot are, for m = 15, the maximum value

of the test statistic over the training period (black dotted line), the end of the training period

(red dashed line), the start of the monitoring period (green dashed line), the critical value (blue

solid line) used in SEQm, the date when MAXm detects explosive behaviour (black-dashed

line), the date when SEQm detects explosive behaviour (black dashed-dotted line), and the

empirical FPR associated with monitoring out to each date in the monitoring period (magenta

solid line).

The results given in Table 3 show that SEQm detects explosive behaviour (suggesting a stock

market bubble) in three of the five series considered: the DAX 30 index (for m = 5, 10, 15),

the Nasdaq Composite index (for m = 10, 15), and the S&P 500 index (for m = 5, 10, 15). The

MAXm procedure detects explosive behaviour for all five indices when m = 15, for two of the

indices when m = 10 (the DAX 30 and S&P 500 index) and for one index when m = 5 (the

S&P 500 index). Note that this pattern of results is consistent with the results obtained from

the simulations discussed in Section 4, in the sense that in the simulations with m = 15 we

found that the MAXm typically has a higher TPR than SEQm, and the overall TPR is higher

for the larger values of m.

It can also be seen in Table 3 that when explosive behaviour is detected by our procedures,

the first detection point occurs in the early years of the Dot-Com bubble period, apart from for

the Nikkei 225 index. Consider for example the results for the DAX 30 index in Figures 16(a)

and 16(b). In this case, depending on the value of m used, explosive behaviour is first detected

by SEQm in May 1997 or June 1997. Similarly, for the Nasdaq Composite index explosive
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behaviour is first detected by SEQm in January 1996, and by MAXm in March 1996. The

Nikkei 225 index behaves quite differently to the other indices over this period and explosive

behaviour is not detected by MAXm until April 2000, at the peak of the Dot-Com bubble.

When explosive behaviour is detected for more than one m setting for a given series, the first

date at which explosivity is identified is earlier for the smaller values of m, in line with the TPR

results in our simulations.

Interestingly, although the Dot-Com bubble is associated with information technology stocks,

the earliest indication of explosive behaviour from our procedures around the time when the

Dot-Com bubble is thought to have started is for the broad S&P 500 index rather than for

the information technology-focused Nasdaq Composite index. For the S&P 500 index when

m = 5, MAXm detects explosive behaviour in May 1995, while for the Nasdaq Composite in-

dex explosive behaviour is detected in January 1996 (when m = 10). When m = 15, explosive

behaviour is detected in the S&P 500 index in October 1995 by MAXm, and in December

1995 by SEQm. For the Nasdaq Composite index when m = 15, explosive behaviour is also

detected later in the sample than for the S&P 500 index, in January 1996 and March 1996 for

SEQm and MAXm respectively. Naturally, the earlier that explosive behaviour is detected in

the monitoring period, the smaller the associated FPR is for the test procedure at that date.

For example, Table 3 shows that for the S&P 500 index when m = 5, the associated FPR for

the MAXm detection of explosive behaviour in May 1995 is just 0.023, while for the Nasdaq

Composite index with m = 10, the SEQm detection of explosive behaviour in January 1996

has an FPR of 0.056. Since it occurs much later in the monitoring period (April 2000) the FPR

associated with MAXm for the Nikkei 225 index when m = 15 is considerably larger at 0.228.

6 Conclusions

We have proposed monitoring procedures that can be used by practitioners to detect the emer-

gence of asset price bubbles in real time. Our procedures involve sequential computation of

sub-sample based test statistics from a training period of data. Our first procedure signals the

presence of a bubble if any statistic in the monitoring period exceeds the largest sub-sample

statistic calculated in the training period, whereas our second procedure signals the presence of

a bubble in the monitoring period when the number of contiguous rejections in the monitoring

period exceeds the number of contiguous rejections in the training period, using a critical value

obtained from the training sample statistics. We also proposed a union-of-rejections approach

in which a bubble is detected if either of the two procedures reject the null of no bubble. We

have shown that a practitioner can determine the theoretical FPR of the procedures for any

given monitoring horizon, or can ensure the FPR does not exceed a specified level by setting

a maximum monitoring horizon. A Monte Carlo exercise comparing the empirical FPR of our

procedures with those of the CUSUM procedure of Homm and Breitung (2012) showed that

only the procedures developed in this paper were empirically robust to time-varying volatility
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and serial correlation in the shocks. Further simulations showed that our proposed procedures

are able to rapidly detect an emerging bubble in real time, and our results showed that this

can even be the case when a past bubble is present in the training period data. An empirical

application to five major stock market indices found that our monitoring procedures would, as

part of a real-time monitoring exercise, in some form have signalled the presence of bubbles in

each index if run from January 1995 to January 2002. While our focus in this paper has been

on financial asset price bubbles, the model and our proposed bubble monitoring procedures can

equally be applied in other contexts, allowing real-time bubble detection in a wide range of

situations.
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Tables and Figures

Table 1. Tests for Non-normality and Heteroskedasticity

JB LMc HKS HR HCVM HAD
DAX 30 30.431∗∗∗ 336.887∗∗∗ 0.992 1.184 0.276 1.521

FTSE All Share 17.575∗∗∗ 319.255∗∗∗ 1.193 1.245 0.571∗∗ 3.414∗∗

Nasdaq Composite 37.799∗∗∗ 333.382∗∗∗ 1.443∗∗ 1.646∗ 0.568∗∗ 4.246∗∗∗

Nikkei 225 16.790∗∗∗ 327.509∗∗∗ 1.397∗∗ 1.490 0.456∗ 1.962∗

S&P 500 35.219∗∗∗ 338.065∗∗∗ 0.594 0.892 0.085 0.601

Notes. JB and LMc are the Jarque-Bera test and Engle’s LM test for conditional heteroskedas-

ticity. HKS , HR, HCVM and HAD are the tests for stationary volatility proposed by Cavaliere

and Taylor (2008). ∗,∗∗, ∗∗∗ indicates rejections at the 0.10, 0.05 and 0.01 level respectively

using the relevant critical values.

Table 2. Tests for Historical Bubbles in the Training Period

p-values

PWY Statistic k̂BIC PWY ∗ PWY ∗B

DAX 30 0.660 0 0.214 0.169

FTSE All Share -0.878 0 0.827 0.798

Nasdaq -0.824 1 0.823 0.816

Nikkei 225 1.992 0 0.053 0.026

S&P 500 -0.895 0 0.864 0.837

Notes. The second and third columns report the PWY test statistic and the lag length used

when computing this test chosen using the BIC. The fourth and fifth columns report the

p-values obtained using the PWY ∗ and PWY ∗B bootstrap test procedures with 9999 bootstrap

replications.
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Table 3. First Month where Explosive Behaviour is Detected and Empirical FPRs

for Real-time Monitoring from 1995:1

SEQm FPRSEQm MAXm FPRMAXm

m = 5

DAX 30 Jun. 1997 0.110 N/A N/A

FTSE All Share N/A N/A N/A N/A

Nasdaq Composite N/A N/A N/A N/A

Nikkei 225 N/A N/A N/A N/A

S&P 500 Aug. 1995 0.035 May 1995 0.023

m = 10

DAX 30 May 1997 0.113 May 1997 0.113

FTSE All Share N/A N/A N/A N/A

Nasdaq Composite Jan. 1996 0.056 N/A N/A

Nikkei 225 N/A N/A N/A N/A

S&P 500 Nov. 1995 0.049 Sep. 1995 0.041

m = 15

DAX 30 May 1997 0.120 May 1997 0.120

FTSE All Share N/A N/A Feb. 1996 0.064

Nasdaq Composite Jan. 1996 0.060 Mar. 1996 0.068

Nikkei 225 N/A N/A Apr. 2000 0.228

S&P 500 Dec. 1995 0.056 Oct. 1995 0.048

Notes. The second and fourth columns report the dates in the monitoring period when explosive

behaviour is first detected by the SEQm and MAXm procedures. The third and fifth columns

report the empirical FPRs of each procedure at these dates.
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Figure 1. False Positive Rate - Gaussian White Noise and Time-varying GARCH

(a) εt ∼ NIID(0, 1) (b) Time-varying GARCH

m = 5 m = 5

m = 10 m = 10

m = 15 m = 15

SEQm: ——, MAXm: ——, Um: ——, CUSUM: ——

Theoretical FPR: ——
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Figure 2. False Positive Rate - Volatility Shift at start of Monitoring Period

Volatility Shifts from σ1 to σ2 at tv = 219

σ1 = 1, σ2 = 3 σ1 = 3, σ2 = 1

m = 5 m = 5

m = 10 m = 10

m = 15 m = 15

SEQm: ——, MAXm: ——, Um: ——, CUSUM: ——

Theoretical FPR: ——
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Figure 3. False Positive Rate - Volatility Shift in Training Period

Volatility Shifts from σ1 to σ2 at tv = 120

σ1 = 1, σ2 = 3 σ1 = 3, σ2 = 1

m = 5 m = 5

m = 10 m = 10

m = 15 m = 15

SEQm: ——, MAXm: ——, Um: ——, CUSUM: ——

Theoretical FPR: ——
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Figure 4. False Positive Rate - MA Innovations

εt = vt − θvt−1, vt ∼ NIID(0, 1)

θ = −0.5 θ = 0.5

m = 5 m = 5

m = 10 m = 10

m = 15 m = 15

SEQm: ——, MAXm: ——, Um: ——, CUSUM: ——

Theoretical FPR: ——
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Figure 5. True Positive Rate bτ2T c − bτ1T c = 10, δ = 0.010

m = 5, κ = 0 m = 5, κ = 1

m = 10, κ = 0 m = 10, κ = 1

m = 15, κ = 0 m = 15, κ = 1

SEQm: ——, MAXm: ——, Um: ——

Theoretical FPR: ——, bτ1T c/bτ2T c: – – –
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Figure 6. True Positive Rate bτ2T c − bτ1T c = 10, δ = 0.015

m = 5, κ = 0 m = 5, κ = 1

m = 10, κ = 0 m = 10, κ = 1

m = 15, κ = 0 m = 15, κ = 1

SEQm: ——, MAXm: ——, Um: ——

Theoretical FPR: ——, bτ1T c/bτ2T c: – – –
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Figure 7. True Positive Rate bτ2T c − bτ1T c = 5, δ = 0.020

m = 5, κ = 0 m = 5, κ = 1

m = 10, κ = 0 m = 10, κ = 1

m = 15, κ = 0 m = 15, κ = 1
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Theoretical FPR: ——, bτ1T c/bτ2T c: – – –
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Figure 8. True Positive Rate bτ2T c − bτ1T c = 5, δ = 0.030

m = 5, κ = 0 m = 5, κ = 1

m = 10, κ = 0 m = 10, κ = 1

m = 15, κ = 0 m = 15, κ = 1

SEQm: ——, MAXm: ——, Um: ——

Theoretical FPR: ——, bτ1T c/bτ2T c: – – –
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Figure 9. True Positive Rate bτ2T c − bτ1T c = 15, δ = 0.007

m = 5, κ = 0 m = 5, κ = 1

m = 10, κ = 0 m = 10, κ = 1

m = 15, κ = 0 m = 15, κ = 1
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Figure 10. True Positive Rate bτ2T c − bτ1T c = 15, δ = 0.010

m = 5, κ = 0 m = 5, κ = 1

m = 10, κ = 0 m = 10, κ = 1

m = 15, κ = 0 m = 15, κ = 1

SEQm: ——, MAXm: ——, Um: ——

Theoretical FPR: ——, bτ1T c/bτ2T c: – – –
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Figure 11. False Positive Rate - εt ∼ NIID(0, 1)- Training Period Bubble
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m = 15
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Figure 12. True Positive Rate bτ2T c − bτ1T c = 10, δ = 0.010 - Training Period Bubble

m = 5, κ = 0 m = 5, κ = 1
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Figure 13. True Positive Rate bτ2T c − bτ1T c = 5, δ = 0.020 - Training Period Bubble

m = 5, κ = 0 m = 5, κ = 1
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Figure 14. True Positive Rate bτ2T c − bτ1T c = 15, δ = 0.007 - Training Period Bubble

m = 5, κ = 0 m = 5, κ = 1
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Figure 15 - First Difference of Stock Indices
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Figure 16(a) DAX 30 index
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Figure 16(b) Monitoring results: m = 15, Se,m: , maxe∈[m+1,T ∗] Se,m: , SEQm first

detection: , MAXm first detection: , cv0.05: , T ∗: , T ∗ +m: , FPR:
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Figure 17(a) FTSE All Share index
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Figure 17(b) Monitoring results: m = 15, Se,m: , maxe∈[m+1,T ∗] Se,m: , MAXm first

detection: , cv0.05: , T ∗: , T ∗ +m: , FPR:
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Figure 18(a) Nasdaq Composite index
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Figure 18(b) Monitoring results: m = 15, Se,m: , maxe∈[m+1,T ∗] Se,m: , SEQm first

detection: , MAXm first detection: , cv0.05: , T ∗: , T ∗ +m: , FPR:

40



75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 00 01 02
4

4.5

5

5.5

6

6.5

Figure 19(a) Nikkei 225 index
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Figure 19(b) Monitoring results: m = 15, Se,m: , maxe∈[m+1,T ∗] Se,m: , MAXm first

detection: , cv0.05: , T ∗: , T ∗ +m: , FPR:
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Figure 20(a) S&P 500 index
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Figure 20(b) Monitoring results: m = 15, Se,m: , maxe∈[m+1,T ∗] Se,m: , SEQm first

detection: , MAXm first detection: , cv0.05: , T ∗: , T ∗ +m: , FPR:
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