
Noname manuscript No.
(will be inserted by the editor)

Unsupervised record matching with noisy and incomplete
data

Yves van Gennip · Blake Hunter · Anna Ma · Daniel Moyer ·
Ryan de Vera · Andrea L. Bertozzi

Abstract We consider the problem of duplicate

detection in noisy and incomplete data: given a

large data set in which each record has multiple

entries (attributes), detect which distinct records

refer to the same real world entity. This task is

complicated by noise (such as misspellings) and

missing data, which can lead to records being dif-

ferent, despite referring to the same entity. Our

method consists of three main steps: creating a

similarity score between records, grouping records

together into “unique entities”, and refining the

groups. We compare various methods for creat-

ing similarity scores between noisy records, con-

sidering different combinations of string matching,

term frequency-inverse document frequency meth-

ods, and n-gram techniques. In particular, we in-

troduce a vectorized soft term frequency-inverse

document frequency method, with an optional re-

finement step. We also discuss two methods to deal

with missing data in computing similarity scores.

We test our method on the Los Angeles Po-

lice Department Field Interview Card data set,

Y. van Gennip
University of Nottingham
E-mail: Y.VanGennip@nottingham.ac.uk

B. Hunter
Claremont McKenna College
E-mail: bhunter@cmc.edu

A. Ma
Claremont Graduate University
E-mail: anna.ma@cgu.edu

D. Moyer
University of Southern California
E-mail: moyerd@usc.edu

R. de Vera
formerly California State University, Long Beach
E-mail: ryan.devera.03@gmail.com

A. L. Bertozzi
University of California, Los Angeles
E-mail: bertozzi@math.ucla.edu

the Cora Citation Matching data set, and two sets

of restaurant review data. The results show that

the methods that use words as the basic units are

preferable to those that use 3-grams. Moreover, in

some (but certainly not all) parameter ranges soft

term frequency-inverse document frequency meth-

ods can outperform the standard term frequency-

inverse document frequency method. The results

also confirm that our method for automatically

determining the number of groups typically works

well in many cases and allows for accurate results

in the absence of a priori knowledge of the number

of unique entities in the data set.

Keywords duplicate detection · data cleaning ·
data integration · record linkage · entity matching ·
identity uncertainty · transcription error

1 Introduction

Fast methods for matching records in databases

that are similar or identical have growing impor-

tance as database sizes increase [69,71,21,43,2].

Slight errors in observation, processing, or enter-

ing data may cause multiple unlinked nearly dupli-

cated records to be created for a single real world

entity. Furthermore, records are often made up of

multiple attributes, or fields; a small error or miss-

ing entry for any one of these fields could cause

duplication.

For example, one of the data sets we consider

in this paper is a database of personal information

generated by the Los Angeles Police Department

(LAPD). Each record contains information such as

first name, last name, and address. Misspellings,

different ways of writing names, and even address

changes over time, can all lead to duplicate entries

in the database for the same person.

Duplicate detection problems do not scale well.

The number of comparisons which are required

2 Yves van Gennip et al.

grows quadratically with the number of records,

and the number of possible subsets grows exponen-

tially. Unlinked duplicate records bloat the storage

size of the database and make compression into

other formats difficult. Duplicates also make anal-

yses of the data much more complicated, much less

accurate, and may render many forms of analyses

impossible, as the data is no longer a true repre-

sentation of the real world. After a detailed de-

scription of the problem in Section 2 and a review

of related methods in Section 3, we present in Sec-

tion 4 a vectorized soft term frequency-inverse doc-

ument frequency (soft TF-IDF) solution for string

and record comparison. In addition to creating a

vectorized version of the soft TF-IDF scheme we

also present an automated thresholding and refine-

ment method, which uses the computed soft TF-

IDF similarity scores to cluster together likely du-

plicates. In Section 5 we explore the performances

of different variations of our method on four text

databases that contain duplicates.

2 Terminology and problem statement

We define a data set D to be an n×a array where

each element of the array is a string (possibly the

empty string). We refer to a column as a field, and

denote the kth field ck. A row is referred to as a

record, with ri denoting the ith record of the data

set. An element of the array is referred to as an en-

try, denoted ei,k (referring to the ith entry in the

kth field). Each entry can contain multiple features

where a feature is a string of characters. There

is significant freedom in choosing how to divide

the string which makes up entry ei,k into multi-

ple features. In our implementations in this paper

we compare two different methods: (1) cutting the

string at white spaces and (2) dividing the string

into N -grams. For example, consider an entry ei,k
which is made up of the string “Albert Einstein”.

Following method (1) this entry has two features:

“Albert” and ‘’Einstein”. Method (2), the N -gram

representation, creates features fk1 , . . . , f
k
L, corre-

sponding to all possible substrings of ei,k contain-

ing N consecutive characters (if an entry contains

N characters or fewer, the full entry is considered

to be a single token). Hence L is equal to the length

of the string minus (N − 1). In our example, if we

use N = 3, ei,k contains 13 features. Ordered al-

phabetically (with white space “ ” preceding “A”),

the features are

fk1 = “ Ei”, fk2 = “Alb”, fk3 = “Ein”, fk4 = “ber”,

fk5 = “ein”, fk6 = “ert”, fk7 = “ins”, fk8 = “lbe”,

fk9 = “nst”, fk10 = “rt ”, fk11 = “ste”, fk12 = “t E”,

fk13 = “tei”.

In our applications we remove any N -grams that

consist purely of white spaces.

When discussing our results we will specify where

we have used method (1) and where we have used

method (2), by indicating if we have used word

features or N -gram features respectively.

For each field we create a dictionary of all fea-

tures in that field and then remove stop words or

words that are irrelevant, such as “and”, “the”,

“or”, “None”, “NA”, or “ ” (the empty string). We

refer to such words collectively as “stop words” (as

is common in practice) and to this reduced dictio-

nary as the set of features, fk, where:

fk :=
(
fk1 , f

k
2 , . . . , f

k
m−1, f

k
m

)
,

if the kth field contains m features. This reduced

dictionary represents an ordered set of unique fea-

tures found in field ck.

Note that m, the number of features in fk, de-

pends on k, since a separate set of features is con-

structed for each field. To keep the notation as sim-

ple as possible, we will not make this dependence

explicit in our notation. Since, in this paper, m is

always used in the context of a given, fixed k, this

should not lead to confusion.

We will write fkj ∈ ei,k if the entry ei,k contains

the feature fkj . Multiple copies of the same feature

can be contained in any given entry. This will be

explored further in Section 3.2. Note that an entry

can be “empty” if it only contains stop words, since

those are not included in the set of features fk.

We refer to a subset of records as a cluster

and denote it R = {rt1 , . . . , rtp} where each ti ∈
{1, 2, . . . n} is the index of a record in the data set.

The duplicate detection problem can then be

stated as follows: Given a data set containing du-

plicate records, find clusters of records that repre-

sent a single entity, i.e., subsets containing those

records that are duplicates of each other. Duplicate

records, in this sense, are not necessarily identical

records but can also be ‘near identical’ records.

They are allowed to vary due to spelling errors or

missing entries.

3 Related methods

Numerous algorithms for duplicate detection exist,

including various probabilistic methods [33], string

Unsupervised record matching with noisy and incomplete data 3

comparison metrics [32,68], feature frequency meth-

ods [57], and hybrid methods [16]. There are many

other proposed methods for data matching, record

linkage and various stages of data cleaning, that

have a range of success in specific applications but

also come with their own limitations and draw-

backs. Surveys of various duplicate detection meth-

ods can be found in [21,4,29,1,54].

Probabilistic rule based methods, such as Fellegi-

Sunter based models [68], are methods that at-

tempt to learn features and rules for record match-

ing using conditional probabilities, however, these

are highly sensitive to the assumed model which

is used to describe how record duplicates are dis-

tributed across the database and become completely

infeasible at large scale when comparing all pairs.

Other rule based approaches such as [61] attempt

to create a set of rules that is flexible enough to

deal with different types of data sets.

Privacy-preserving record matching techniques

[27,59], based on hash encoding, are fast and scal-

able, but can only handle exact matching (single

character differences or small errors in input re-

sult in completely different hash codes); approxi-

mate matching based methods are often possible

but typically not scalable.

Collective record matching techniques [48,24]

have been proposed that match records across mul-

tiple databases, using a graph based on similarity

of groups of entities. These methods have shown

promise in some applications where entity relation-

ships are identifiable (such as sharing the same ad-

dress or organization), but direct applications are

limited and are currently not generalizable or scal-
able.

Unsupervised or supervised techniques [23] can

also be used directly, using records as features, but

in most applications labeled data does not exist for

training or evaluation. Additionally, standard test-

ing data sets, used for comparing methods, are ex-

tremely limited and weakly applicable to most ap-

plications. Some techniques are developed specifi-

cally to deal with hierarchical data, such as XML

data [42,1]. We do not consider that situation here.

For larger data sets a prefix filtering [72], block-

ing [18,19,51,50] or windowing [19,8,34] step can

be used. Such methods can be seen as a prepro-

cessing step which identifies records which are not

likely to be duplicates, such that the pairwise fea-

ture similarity does only need to be computed for

those features that co-appear in likely duplicates.

A survey of various such indexing methods is given

in [15]. We did not include an indexing step in

our experiments in this paper, so that our experi-

ments are run without excluding any record pair-

ings a priori, but they can be incorporated into our

method

Pay-as-you-go [67] or progressive duplicate de-

tection methods [52,34] have been developed for

applications in which the duplicate detection has

to happen in limited time on data which is ac-

quired in small batches or in (almost) real-time

[41]. In our paper we consider the situation in which

we have all data available from the start.

In [9] the authors suggest to use trainable sim-

ilarity measures that can adapt to different do-

mains from which the data originate. In this pa-

per we develop our method using given similarity

measures, such that our method is applicable in

the absence of training data.

In the remainder of this section we present in

more detail those methods which are related to the

proposed method we introduce in Section 4. We re-

view both the Jaro and Jaro-Winkler string met-

rics, the feature frequency based term frequency-

inverse document frequency (TF-IDF) method, and

the hybrid soft TF-IDF method.

3.1 Character-based similarity: Jaro and

Jaro-Winkler

Typographical variations are a common cause of

duplication among string data, and the prevalence

of this type of error motivates string comparison

as a method for duplicate detection. The Jaro dis-

tance [32] was originally devised for duplicate de-

tection in government census data and modified by

Winkler [68] to give more favorable similarities to

strings with matching prefixes. This latter variant

is now known as the Jaro-Winkler string metric

and has been found to be comparable empirically

with much more complex measures [16]. Despite

their names, neither the Jaro distance, nor the

Jaro-Winkler metric, are in fact distances or met-

rics in the mathematical sense, since they do not

satisfy the triangle inequality, and exact matches

have a score of 1, not 0. Rather, they can be called

similarity scores.

To define the Jaro-Winkler metric, we must

first define the Jaro distance. For two features fki
and fkj , we define the character window size

W k
i,j :=

⌊
min(|fki |, |fkj |)

2

⌋
,

where |fki | is the length of the string fki , i.e., the

number of characters in fki counted according to

multiplicity. The lth character of the string fki is

said to match the l′
th

character of fkj , if both

characters are identical and l − W k
i,j ≤ l′ ≤ l +

W k
i,j . Let M be the number of characters in string

4 Yves van Gennip et al.

fki that match with characters in string fkj (or,

equivalently, the number of characters in fkj that

match with characters in fki), let (a1, . . . , aM) be

the matched characters from fki in the order they

appear in the string fki , and let (b1, . . . , bM) be

the matched characters from fkj in order. Then t

is defined to be half the number of transpositions

between fki and fkj , i.e., half the number of indices

l ∈ {1, . . . ,M} such that al 6= bl. Each such pair

(al, bl) is called a transposition pair. Now the Jaro

distance [32] J(fki , f
k
j) is defined as

J(fki , f
k
j) :=

1

3

(
M

|fki |
+

M

|fkj |
+
M − t
M

)
, if M 6= 0,

0, if M = 0.

Fig. 1 shows an example of transpositions and match-

ing character pairs.

Fig. 1: Example of a comparison of two features in

the computation of the Jaro distance, with char-

acter window size W = 4. The example has 7

matching character pairs, 2 of which are transposi-

tion pairs, represented by the red lines. The green

lines indicate matching pairs that are not transpo-

sitions. Notice that “G” is not considered a match-

ing character as “G” in “NITHOWLG” is the 8th

character while “G” in “NIGHTOWL” is the 3rd

character, which is out of the W = 4 window for

this example. Here, J = 1
3 (7

8 + 7
8 + 7−1

7) = 0.869.

The Jaro-Winkler metric, JW (fki , f
k
j), modi-

fies the original Jaro distance by giving extra weight

to matching prefixes. It uses a fixed prefix factor

p to give a higher similarity score to features that

start with the same characters. Given two features

fki and fkj , the Jaro-Winkler metric is

JW (fki , f
k
j) := J(fki , f

k
j) + p `i,j

(
1− J(fki , f

k
j)
)
,

(1)

where J(fki , f
k
j) is the Jaro distance between two

features fki and fkj , p is a given prefix factor, and

`i,j is the number of prefix characters in fki that are

the same as the corresponding prefix characters in

fkj (i.e., the first `i,j characters in fki are the same

as the first `i,j characters in f jk and the (`i,j + 1)th

characters in both features differ). When we want

to stress that, for fixed k, JW (fki , f
k
j) is an element

of a matrix, we write JW k
i,j := JW (fki , f

k
j), such

that JW k ∈ Rm×m.

In Winkler’s original work he set p = 0.1 and

restricted `i,j ≤ 4 (even when prefixes of five or

more characters were shared between features) [68].

We follow the same parameter choice and restric-

tion in our applications in this paper. So long as

p `i,j ≤ 1 for all i, j, the Jaro-Winkler metric ranges

from 0 to 1, where 1 indicates exact similarity be-

tween two features and 0 indicates no similarity

between two features.

In Fig. 1 we have ` = 2, as both features have

identical first and second characters, but not a

matching third character. This leads to JW =

0.869 + 0.1 · 2 · (1− 0.869) = 0.895.

Because we remove stop words and irrelevant

words from our set of features, it is possible for an

entry ei,k to contain a feature that does not appear

in fk. If a feature f̃ ∈ ei,k does not appear in the

dictionary fk, we set, for all fkq ∈ fk, JW (fkq , f̃) :=

0. We call such features f̃ null features.

Algorithm 1: Jaro-Winkler Algorithm

Data: ck, an n× 1 array of text
Result: JW k ∈ Rm×m
Create the set of features fk = (fk1 , . . . , f

k
m)

for each pair of features (fki , f
k
j) do

Compute Jaro distance Ji,j = J(fki , f
k
j)

Compute Jaro-Winkler similarity JW k
i,j =

Ji,j + p `i,j(1− Ji,j), if neither feature

fki or fkj is a

null feature,

0, else

end

3.2 Feature-based similarity: TF-IDF

Another approach to duplicate detection, generally

used in big data record matching, looks at similar

distributions of features across records. This fea-

ture based method considers entries to be similar

if they share many of the same features, regard-

less of order; this compensates for errors such as

changes in article usage and varying word order

(e.g. “The Bistro”, “Bistro, The”, or “Bistro”),

as well as the addition of information (e.g. “The

Bistro” and “The Bistro Restaurant”).

This form of duplicate detection is closely re-

lated to vector space models of text corpora [58],

where a body of text is represented as a vector

in some word vector space. The dimension of the

space is the number of relevant words (other words

are assumed to be meaningless), and, for a given

record, each element of the vector representation

Unsupervised record matching with noisy and incomplete data 5

is the frequency with which a word appears in

the entry. (It should be noted that these models

also disregard word order.) A more powerful exten-

sion of these models is the term frequency-inverse

document frequency (TF-IDF) scheme [57]. This

scheme reweighs different features based on their

frequency in a single field as well as in an entry.

Using the reduced set of features, fk, we cre-

ate the term frequency and inverse document fre-

quency matrices. We define the term frequency ma-

trix for the kth field, TF k ∈ Rn×m, such that TF k
i,j

is the number of times the feature fkj appears in

the entry ei,k (possibly zero). A row of TF k repre-

sents the frequency of every feature in an entry.

Next we define the diagonal inverse document

frequency matrix IDF k ∈ Rm×m with diagonal el-

ements1

IDF k
i,i := log

n

|{e ∈ ck : fki ∈ e}|
,

where |{e ∈ ck : fki ∈ e}| is the number of entries2

in field ck containing feature fki , and where n is

the number of records in the data set. The matrix

IDF k uses this number of entries in the field which

contain a given feature to give this feature a more

informative weight. The issue when using term fre-

quency only, is that it gives features that appear

frequently a higher weight than rare features. The

latter often are empirically more informative than

common features, since a feature that occurs fre-

quently in many entries is unlikely to be a good

discriminator.

The resulting weight matrix for field k is then

defined with a logarithmic scaling for the term fre-

quency as3

TFIDF k := Nk log(TF k + 1)IDF k, (2)

where 1 is an n×m matrix of ones, the log opera-

tion acts on each element of TF k + 1 individually,

and Nk ∈ Rn×n is a diagonal normalization matrix

such that each nonzero row of TFIDF k has unit `1

norm4. The resulting matrix has dimension n×m.

1 We use log to denote the natural logarithm in this
paper.
2 By the construction of our set of features in Sec-

tion 2, this number of entries is always positive.
3 Note that, following [16], we use a slightly differ-

ent logarithmic scaling, than the more commonly used
TFIDF ki,j =

(
log(TF ki,j) + 1

)
IDF ki,i, if TF ki,j 6= 0, and

TFIDF ki,j = 0, if TF ki,j = 0. This avoids having to deal

with the case TF ki,j = 0 separately. The difference be-

tween log(TF ki,j) + 1 and log(TF ki,j + 1) is bounded by

1 for TF ki,j ≥ 1.
4 Here we deviate from [16], in which the authors nor-

malize by the `2 norm. We do this so that later in equa-
tion (3), we can guarantee that the soft TF-IDF values
are upper bounded by 1.

Each element TFIDF k
i,j represents the weight as-

signed to feature j in field k for record i. Note that

each element is nonnegative.

Algorithm 2: TF-IDF Algorithm

Data: ck, an n× 1 array of text
Result: TFIDF k ∈ Rn×m
Create the set of features fk = (fk1 , . . . , f

k
m)

for each pair of features (fki , f
k
j) do

Compute term frequency TF ki,j
end

for each feature fki do
Compute inverse document frequency IDF ki,i

end

Initialize TFIDF k = log(TF k + 1)IDF k

Normalize rows of TFIDF k to have unit `1 norm

3.3 Hybrid similarity: soft TF-IDF

The previous two methods concentrate on two dif-

ferent causes of record duplication, namely typo-

graphical error and varying word order. It is easy

to imagine, however, a case in which both types of

error occur; this leads us to a third class of meth-

ods which combine the previous two. These hybrid

methods measure the similarity between entries us-

ing character similarity between their features as

well as weights of their features based on impor-

tance. Examples of these hybrid measures include

the extended Jacard similarity and the Monge-

Elkan measure [47]. In this section we will dis-

cuss another such method, soft TF-IDF [16], which

combines TF-IDF with a character similarity mea-

sure. In our method, we use the Jaro-Winkler met-

ric, discussed above in Section 3.1, as the character

similarity measure in soft TF-IDF.

For θ ∈ [0, 1), let Ski,j(θ) be the set of all index

pairs (p, q) ∈ Rm×m such that fkp ∈ ei,k, fkq ∈
ej,k, and JW (fkp , f

k
q) > θ, where JW is the Jaro-

Winkler similarity metric from (1). The soft TF-

IDF similarity score between two entries ei,k and

ej,k in field ck is defined as

sTFIDF k
i,j := (3)

∑
(p,q)∈Ski,j(θ)

TFIDF k
i,p · TFIDF k

j,q · JW k
p,q, if i 6= j,

1, if i = j.

The parameter θ allows for control over the simi-

larity of features, removing entirely pairs that do

not have Jaro-Winkler similarity above a certain

threshold. The results presented in this paper are

all obtained with θ = 0.90.

6 Yves van Gennip et al.

The soft TF-IDF similarity score between two

entries is high if they share many similar features,

where the similarity between features is measured

by the Jaro-Winkler metric and the contribution

of each feature is weighted by its TF-IDF score. If

we contrast the soft TF-IDF score with the TF-

IDF score described in Section 3.4 below, we see

that the latter only uses those features which are

exactly shared by both entries, whereas the former

also incorporates contributions from features that

are very similar (but not exactly the same). This

means that the soft TF-IDF score allows for high

similarity between entries in the presence of both

misspellings and varying word (or feature) order

more so than the TF-IDF score does.

Note from (3) that for all i, j, and k, we have

sTFIDF k
i,j ∈ [0, 1]. The expression for the case i 6=

j does not necessarily evaluate to 1 in the case i =

j. Therefore we explicitly included sTFIDF k
i,i = 1

as part of the definition, since this is a reasonable

property for a similarity measure to have. Luck-

ily, these diagonal elements of sTFIDF k will not

be relevant in our method, so the i = j part of

the definition is more for definiteness and compu-

tational ease5, than out of strict necessity for our

method.

In practice, this method’s computational cost

is greatly reduced by vectorization. Let Mk,θ ∈
Rm×m be the Jaro-Winkler similarity matrix de-

fined by

Mk,θ
p,q :=

{
JW (fkp , f

k
q), if JW (fkp , f

k
q) ≥ θ,

0, if JW (fkp , f
k
q) < θ.

The soft TF-IDF similarity for each (i, j) pair-

ing (i 6= j) can then be computed as

sTFIDF k
i,j =

m∑
p,q=1

[(
TFIDF k

i

T
TFIDF k

j

)
∗Mk,θ

]
p,q
,

where TFIDFki denotes the ith row of the TF-IDF

matrix of field ck and ∗ denotes the Hadamard

product (i.e. the element-wise product). We can

further simplify this using tensor products. Let

M
k,θ

denote the vertical concatenation of the rows

of Mk,θ.

M
k,θ

=


Mk,θ

1

T

Mk,θ
2

T

...

Mk,θ
m

T


5 The values of the diagonal elements are not relevant

theoretically, because any record is always a ‘duplicate’
of itself and trivially will be classified as such, i.e. each
record will be clustered in the same cluster as itself.
However, if the diagonal elements are not set to have
value 1, care must be taken that this does not influence
the numerical implementation.

where Mk,θ
i is the ith row of Mk,θ. We then have

sTFIDF k
i,j = (TFIDF k

i ⊗ TFIDF k
j) ∗Mk,θ

,

if i 6= j. Here ⊗ is the Kronecker product. Finally

we set the diagonal elements sTFIDF k
i,i = 1.

Algorithm 3: soft TF-IDF Algorithm

Data: JW k ∈ Rm×m, TFIDF k ∈ Rn×m, θ
Result: sTFIDF k ∈ Rn×n
Create the set of features fk = (fk1 , . . . , f

k
m)

for each pair of features (fki , f
k
j) do

Compute the thresholded Jaro-Winkler
matrix Mk,θ

i,j

end

Vertically concatenate rows of Mk,θ:

M
k,θ

= [Mk,θ
1

T
;Mk,θ

2

T
; . . . ;Mk,θ

m
T

]
for each pair of entries (ei,k, ej,k) in field ck do

Compute soft TF-IDF for i 6= j:

sTFIDF k
i,j = (TFIDF k

i ⊗ TFIDF k
j) ∗Mk,θ

end

Set the diagonal elements sTFIDF ki,i = 1

The TF-IDF and Jaro-Winkler similarity ma-

trices are typically sparse. This sparsity can be

leveraged to reduce the computational cost of the

soft TF-IDF method as well.

The soft TF-IDF scores above are defined be-

tween entries for a single field. For each pair of

records we produce a composite similarity score

ST i,j by adding their soft TF-IDF scores over all

fields:

ST i,j :=

a∑
k=1

sTFIDF k
i,j . (4)

Hence ST ∈ Rn×n and ST i,j is the score between

the ith and jth records. Remember that a is the

number of fields in the data set, thus each com-

posite similarity score ST i,j is a number in [0, a].

For some applications it may be desirable to let

some fields have a greater influence on the compos-

ite similarity score than others. In the above for-

mulation this can easily be achieved by replacing

the sum in (4) by a weighted sum:

ST wi,j :=

a∑
k=1

wk sTFIDF
k
i,j ,

for positive weights wk ∈ R, k ∈ {1, . . . , a}. If the

weights are chosen such that
∑a
k=1 wk ≤ a, then

the weighted composite similarity scores ST wi,j take

values in [0, a], like ST i,j . In this paper we use the

unweighted composite similarity score matrix ST .

Unsupervised record matching with noisy and incomplete data 7

3.4 Using TF-IDF instead of soft TF-IDF

In our experiments in Section 5 we will also show

results in which we use TF-IDF, not soft TF-IDF,

to compute similarity scores. This can be achieved

in a completely analogous way to the one described

in Section 3.3, if we replace JW k
p,q in (3) by the

Kronecker delta δp,q :=

{
1, if p = q,

0, otherwise.
The de-

pendency on θ disappears and we get

sTFIDF k
i,j :=


m∑
p=1

(
TFIDF k

i,p

)2
, if i 6= j,

1, if i = j.

(5)

Note that the values for i 6= j correspond to the off-

diagonal values in the matrix TFIDF k
(
TFIDF k

)T ∈
Rn×n, where TFIDF k is the TF-IDF matrix from

(2) and the superscript T denotes the matrix trans-

pose6.

We used the same notation for the matrices in

(3) and (5), because all the other computations, in

particular the computation of the composite simi-

larity score in (4) which is used in the applications

in Section 5, follow the same recipe when using ei-

ther matrix. Where this is of importance in this

paper, it will be clear from the context if ST has

been constructed using the soft TF-IDF or TF-IDF

similarity scores.

4 The proposed methods

We extend the soft TF-IDF method to address two

common situations in duplicate detection: sparsity

due to missing entries and large numbers of du-

plicates. For data sets with only one field, han-

dling a missing field is a non-issue; a missing field

is irreconcilable, as no other information is gath-

ered. In a multi-field setting, however, we are faced

with the problem of comparing partially complete

records. Another issue is that a record may have

more than one duplicate. If all entries are pairwise

similar we can easily justify linking them all, but

in cases where one record is similar to two differ-

ent records which are dissimilar to each other the

solution is not so clear cut.

Fig. 2 shows an outline of our method. First we

use TF-IDF to assign weights to features that in-

dicate the importance of that feature in an entry.

Next, we use soft TF-IDF with the Jaro-Winkler

metric to address spelling inconsistencies in our

6 Our choice to normalize the rows of TFIDF k by their
`1 norms instead of their `2 norms means that the diag-

onal elements of TFIDF k
(
TFIDF k

)T
are not necessarily

equal to 1.

Fig. 2: An outline of our method for duplicate de-

tection

data sets. After this, we adjust for sparsity by tak-

ing into consideration whether or not a record has

missing entries. Using the similarity matrix pro-

duced from the previous steps, we threshold and

group records into clusters. Lastly, we refine these

groups by evaluating how clusters break up under

different conditions.

4.1 Adjusting for sparsity

A missing entry is an entry that is either entirely

empty from the start or one that contains only

null features and thus ends up being empty for

our purposes. Here, we assume that missing en-

tries do not provide any information about the

record and therefore cannot aid us in determin-

ing whether two records should be clustered to-

gether (i.e. labeled as probable duplicates). In [65],

[68], and [3], records with missing entries are dis-

carded, filled in by human fieldwork, and filled in

by an expectation-maximization (EM) imputation

algorithm, respectively. For cases in which a large

number of entries are missing, or in data sets with

a large number of fields such that records have

a high probability of missing at least one entry,

these first two methods are impractical. Further-

more, the estimation of missing fields is equiva-

lent to unordered categorical estimation. In fields

where a large number of features are present (i.e.

the set of features is large), estimation by an EM

scheme becomes computationally intractable [53]

[70] [30]. Thus, a better method is required.

Leaving the records with missing entries in our

data set, both TF-IDF and Jaro-Winkler remain

well defined, allowing (soft) TF-IDF schemes to

8 Yves van Gennip et al.

proceed. However, because the Jaro-Winkler met-

ric between a null feature and any other feature

is 0, the soft TF-IDF score between a missing en-

try and any other entry is 0. This punishes sparse

records in the composite soft TF-IDF similarity

score matrix ST . Even if two records have the ex-

act same entries in fields where both records do not

have missing entries, their missing entries deflate

their composite soft TF-IDF similarity. Consider

the following example using two records (from a

larger data set containing n > 2 records) and three

fields: [“Joe Bruin”, “ ”, “male”] and [“Joe Bruin’,

“CA”, “ ”]. The two records are likely to represent

a unique entity “Joe Bruin”, but the composite

soft TF-IDF score between the two records is on

the lower end of the similarity score range (1 out of

a maximum of 3) due to the missing entry in the

second field for the first record and the missing

entry in the third field for the second record. The

issue described above for the soft TF-IDF method

is also present for the TF-IDF method described

in Section 3.4.

To correct for this, we take into consideration

the number of mutually present (not missing) en-

tries in the same field for two records. This can be

done in a vectorized manner to accelerate compu-

tation. Let B be the n × a binary matrix defined

by

Bi,k :=

{
0, if ei,k is a missing entry,

1, otherwise.

This is a binary mask of the data set, where

1 denotes a non-missing entry (with or without

error), and 0 denotes a missing entry. In the prod-
uct BBT ∈ Rn×n, each (BBT)i,j is the number of

“shared fields” between records ri and rj , i.e. the

number of fields ck such that both ei,k and ej,k are

non-missing entries. Our adjusted (soft) TF-IDF

similarity score is given by

adjST i,j :=


ST i,j

(BBT)i,j
, if i 6= j and (BBT)i,j 6= 0,

0, if i 6= j and (BBT)i,j = 0,

1, if i = j.

(6)

Remembering that JW (fkp , f
k
q) = 0 if fkp is a null

feature or fkq is a null feature, we see that, if ei,k
is a missing entry or ej,k is a missing entry, then

the set Ski,j(θ) used in (3) is empty (independent of

the choice of θ) and thus sTFIDF k
i,j = 0. The same

conclusion is true in (5) since the ith or jth row of

TFIDF k consists of zeros in that case. Hence, we

have that, for all i, j (i 6= j), (ST)i,j ∈ [0, (BBT)i,j]

(which refines our earlier result that (ST)i,j ∈ [0, a])

and thus (adjST)i,j ∈ [0, 1].

In the event that there are records ri and rj
such that (BBT)i,j = 0, it follows that ST i,j = 0.

Hence it makes sense to define adjST i,j to be zero

in this case. In the data sets we will discuss in

Section 5, no pair of records was without shared

fields. Hence we can use the shorthand expression

adjST = ST �BBT for our purposes in this paper7,

where � denotes element-wise division.

Algorithm 4: Adjusting for Sparsity

Data: sTFIDF k ∈ Rn×n for k ∈ {1, . . . , a}, D an
n× a array of text

Result: adjST ∈ Rn×n
for each entry ei,k in each field ck of D do

Compute Bi,k
end

Initialize ST =
∑
k sTFIDF

k

Adjust ST for sparsity: adjST = ST �BBT

Instead of the method proposed above to deal

with missing data, we can also perform data im-

putation to replace the missing data with a “likely

candidate” [35,36,4,31,40,66]. To be precise, be-

fore computing the matrixB, we replace each miss-

ing entry ei,k by the entry which appears most of-

ten in the kth field8. In case of a tie, we choose

an entry at random among all the entries with the

most appearances (we choose this entry once per

field, such that each missing entry in a given field

is replaced by the same entry). For a clean com-

parison, we still compute the matrix B (which has

now no 0 entries) and use it for the normalization

in (6). The rest of our method is then implemented

as usual. We report the results of this comparison

in Section 5.4.

4.2 Thresholding and grouping

The similarity score adjST i,j gives us an indication

of how similar the records ri and rj are. If adjST i,j
is close to 1, then the records are more likely to

represent the same entity. Now, we present our

method of determining whether a set of records

7 Since we defined the inconsequential diagonal en-
tries to be sTFIDF ki,i = 1 in (3) and (5), it could be that

(ST)i,i > (BBT)i,i for some i, which is why we explic-
itly defined (adjST)i,i = 1 in (6) for consistency with
the other values. Since the diagonal values will play no
role in the eventual clustering this potential discrepancy
between (6) and adjST = ST �BBT is irrelevant for our
purposes.
8 We use the mode, rather than the mean, because all

our data is either textual or, when numeric, it is ordinal,
rather than cardinal, such as in the case of social security
numbers.

Unsupervised record matching with noisy and incomplete data 9

are duplicates of each other based on adjST . There

exist many clustering methods that could be used

to accomplish this goal. For example, [46] considers

this question in the context of duplicate detection.

For simplicity, in this paper we restrict ourselves

to a relatively straightforward thresholding proce-

dure, but other methods could be substituted in

future implementations. We call this the thresh-

olding and grouping step (TGS).

The method we will present below is also appli-

cable to clustering based on other similarity scores.

Therefore it is useful to present it in a more general

format. Let SIM ∈ Rn×n be a matrix of similarity

scores, i.e., for all i, j, the entry SIM i,j is a similar-

ity score between the records ri and rj . We assume

that, for all i 6= j, SIM i,j = SIM j,i ∈ [0, a]9. If

we use our adjusted (soft) TF-IDF method, SIM

is given by adjST from (6). In Section 4.1 we saw

that in that case we even have SIM i,j ∈ [0, 1].

Let τ ∈ [0, a] be a threshold and let S be the

thresholded similarity score matrix defined for i 6=
j as

Si,j :=

{
1, if SIM i,j ≥ τ,
0, if SIM i,j < τ.

The outcome of our method does not depend on

the diagonal values, but for definiteness (and to

simplify some computations) we set Si,i := 1, for

all i. If we want to avoid trivial clusterings (i.e.

with all records in the same cluster, or with each

cluster containing only one record) the threshold

value τ must be chosen in the half-open interval(
min
i,j:j 6=i

SIM i,j , max
i,j:j 6=i

SIM i,j

]
.

If Si,j = 1, then the records ri and rj are

clustered together. Note that this is a sufficient,

but not necessary condition for two records to be

clustered together. For example, if Si,j = 0, but

Si,k = 1 and Sj,k = 1, then ri and rk are clus-

tered together, as are rj and rk, and thus so are ri
and rj . The output of the TGS is a clustering of

all the records in the data set, i.e. a collection of

clusters, each containing one or more records, such

that each record belongs to exactly one cluster.

The choice of τ is crucial in the formation of

clusters. Choosing a threshold that is too low leads

to large clusters of records that represent more

than one unique entity. Choosing a threshold that

is too high breaks the data set into a large number

9 We will not be concerned with the diagonal values
of SIM , because trivially any record is a ‘duplicate’ of
itself, but for definiteness we may assume that, for all i,
SIM i,i = a.

of clusters, where a single entity may be repre-

sented by more than one cluster. Here, we propose

a method of choosing τ .

Let H ∈ Rn be the n× 1 vector defined by

Hi := max
1≤j≤n
j 6=i

SIM i,j .

In other words, the ith element of H is the maxi-

mum similarity score SIM i,j between the ith record

and every other record. Now define

τH :=

{
µ(H) + σ(H), if µ(H) + σ(H) < maxiHi,

µ(H), else,

where µ(H) is the mean value of H and σ(H) is

its corrected sample standard deviation10.

We choose τH in this fashion, because it is eas-

ily implementable, has shown to work well in prac-

tice (see Section 5) even if it is not always the

optimal choice, and is based on some underlying

heuristic ideas and empirical observations of the

statistics of H in our data sets (which we suspect

to be more generally applicable to other data sets)

that we will explain below. It provides a good al-

ternative to trial-and-error attempts at finding the

optimal τ , which can be quite time-intensive.

For a given record ri, the top candidates to

be duplicates of ri are those records rj for which

SIM i,j = Hi. A typical data set, however, will have

many records that do not have duplicates at all. To

reflect this, we do not want to set the threshold τH
lower than µ(H). If H is normally distributed, this

will guarantee that at least approximately half of

the records in the data set will not be clustered

together with any other record. In fact, in many

of our runs (Fig. 3a is a representative example),

there is a large peak of H values around the mean

value µ(H). Choosing τH equal to µ(H) in this case

will lead to many of the records corresponding to

this peak being clustered together, which is typi-

cally not preferred. Choosing τH = µ(H) + σ(H)

will place the threshold far enough to the right

of this peak to avoid overclustering, yet also far

enough removed from the maximum value of H so

that not only the top matches get identified as du-

plicates. In some cases, however, the distribution

of H values has a peak near the maximum value

instead of near the mean value (as, for example, in

Fig. 3b) and the value µ(H) + σ(H) will be larger

than the maximum H value. In those cases we can

chose τH = µ(H) without risking overclustering.

It may not always be possible to choose a thresh-

old in such a way that all the clusters generated by

our TGS correspond to sets of actual duplicates, as

10 We used MATLAB’s std function.

10 Yves van Gennip et al.

(a) H corresponding to the TF-IDF method (with
word feature, without refinement step, see Sec-
tion 4.3) applied to the FI data set. The red line
is the chosen value τH = µ(H) +σ(H); the blue line
indicates µ(H).

(b) H corresponding to the soft TF-IDF method
(with 3-gram features, with refinement, see Sec-
tion 4.3) applied to the RST data set. The blue line
indicates the chosen value τH = µ(H); the red line
indicates µ(H) + σ(H).

Fig. 3: Histograms of H for different methods ap-

plied to the FI and RST data sets (see Section 5.1)

the following example, illustrated in Fig. 4, shows.

We consider an artificial toy data set for which

we computed the adjusted soft TF-IDF similarity,

based on seven fields. We represent the result of

the TGS as a graph in which each node represents

a record in the data set. We connect nodes i and

j (i 6= j) by an edge if and only if their similarity

score SIM i,j equals or exceeds the chosen thresh-

old value τ . The connected components of the re-

sulting graph then correspond to the clusters the

TGS outputs.

For simplicity, Fig. 4 only shows the features

of each entry from the first two fields (first name

and last name). Based on manual inspection, we

declare the ground truth for this example to con-

tain two unique entities: “Joey Bruin” and “Joan

Lurin”. The goal of our TGS is to detect two clus-

ters, one for each unique entity. Using τ = 5.5,

we find one cluster (Fig. 4a). Using τ = 5.6, we

do obtain two clusters (Fig. 4b), but it is not true

that one cluster represents “Joey Bruin” and the

other “Joan Lurin”, as desired. Instead, one clus-

ters consists of only the “Joey B” record, while the

other cluster contains all other records. Increasing

τ further until the clusters change, would only re-

sult in more clusters, therefore we cannot obtain

the desired result this way. This happens because

the adjusted soft TF-IDF similarity between “Joey

B” and “Joey Bruin” (respectively “Joe Bruin”)

is less than the adjusted soft TF-IDF similarity

between “Joey Bruin” (respectively “Joe Bruin”)

and “Joan Lurin”. To address this issue, we apply

a refinement step to each set of clustered records

created by the TGS, as explained in the next sec-

tion.

The graph representation of the TGS output

turns out to be a very useful tool and we will use

its language in what follows interchangeably with

the cluster language.

Algorithm 5: Thresholding and grouping

Data: SIM = ST ∈ Rn×n, threshold value τ
(manual choice or automatic τ = τH)

Result: a collection of c clusters C = {R1 . . . Rc}
for each i do

Initialize Si,i = 1
end
for each pair of distinct records ri and rj do

Compute Si,j
end
for each pair of distinct records ri and rj do

If Si,j = 1, assign ri and rj to the same
cluster

end

4.3 Refinement

As the discussion of the TGS and the example in

Fig. 4 have shown, the clusters created by the TGS

are not necessarily complete subgraphs: it is possi-

ble for a cluster to contain records ri, rj for which

Si,j = 0. In such cases it is a priori unclear if the

best clustering is indeed achieved by grouping ri
and rj together or not. We introduce a way to re-

fine clusters created in the TGS, to deal with sit-

uations like these. We take the following steps to

refine a cluster R:

1. determine whether R needs to be refined by

determining the cluster stability with respect

to single record removal;

Unsupervised record matching with noisy and incomplete data 11

(a) Result of the TGS with τ = 5.5

(b) Result of the TGS with τ = 5.6

Fig. 4: Two examples of clusters created by the

TGS applied to an artificial data set, with different

threshold values τ

2. if R needs be to refined, remove one record at a

time from R to determine the ‘optimal record’

r∗ to remove;

3. if r∗ is removed from R, find the subcluster

that r∗ does belong to.

Before we describe these steps in more detail, we

introduce more notation. Given a cluster (as deter-

mined by the TGS) R = {rt1 , . . . , rtp} containing

p records, the thresholded similarity score matrix

of the cluster R is given by the restricted matrix

S|R ∈ Rp×p with elements (S|R)i,j := Sti,tj . Re-

member we represent R by a graph, where each

node corresponds to a record rti and two distinct

nodes are connected by an edge if and only if their

corresponding thresholded similarity score (S|R)i,j
is 1. If a record rti is removed from R, the remain-

ing set of records is

R(rti) := {rt1 , . . . , rti−1
, rti+1

, . . . , rtp}. We define

the subclusters R1, . . . Rq of R(rti) as the subsets

of nodes corresponding to the connected compo-

nents of the subgraph induced by R(r(ti)).

Step 1. Starting with a cluster R from the TGS,

we first determine if R needs to be refined, by in-

vestigating, for each rti ∈ R, the subclusters of

R(rti). If, for every rti ∈ R, R(rti) has a single

subcluster, then R need not be refined. An exam-

ple of this is shown in Fig. 5. If there is an rti ∈ R,

such that R(rti) has two or more subclusters, then

we refine R.

Step 2. For any set R̃ consisting of p records, we

define its strength as the average similarity be-

tween the records in R̃:

s(R̃) :=


p∑

i,j=1
i6=j

(S|R̃)i,j

(p2)
, if p ≥ 2,

0, if p = 1.

(7)

Note that s(R̃) = 1 if S|R̃ = 1p×p (it suffices if

the off-diagonal elements satisfy this equality). In

other words, a cluster has a strength of 1 if ev-

ery pair of distinct records in that cluster satisfy

condition 1 of the TGS.

If in Step 1 we have determined that the cluster

R requires refinement, we find the optimal record

r∗ := rtk∗ such that the average strength of sub-

clusters of R(r∗) is maximized:

k∗ = arg max
1≤i≤p

1

q(i)

q(i)∑
j=1

s(Rj).

Here the sum is over all j such that Rj is a subclus-

ter of R(rti), and q(i) is the (i-dependent) number

of subclusters of R(rti). In the unlikely event that

the maximizer is not unique, we arbitrarily choose

one of the maximizers as k∗. Since the strength of

a subcluster measures the average similarity be-

tween the records in that subcluster, we want to

keep the strength of the remaining subclusters as

high as possible after removing r∗ and optimizing

the average strength is a good strategy to achieve

that.

Step 3. After finding the optimal r∗ to remove,

we now must determine the subcluster to which to

add it. We again use the strength of the resulting

subclusters as a measure to decide this. We eval-

uate the strength of the set Rj ∪ {r∗} ⊂ R, for

each subcluster Rj ⊂ R(r∗). We then add r∗ to

subcluster Rl∗ to form R∗ := Rl∗ ∪ {r∗}, where

l∗ := arg max
j:Rj is a subcluster

of R(r∗)

s(Rj ∪ {r∗}).

In the rare event that the maximizer is not unique,

we arbitrarily choose one of the maximizers as l∗.

Choosing l∗ in this way ensures that r∗ is similar

to the records in Rl∗ .

12 Yves van Gennip et al.

Fig. 5: An example of a cluster R that does not require refinement. Each node represents a record. In each

test we remove one and only one node from the cluster and apply TGS again. The red node represents

the removed record rti , the remaining black nodes make up the set R(ti). Notice that every time we

remove a record, all other records are still connected to each other by solid lines, hence R does not need

to be refined.

We always add r∗ to one of the other subclus-

ters and do not consider the possibility of letting

{r∗} be its own cluster. Note that this is justi-

fied, since from our definition of strength in (7),

s({r∗}) = 0 < s(R∗), because r∗ was connected to

at least one other record in the original cluster R.

Finally, the original cluster R is removed from

the output clustering, and the new clusters

R1, . . . , Rl∗−1, R
∗, Rl∗+1, . . . , Rq(k∗) are added to

the clustering.

Fig. 6 shows an example of how the refinement

helps us to find desired clusters.

Algorithm 6: Refinement

Data: R = {rt1 , . . . , rtn} a cluster resulting from
the TGS

Result: R set of refined clusters
if there exists rti such that R(rti) has more than

1 subcluster then
for each rti ∈ R do

Find the subclusters R1, . . . Rq of R(rti)
Compute 1

q

∑q
j=1 s(Rj)

end
Assign r∗ = rtk∗ where
k∗ = arg maxi

1
q

∑q
j=1 s(Rj)

for each subcluster Ri ⊂ R(r∗) do
Compute s(Ri ∪ {r∗})

end
Assign R∗ = (Rl∗ ∪ {r∗}) where
l∗ = arg maxj s(Rj ∪ {r∗})
R = {R1, . . . , Rl∗−1, Rl∗ , Rl∗+1, . . . , Rq(k∗)}

end
else

Do not refine R: R = {R}
end

Fig. 6: An example of how refinement is used to

improve our clusters. The left figure shows that by

removing the record “Joan Lurin”, we obtain the

two desired subsets. The right figure shows that

“Joan Lurin” is inserted back into the appropriate

cluster. Note that we have not changed the thresh-

old value τ during this process.

Unsupervised record matching with noisy and incomplete data 13

In our implementation, we computed the opti-

mal values k∗ and l∗ are via an exhaustive search

over all parameters. This can be computationally

expensive when the initial threshold τ is small,

leading to large initial clusters.

We only applied the refinement step process

once (i.e., we executed Step 1 once and for each

cluster identified in that step we applied Steps 2

and 3 once each). It is possible to iterate this three

step process until no more ‘unstable’ clusters are

found in Step 1.

5 Results

5.1 The data sets

The results presented in this section are based on

four data sets: the Field Interview Card data set

(FI), the Restaurant data set (RST), the Restau-

rant data set with entries removed to induce spar-

sity (RST30), and the Cora Citation Matching data

set (Cora). FI is not publicly available. The other

data sets currently can be found at [55]. Cora can

also be accessed at [6]. RST and Cora are also used

in [10] to compare several approaches to evaluate

duplicate detection.

FI This data set consists of digitized Field Inter-

view cards from the LAPD. Such cards are cre-

ated at the officer’s discretion whenever an inter-

action occurs with a civilian. They are not re-

stricted to criminal events. Each card contains 61

fields of which we use seven: last name, first name,

middle name, alias/moniker, operator licence num-

ber (driver’s licence), social security number, and

date of birth. A subset of this data set is used

and described in more detail in [25]. The FI data

set has 8,834 records, collected during the years

2001–2011. A ground truth of unique individuals is

available, based on expert opinion. There are 2,920

unique people represented in the FI data set. The

FI data set has many misspellings as well as differ-

ent names that correspond to the same individual.

Approximately 30% of the entries are missing, but

the “last name” field is without missing entries.

RST This data set is a collection of restaurant in-

formation based on reviews from Fodor and Zagat,

collected by Dr. Sheila Tejada [62], who also man-

ually generated the ground truth. It contains five

fields: restaurant name, address, location, phone

number, and type of food. There are 864 records

containing 752 unique entities/restaurants. There

are no missing entries in this data set. The types

of errors that are present include word and let-

ter transpositions, varying standards for word ab-

breviation (e.g. “deli” and “delicatessen”), typo-

graphical errors, and conflicting information (such

as different phone numbers for the same restau-

rant).

RST30 To be able to study the influence of spar-

sity of the data set on our results, we remove ap-

proximately 30% of the entries from the address,

city, phone number, and type of cuisine fields in

the RST data set. The resulting data set we call

RST30. We choose the percentage of removed en-

tries to correspond to the percentage of missing

entries in the FI data set. Because the FI data set

has a field that has no missing entries, we do not

remove entries from the “name” field.

Cora The records in the Cora Citation Matching

data set11 are citations to research papers [44].

Each of Cora’s 1,295 records is a distinct citation

to any one of the 122 unique papers to which the

data set contains references. We use three fields:

author(s), name of publication, and venue (name

of the journal in which the paper is published).

This data set contains misspellings and a small

amount of missing entries (approximately 3%).

5.2 Evaluation metrics

We compare the performances of the methods sum-

marized in Table 1. Each of these method outputs

a similarity matrix, which we then use in the TGS

to create clusters.

To evaluate the methods, we use purity [28], in-

verse purity, their harmonic mean [26], the relative

error in the number of clusters, precision, recall

[17,11], the F-measure (or F1 score) [56,7], z-Rand

score [45,63], and normalized mutual information

(NMI) [60], which are all metrics that compare the

output clusterings of the methods with the ground

truth.

Purity and inverse purity compare the clusters

of records which the algorithm at hand gives with

the ground truth clusters. Let C := {R1, . . . , Rc}
be the collection of c clusters obtained from a clus-

tering algorithm and let C′ := {R′1, . . . , R′c′} be

the collection of c′ clusters in the ground truth.

Remember that n is the number of records in the

data set. Then we define purity as

Pur(C, C′) :=
1

n

c∑
i=1

max
1≤j≤c′

|Ri ∩R′j |,

11 The Cora data set should not be confused with the
Coriolis Ocean database ReAnalysis (CORA) data set.

14 Yves van Gennip et al.

where we use the notation |A| to denote the cardi-

nality of a set A. In other words, we identify each

cluster Ri with (one of the) ground truth cluster(s)

R′j which shares the most records with it, and com-

pute purity as the total fraction of records that is

correctly classified in this way. Note that this mea-

sure is biased to favor many small clusters over a

few large ones. In particular, if each record forms

its own cluster, Pur = 1. To counteract this bias,

we also consider inverse purity,

Inv(C, C′) := Pur(C′, C) =
1

n

c′∑
i=1

max
1≤j≤c

|R′i ∩Rj |.

Note that inverse purity has a bias that is opposite

to purity’s bias: if the algorithm outputs only one

cluster containing all the records, then Inv = 1.

We combine purity and inverse purity in their

harmonic mean12,

HM (C, C′) :=
2Pur × Inv
Pur + Inv

.

The relative error in the number of clusters in

C is defined as∣∣|C| − |C′|∣∣
|C′|

=
|c− c′|
c′

.

We define precision, recall, and the F-measure

(or F1 score) by considering pairs of clusters that

have correctly been identified as duplicates. This

differs from purity and inverse purity as defined

above, which consider individual records. To define

these metrics the following notation is useful. Let

G be the set of (unordered) pairs of records that

are duplicates, according to the ground truth of

the particular data set under consideration,

G :=
{
{r, s} : r 6= s and ∃R′ ∈ C′ s. t. r, s ∈ R′},

and let C be the set of (unordered) record pairs

that have been clustered together by the duplicate

detection method of choice,

C :=
{
{r, s} : r 6= s and ∃R ∈ C s. t. r, s ∈ R

}
.

Precision is the fraction of the record pairs that

have been clustered together that are indeed du-

plicates in the ground truth,

Pre(C, C′) :=
|C ∩G|
|C|

,

12 The harmonic mean of purity and inverse purity is
sometimes also called the F-score or F1-score, but we
will refrain from using this terminology to not create
confusion with the harmonic mean of precision and re-
call.

and recall is the fraction of record pairs that are

duplicates in the ground truth that have been cor-

rectly identified as such by the method

Rec(C, C′) :=
|C ∩G|
|G|

.

The F-measure or F1 score is the harmonic mean

of precision and recall,

F (C, C′) := 2
Pre(C, C′)×Rec(C, C′)
Pre(C, C′) +Rec(C, C′)

= 2
|C ∩G|
|G|+ |C|

.

Note that in the extreme case in which |C| = n, i.e.

the case in which each cluster contains only one

record, precision, and thus also the F-measure, are

undefined.

Another evaluation metric based on pair count-

ing, is the z-Rand score. The z-Rand score zR is

the number of standard deviations by which |C∩G|
is removed from its mean value under a hyperge-

ometric distribution of equally likely assignments

with the same number and sizes of clusters. For

further details about the z-Rand score, see [45,

63,25]. The relative z-Rand score of C is the z-

Rand score of that clustering divided by the z-

Rand score of C′, so that the ground truth C′ has

a relative z-Rand score of 113.

A final evaluation metric we consider, is nor-

malized mutual information (NMI). To define this,

we first need to introduce mutual information and

entropy. We define the entropy of the collection of

clusters C as

Ent(C) := −
c∑
i=1

|Ri|
n

log

(
|Ri|
n

)
, (8)

and similarly for Ent(C′). The joined entropy of C
and C′ is

Ent(C, C′) := −
c∑
i=1

c′∑
j=1

|Ri ∩R′j |
n

log

(|Ri ∩R′j |
n

)
.

The mutual information of C and C′ is then defined

as

I(C, C′) := Ent(C) + Ent(C′)− Ent(C, C′)

=

c∑
i=1

c′∑
j=1

|Ri ∩R′j |
n

log

(
n|Ri ∩R′j |
|Ri||Rj |

)
,

where the right hand side follows from the equal-

ities
∑c
i=1 |Ri ∩ R′j | = |R′j | and

∑c′

j=1 |Ri ∩ R′j | =
|Ri|. There are various ways in which mutual infor-

mation can be normalized. We choose to normalize

13 We conjecture that the relative z-Rand score is
bounded above by 1, but to the best of our knowledge
this remains unproven at the moment.

Unsupervised record matching with noisy and incomplete data 15

by the geometric mean of Ent(C) and Ent(C′) to

give the normalized mutual information

NMI (C, C′) :=
I(C, C′)√

Ent(C)Ent(C′)
.

Note that the entropy of C is zero, and hence the

normalized mutual information is undefined, when

|C| = 1, i.e. when one cluster contains all the records.

In practice this is avoided by adding a small num-

ber (e.g. the floating-point relative accuracy eps

in MATLAB) to the argument of the logarithm in

(8) for Ent(C) and Ent(C′).

Because we are testing our methods on data

sets for which we have ground truth available, the

metrics we use all compare our output with the

ground truth. This would not be an option in a

typical application situation in which the ground

truth is not available. If the methods give good re-

sults in test cases in which comparison with the

ground truth is possible, it increases confidence in

the methods in situations with an unknown ground

truth. Which of the metrics is the most appropri-

ate in any given situation depends on the needs of

the application. For example, in certain situations

(for example when gathering anonymous statis-

tics from a data set) the most important aspect

to get right might be the number of clusters and

thus the relative error in the number of clusters

metric would be well suited for use, whereas in

other situations missing out on true positives or

including false negatives might carry a high cost,

in which case precision or recall, respectively, or

the F1 score are relevant metrics. For more infor-

mation on many of these evaluation metrics, see

also [5].

5.3 Results

In this section we consider six methods: TF-IDF,

soft TF-IDF without the refinement step, and soft

TF-IDF with the refinement step, with each of

these three methods applied to both word features

and 3-gram features. We also consider five evalu-

ation metrics: the harmonic mean of purity and

inverse purity, the relative error in the number of

clusters, the F1 score, the relative z-Rand score,

and the NMI. We investigate the results in two dif-

ferent ways: (a) by plotting the scores for a partic-

ular evaluation metric versus the threshold values,

for the six different methods in one plot and (b)

by plotting the evaluation scores obtained with a

particular method versus the threshold values, for

all five evaluation metrics in one plot. Since this

paper does not offer space to present all figures,

Name Similarity Features Ref.
matrix

TFIDF ST using (5) words no
TFIDF 3g ST using (5) 3-grams no
sTFIDF ST using (3) words no

sTFIDF 3g ST using (3) 3-grams no
sTFIDF ref ST using (3) words yes

sTFIDF 3g ref ST using (3) 3-grams yes

Table 1: Summary of methods used. The second,

third, and fourth columns list for each method

which similarity score matrix is used in the TGS,

if words or 3-grams are used as features, and if the

refinement step is applied after TGS or not, re-

spectively. Equation (4) is always used to compute

the similarity score, but the important difference

is whether the soft TF-IDF matrix from (3) or the

TF-IDF matrix from (5) is used in (4).

we show some illustrative plots and describe the

main results in the text. In Section 6 we will dis-

cuss conclusions based on these results.

5.3.1 The methods

When we compare the different methods by plot-

ting the scores for a particular evaluation met-

ric versus the threshold value τ for all the meth-

ods in one plot (as can be seen for example in

Fig. 7a), one notable attribute is that the behav-

ior of the methods that use word features typically

is quite distinct from that of the methods that use

3-gram features. This is not very surprising, since

the similarity scores produced by those methods,

and hence their response to different threshold val-

ues, are significantly different.

It is also interesting to note which methods give

better evaluation metric outcomes on which data

sets. First we compare the word based methods

with the 3-gram based methods. On the FI data set

the word feature based methods outperform the 3-

gram based methods (judged on the basis of best

case performance, i.e. the optimal score attained

over the full threshold range) for every evaluation

metric by quite a margin, except for the NMI for

which the margin is minimal (but still extant).

On both the RST and RST30 data sets, the

word feature based methods outperform the 3-gram

feature based methods on the pair counting based

metrics, i.e. F1 score and relative z-Rand score

(Fig. 7b), but both groups of methods perform

equally well for the other metrics.

An interesting difference between the Cora data

set and the other data sets, is that while sTFIDF

ref (see Table 1) does outperform sTFIDF 3g ref on

the pair counting based metrics for the Cora data

set, the diference is much less pronounced than for

16 Yves van Gennip et al.

(a) The F1 score for the Cora data set

(b) The relative z-Rand score for the RST data set

Fig. 7: Two evaluation metrics as a function of the

threshold value τ , computed on two different data

sets. Each of the six graphs in a plot correspond to

one of the six methods used. The filled markers in-

dicate the metric’s value at the automatically cho-

sen threshold value τH for each method. In the leg-

end, “(s)TF-IDF” stands for (soft) TF-IDF, “3g”

indicates the use of 3-gram based features instead

of word based ones, and “ref” indicates the pres-

ence of the refinement step.

the other data sets. The difference in the relative

error in the number of clusters is more pronounced

however, in favor of the former method. Only on

the relative error in the number of clusters does it

perform somewhat worse than sTIDF ref. In fact,

on all other metrics sTFIDF 3g ref outperforms

the other two word based methods (TFIDF and

sTFIDF). The other 3-gram based methods per-

form worse than their word based counterparts on

the pair counting metrics and on par with them on

the other metrics.

Next we compare the TF-IDF methods with

the soft TF-IDF methods (without refinement step

in all cases). There are very few observable differ-

ences between TFIDF 3g and sTFIDF 3g in any of

the metrics or data sets, and where there are, the

differences are minor.

The comparison between TFIDF and sTFIDF

shows more variable behavior. The most common

behavior among all metrics and data sets is that

both methods perform equally well in the regions

with very small or very large values of τ , although

in some cases these regions themselves can be very

small indeed. In the intermediate region, TFIDF

usually performs better at small τ values, whereas

sTFIDF performs better at larger τ values. The

size of the these different regions, as well as the

size of the difference in outcome can differ quite

substantially per case. For example, in the case of

NMI for the Cora data set, NMI and the harmonic

mean of purity and inverse purity for the RST data

set, and all metrics except the relative error in the

number of clusters for the RST30 data set, TFIDF

outperforms sTFIDF quite consistently in the re-

gions where there is a difference.

When it comes to the benefits of including the

refinement step, the situation is again somewhat

different depending on the data set. First we com-

pare sTFIDF 3g with sTFIDF 3g ref. For small

threshold values including the refinement step is

beneficial (except in a few cases when there is little

difference for very small τ values). This is to be ex-

pected, since the refinement will either increase the

number of clusters formed or keep it the same, so

its effect is similar to (but not the same as) raising

the threshold value. For larger τ values typically

one of two situations occurs: either sTFIDF 3g out-

performs sTFIDF 3g ref for intermediate τ values

and there is little difference for higher τ values, or
there is little difference on the whole range of in-

termediate and large τ values. The former occurs

to a smaller or larger degree for all metrics except

NMI for the Cora data set, for the harmonic mean

of purity and inverse purity and the relative error

in the number of clusters for the FI data set, and

also for the relative error in the number of clusters

for the RST30 data set. The other cases display

the second type of behaviour.

If we compare sTFIDF with sTFIDF ref there

are three approximate types of behavior that oc-

cur. In the region with very small τ values the per-

formance is usually similar for both methods, but

this region can be very small. Next to this region,

there is a region of small τ values in which sTFIDF

ref outperforms sTFIDF. For the same reason as

explained above, this is not surprising. This region

can be followed by a region of the remaining inter-

mediate and large τ values in which sTFIDF out-

performs sTFIDF ref (the F1 score and harmonic

mean of purity and inverse purity for the FI data

Unsupervised record matching with noisy and incomplete data 17

set), or by a region of the remaining intermediate

and large τ values in which both methods are on

par (NMI for the Cora data set, the F1 score, the

harmonic mean of purity and inverse purity, and

NMI for the RST30 data set, and all metrics for

the RST data set), or by first a region of inter-

mediate τ values on which sTFIDF outperforms

sTFIDF ref, followed by a region on which there

is little difference between the methods (all other

metric/data set combinations).

It is also noteworthy that all methods do signif-

icantly worse on RST30 than on RST, when mea-

sured according to the pair counting based meth-

ods (the F1 and relative z-Rand scores), while there

is no great difference, if any, measured according to

the other metrics. In this context it is interesting

to remember that RST30 is created by removing

30% of the entries from all but one of the fields of

RST.

5.3.2 The metrics

When plotting the different evaluation metrics per

method, we notice that the two pair counting based

metrics, i.e. the F1 score and relative z-Rand score,

behave similarly to each eather, as do the harmonic

mean of purity and inverse purity and the NMI.

The relative error in the number of clusters is cor-

related to those other metrics in an interesting way.

For the word feature based methods, the lowest

relative error in the number of clusters is typically

attained at or near the threshold values at which

the F1 and relative z-Rand scores are highest (this

is much less clear for the Cora data set as it is

for the others). Those are also usually the lowest

threshold values for which the harmonic mean and

NMI attain their high(est) values. The harmonic

mean and NMI, however, usually remain quite high

when the threshold values are increased, whereas

the F1 and relative z-Rand scores typically drop

(sometimes rapidly) at increased threshold values,

as the relative error in number of clusters rises.

Fig. 8a shows an example of this behavior.

The relationship between the harmonic mean of

purity and inverse purity and the NMI has some

interesting subtleties. As mentioned before they

mostly show similar behavior, but the picture is

slightly more subtle in certain situations. On the

Cora data set, the harmonic mean drops noticeably

for higher threshold values, before settling eventu-

ally at a near constant value. This is a drop that

is not present in the NMI. This behavior is also

present in the plots for the 3-gram feature based

methods on the FI data set and very slightly in the

word feature based methods on the RST data set

(but not the RST30 data set). For word feature

(a) Soft TF-IDF (on word based features) without
the refinement step applied to the RST30 data set

(b) Soft TF-IDF (on word based features) with the
refinement step applied to the FI data set

Fig. 8: Different evaluation metrics as a function of

the threshold value τ , computed on two different

data sets. Each of the five graphs in a plot corre-

spond to one of five evaluation metrics. The verti-

cal dotted line indicates the automatically chosen

threshold value τH for the method used.

based methods on the FI data set the behavior

is even more pronounced, with little to no ‘set-

tling down at a constant value’ happening for high

threshold values (e.g. Fig. 8b).

Interestingly, both the harmonic mean and NMI

show very slight (but consistent over both data

sets) improvements at the highest threshold val-

ues for the 3-gram based methods applied to the

RST and RST30 data sets.

Another meaningful observation is that for τ

values lower than the value at which the relative

error in the number of clusters is minimal, TFIDF

performs better for this metric than does sTFIDF.

This situation is reversed for τ values higher than

the optimal value. This can be understood from

the difference between (3) and (5). Soft TF-IDF

incorporates contributions into the similarity score

not only from features that are exactly the same

18 Yves van Gennip et al.

in two entries, but also from features that are very

similar. Hence the soft TF-IDF similarity score be-

tween two entries will be higher than the TF-IDF

score between the same entries and thus clusters

are less likely to break up at the same τ value

in the soft TF-IDF method than in the TF-IDF

method. For τ values less than the optimal value

the breaking up of clusters is beneficial, as the op-

timal cluster number has not yet been reached and

thus TFIDF will outperform sTFIDF on the rela-

tive error in the number of clusters metric in this

region. For τ larger than the optimal value, the

situation is reversed.

5.3.3 The choice of threshold

On the RST and RST30 data sets our automati-

cally chosen threshold performs well (e.g. see Figs. 7b,

8a, and 9a). It usually is close to (or sometimes

even equal to) the threshold value at which some

or all evaluation metrics attain their optimal value

(remember this threshold value is not the same

for all the metrics). The performance on RST is

slightly better then on RST30, as can be expected,

but in both cases the results are good.

On the FI and Cora data sets our automati-

cally chosen threshold is consistently larger than

the optimal value, as can be seen in e.g. Figs. 7a,

8b, and 9b. This can be explained by the left-

skewedness of the H-value distribution, as illus-

trated in Fig. 3a. A good proxy for the volume of

the tail is the ratio of number of records referring

to unique entities to the total number of entries in

the data set. For RST and RST30 this ratio is a

high 0.87, whereas for FI it is 0.33 and for Cora

only 0.09. This means that the relative error in the

number of clusters grows rapidly with increasing

threshold value and the values of the other evalu-

ation metrics will deteriorate correspondingly.

We also compared whether TFIDF, sTFIDF,

or sTFIDF ref performed better at the value τ =

τH . Interestingly, sTFIDF ref never outperformed

all the other methods. At best it tied with other

methods: for the F1 and relative z-Rand scores for

the RST30 data set it performed equally well as

TFIDF; all three methods performed equally well

for the NMI for the Cora data set, for the NMI and

relative error in the number of clusters for the RST

data set, and for NMI and the harmonic mean of

the purity and inverse purity for the RST30 data

set. TFIDF and sTFIDF tied for the F1 and rel-

ative z-Rand scores for the FI data set. TFIDF

outperformed the other methods on the RST data

set for the F1 and relative z-Rand scores, as well

as the harmonic mean of purity and inverse purity.

Finally, sTFIDF outperformed the other methods

(a) Soft TF-IDF (on 3-gram based features) without
the refinement step applied to the RST data set

(b) Soft TF-IDF (on 3-gram based features) with
the refinement step applied to the FI data set

Fig. 9: Different evaluation metrics as a function of

the threshold value τ , computed on two different

data sets. Each of the five graphs in a plot corre-

spond to one of five evaluation metrics. The verti-

cal dotted line indicates the automatically chosen

threshold value for the method used.

across the board for the FI data set, as well as for

all metrics but the NMI for the Cora data set and

for the relative error in the number of clusters for

the RST30 data set. To recap, at τ = τH , the soft

TF-IDF method seems to be a good choice for the

Cora and FI data set, while for most metrics for

the RST and RST30 data sets the TF-IDF method

is preferred at τ = τH . (Remember that the value

τH depends on the data set and the method).

5.4 Results for alternative sparsity adjustment

At the end of Section 4.1 we described an alterna-

tive sparsity adjustment step, which replaces miss-

ing entries by the mode in each field. All the results

reported so far use the sparsity adjustment step

described in the first part of Section 4.1 (which we

will call here the “original” step); in this section we

Unsupervised record matching with noisy and incomplete data 19

describe the results obtained using the alternative

sparsity adjustment step.

We chose to test this alternative sparstity ad-

justement step on the Cora and RST30 data sets.

The former has a very small percentage of missing

data (approximately 3%), while the latter has a

high percentage (30% in all but one of the fields).

We use the alternative sparsity adjustment step as

part of each of the six methods discussed in this

paper. We judge the output again using the same

five metrics used above.

In all our tests on the Cora data set there is

very little if any difference in the performance of

all the methods, with two notable exceptions: the

two methods that include the refinement step per-

form considerably worse according to the two pair

counting based metrics (the F1 and relative z-Rand

scores) when incorporating the alternative sparsity

adjustment step (and one minor, yet noticeable ex-

ception: TFIDF also performs worse with the alter-

native adjustment step when measured according

to the F1 score). Fig. 10a shows the results cor-

responding to Fig. 7a, with as sole difference that

in the former the alternative sparsity adjustment

step is used, while in the latter the original step is

incorporated into the methods.

In all our tests on the RST30 data set the

3-gram based methods which use the alternative

sparsity adjustment step perform very similarly to

those that use the original adjustment step (with

the difference that those similar results are ob-

tained at lower threshold values when using the

alternative step instead of the original adjustement

step). The word based methods also perform sim-

ilarly using either sparsity adjustment step, when

measured according to the relative error in the

number of clusters, the harmonic mean of purity

and inverse purity, and NMI. However, word based

methods perform worse with the alternative ad-

justment step on the pair counting metrics. Fig. 10b

shows the results corresponding to the same method

as was used in Fig. 8a, with as sole difference the

incorporation of the alternative sparsity adjust-

ment step. The worsened performance of the alter-

native method with respect to the two pair count-

ing metrics can be seen at the high end of the τ -

range.

If any general conclusion can be drawn based

on these tests, it is that there does not seem to be

an advantage in using the alternative sparsity ad-

justment step instead of the original step; in some

cases the resulting output is even worse, when mea-

sured according to the pair counting metrics.

A sparsity adjustment method that was not

tested in this paper is to replace each missing en-

try by the same placeholder, e.g. “[]” or “void” [40].

(a) The F1 score for the Cora data set; each listed
method has the alternative sparsity adjustment step
incorporated

(b) Soft TF-IDF (on word based features) with-
out the refinement step applied to the RST30 data
set, incorporating the alternative sparsity adjust-
ment step

Fig. 10: Results obtained using the alternative

sparsity adjustment step

This in effect will encourage records with missing

entries to be clustered together, but carries less

risk of them being clustered together with other

non-duplicate documents. This could be slightly

beneficial in data sets with few missing entries,

even though it is effectively a soft version of re-

moving records with missing entries from the data

set altogether.

6 Conclusions and suggestions for future

work

In this paper we have investigated six methods

which are based on term frequency-inverse docu-

ment frequency counts for duplicate detection in a

record data set. We have tested them on four dif-

20 Yves van Gennip et al.

ferent data sets and evaluated the outcomes using

five different metrics.

One conclusion from our tests is that there is no

clear benefit to constructing the features the meth-

ods work on using 3-grams as opposed to white

space separated ‘words’. Keeping the other choices

(TF-IDF or soft TFIDF, refinement step or not)

the same, using words for the features either out-

performs the corresponding 3-gram based method

or performs equally well at worst (in terms of the

optimal values that are achieved for the evaluation

metrics). See, for example, the graphs in Fig. 7 or

compare Figs. 8b and 9b.

Somewhat surprisingly, our tests lead to a less

clear picture regarding the choice between TF-IDF

and soft TF-IDF (with word based features, with-

out the refinement step). For low to intermedi-

ate threshold values TF-IDF performs better, for

higher threshold values either soft TF-IDF per-

forms better, or the difference between the two

methods is so small as to be negligible. This be-

havior is not always very pronounced and, as de-

scribed in Section 5.3.1, there are even cases in

which TF-IDF outperforms soft TF-IDF for al-

most every threshold value.

The question whether or not to include the re-

finement step into a (word based) soft TF-IDF

method also requires some care. At low τ values

inclusion of the refinement step is beneficial, but

at higher values the behavior can vary substan-

tially per data set and metric, as described in Sec-

tion 5.3.1. As a rule of thumb (but not a hard and

fast rule) we can say that for the Cora and FI data

sets there is a region of intermediate and/or high

τ values at which including the refinement step

is detrimental, whereas for the RST and RST30

data sets soft TF-IDF with refinement at worst

performs similar to soft TF-IDF without refine-

ment, but it performs better for certain τ values as

well. This might partly be explained by the obser-

vation made in Section 5.3.3: the FI and Cora data

sets have a much lower ratio of unique entities to

total number of entries than the RST and RST30

data sets have. Since the refinement step creates

extra clusters, including it can be detrimental for

data sets that are expected to contain relatively

few unique entries. This suspicion is strengthened

by the fact that we see in our experiments that the

growth in the relative error of the number of clus-

ters when τ is increased past its optimal value (for

that metric) is much larger for the FI and Cora

data sets than for the RST and RST30 data sets.

Our tests with our automatically chosen thresh-

old show that τH = µ(H) + σ(H) is a good choice

on data sets which have H-distributions that are

approximately normal or right-skewed. If, however,

the H-distribution is left-skewed, this choice seems

to be consistently larger than the optimal thresh-

old. It should be noted though that for most of the

evaluation metrics and most of the data sets, the

behavior of the metrics with respect to variations

in the threshold value is not symmetric around the

optimal value. Typically the decline from optimal-

ity is less steep and/or smaller for higher thresh-

old values than for lower ones. This effect is even

stronger if we consider methods without refine-

ment step. Combined with the fact that at low

threshold values the refinement step requires a lot

more computational time than at high threshold

values, especially for larger data sets, we conclude

that, in the absence of a priori knowledge of the op-

timal threshold value, it is better to overestimate

than underestimate this value. Hence, our sugges-

tion to choose τH = µ(U) + σ(H) is a good rule of

thumb at worst and a very good choice for certain

data sets.

Since our automated threshold value τH is us-

ally a value in the intermediate or higher end of

the τ range, the discussion above suggests that at

τ = τH it is typically beneficial to use either TF-

IDF or soft TF-IDF, in either case without the

refinement step. The former is preferred for data

sets with a high ratio of unique entities to num-

ber of entries, whereas the latter is preferred when

this ratio is low. This is consistent with the ob-

servations at the end of Sections 5.3.2 (since τH
is close to the optimal τ value where the number

of clusters is concerned for the RST and RST30

data sets and overshoots the optimal value for the

Cora and FI data sets) and 5.3.3. This should only

be treated as guidance and not as a hard and fast

rule.

Future work could explore the possibilities of

using methods that first project the data into a

lower dimensional latent variable space to allow

for duplicate detection in very high dimensional

and large data sets, e.g. topic modelling techniques

such as latent Dirichlet allocation [12] and non-

negative matrix factorization [37], or the CenKNN

method from [49]. An overview of other such meth-

ods is given in [20]. Where possible, new scalable

hashing methods that allow for approximate match-

ing might also be considered to reduce compu-

tational complexity in such settings [14]. These

methods could reduce the number of comparisons

made by quickly identifying specific subsets of pairs

(e.g. those that must have similarity zero), but

the construction of efficient hash functions is non-

trivial and usually domain dependent. Further, the

hash functions themselves incur a computational

cost, so there is no guarantee of an overall speed

up. Finding the right hash function for a given ap-

Unsupervised record matching with noisy and incomplete data 21

plication and exploring the potential benefits of its

use in a preprocessing step can be a topic for future

research.

Acknowledgements We would very much like to

thank George E. Tita and Matthew A. Valasik for

their involvement in the collection of the FI data

set and the construction of a ground truth cluster-

ing. We are grateful to them, as well as to P. Jef-

frey Brantingham, for many fruitful discussions.

We would also like to thank Brendan Schneider-

man, Cristina Garcia-Cardona, and Huiyi Hu for

their participation in the 2012 summer Research

Experience for Undergraduates (REU) project from

which this paper grew.

We would also like to thank the two anony-

mous reviewers for their very insightful feedback

which has lead to significant improvements in the

published version of this paper. In particular, we

thank one of the reviewers of the first draft of our

paper for the suggestion to compare our method

with the method of replacing missing entries in a

field with the mode of that field.

This research is made possible via ONR grant

N00014-16-1-2119, City of Los Angeles, Gang Re-

duction Youth Development (GRYD) Analysis Pro-

gram, AFOSR MURI grant FA9550-10-1-0569, and

NSF grants DMS-1045536, DMS-1417674, and DMS-

1737770.

Additionally, the second author received research

grants from Claremont McKenna College, the Clare-

mont University Consortium, Alfred P. Sloan Foun-

dation and the NSF, which were not directly re-

lated to this research.

We would like to acknowledge the following

sources which were incorporated into or adapted

for use in our code: [13,22,38,39] and [63,64].

References

1. Abraham, A.A., Kanmani, S.D.: A survey on vari-
ous methods used for detecting duplicates in XML
data. International Journal of Engineering Research
& Technology 3(1), 354–357 (2014)

2. Ahmed, I., Aziz, A.: Dynamic approach for data
scrubbing process. International Journal on Com-
puter Science and Engineering 2(02), 416–423
(2010)

3. Allison, P.D.: Imputation of categorical variables
with PROC MI. In: SUGI 30 Proceedings. SAS
Institute Inc. (2005). Paper 113-30

4. Allison, P.D.: Missing data. In: R.E. Millsa,
A. Maydeu-Olivares (eds.) The SAGE Handbook
of Quantitative Methods in psychology, chap. 4,
pp. 73–90. SAGE Publications Ltd., London (2009).
DOI 10.4135/9780857020994.n4

5. Amigó, E., Gonzalo, J., Artiles, J., Verdejo, F.: A
comparison of extrinsic clustering evaluation met-
rics based on formal constraints. Inf Retrieval 12,
461–486 (2009)

6. Cora citation matching data set. http://people.

cs.umass.edu/~mccallum/data.html. Last ac-
cessed: 24 March 2014

7. Baeza-Yates, R., Ribeiro-Neto, B., et al.: Modern
information retrieva. ACM press New York (1999)

8. Bano, H., Azam, F.: Innovative windows for du-
plicate detection. International Journal of Soft-
ware Engineering and Its Applications 9(1), 95–104
(2015)

9. Bilenko, M., Mooney, R.J.: Adaptive duplicate de-
tection using learnable string similarity measures.
In: Proceedings of the ninth ACM SIGKDD interna-
tional conference on Knowledge discovery and data
mining, pp. 39–48. ACM (2003)

10. Bilenko, M., Mooney, R.J.: Adaptive duplicate de-
tection using learnable string similarity measures.
In: Proceedings of the Ninth ACM SIGKDD Inter-
national Conference on Knowledge Discovery and
Data Mining, pp. 39–48. ACM (2003)

11. Bilenko, M., Mooney, R.J.: On evaluation and
training-set construction for duplicate detection. In:
Proceedings of the KDD-2003 Workshop on Data
Cleaning, Record Linkage, and Object Consolida-
tion, pp. 7–12 (2003)

12. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Dirichlet
allocation. Journal of Machine Learning Research
3, 993–1022 (2003)

13. Chen, M.: Normalized mutual infor-
mation. http://www.mathworks.com/

matlabcentral/fileexchange/29047-normalized-

mutual-information (2010). Contact:
mochen@ie.cuhk.edu.hk; Last accessed: 26 Febru-
ary 2015

14. Chi, L., Zhu, X.: Hashing Techniques: A Survey and
Taxonomy. ACM Comput. Surv. 50(1), 11:1–11:36
(2017)

15. Christen, P.: A survey of indexing techniques for
scalable record linkage and deduplication. IEEE
Transactions on Knowledge and Data Engineering
24(9), 1537–1555 (2012)

16. Cohen, W.W., Ravikumar, P.D., Fienberg, S.E.,
et al.: A comparison of string distance metrics for
name-matching tasks. In: IIWEB’03 Proceedings of
the 2003 International Conference on Information
Integration on the Web, pp. 73–78 (2003)

17. Cohen, W.W., Richman, J.: Learning to match and
cluster large high-dimensional data sets for data
integration. In: Proceedings of the Eighth ACM

22 Yves van Gennip et al.

SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 475–480. ACM
(2002)

18. De Vries, T., Ke, H., Chawla, S., Christen, P.: Ro-
bust record linkage blocking using suffix arrays and
bloom filters. ACM Transactions on Knowledge Dis-
covery from Data (TKDD) 5(2), 9 (2011)

19. Draisbach, U., Naumann, F.: A generalization of
blocking and windowing algorithms for duplicate
detection. In: Data and Knowledge Engineering
(ICDKE), 2011 International Conference on, pp.
18–24. IEEE (2011)

20. Dumais, S.T.: Latent semantic analysis. Ann. Rev.
Info. Sci. Tech. 38(1), pp. 188–230 (2004)

21. Elmagarmid, A.K., Ipeirotis, P.G., Verykios, V.S.:
Duplicate record detection: A survey. Knowledge
and Data Engineering, IEEE Transactions on 19(1),
1–16 (2007)

22. Fiedler, S.: Cell array to CSV-file [cell2csv.m], up-
dated. http://uk.mathworks.com/matlabcentral/

fileexchange/4400-cell-array-to-csv-file--

cell2csv-m- (2010). Modified by Rob Kohr; last
accessed: 4 September 2014

23. Friedman, J., Hastie, T., Tibshirani, R.: The el-
ements of statistical learning. Springer series in
statistics New York (2001)

24. Fu, Z., Zhou, J., Christen, P., Boot, M.: Multiple
instance learning for group record linkage. Advances
in Knowledge Discovery and Data Mining pp. 171–
182 (2012)

25. van Gennip, Y., Hunter, B., Ahn, R., Elliott, P.,
Luh, K., Halvorson, M., Reid, S., Valasik, M., Wo,
J., Tita, G.E., Bertozzi, A.L., Brantingham, P.J.:
Community detection using spectral clustering on
sparse geosocial data. SIAM J. Appl. Math. 73(1),
67–83 (2013)

26. González, E., Turmo, J.: Non-parametric document
clustering by ensemble methods. Procesamiento del
Lenguaje Natural 40, 91–98 (2008)

27. Hall, R., Fienberg, S.E.: Privacy-preserving record
linkage. In: Domingo-Ferrer J., Magkos E. (eds)
Privacy in Statistical Databases. Lecture Notes in
Computer Science, 6344. Springer, Berlin, Heidel-
berg (2010)

28. Harris, M., Aubert, X., Haeb-Umbach, R., Beyer-
lein, P.: A study of broadcast news audio stream
segmentation and segment clustering. In: Proceed-
ings of EUROSPEECH99, pp. 1027–1030 (1999)

29. Hassanzadeh, O., Chiang, F., Lee, H.C., Miller,
R.J.: Framework for evaluating clustering algo-
rithms in duplicate detection. Proceedings of the
VLDB Endowment 2(1), 1282–1293 (2009)

30. Horton, N.J., Kleinman, K.P.: Much ado about
nothing. The American Statistician 61(1) (2007)

31. Huisman, M.: Imputation of missing network data:
Some simple procedures. Journal of Social Structure
10(1), 1–29 (2009)

32. Jaro, M.A.: Advances in record-linkage method-
ology as applied to matching the 1985 census of
tampa, florida. Journal of the American Statisti-
cal Association 84(406), 414–420 (1989)

33. Jaro, M.A.: Probabilistic linkage of large public
health data file. In: Statistics in Medicine, 14, pp.
491–498 (1995)

34. Kannan, R.R., Abarna, D., Aswini, G., Hemavathy,
P.: Effective progressive algorithm for duplicate de-
tection on large dataset. International Journal of
Scientific Research in Science and Technology 2(2),
105–110 (2016)

35. Kim, H., Golub, G.H., Park, H.: Missing value
estimation for dna microarray gene expression
data: local least squares imputation. Bioinfor-
matics 21(2), 187–198 (2005). DOI 10.1093/
bioinformatics/bth499. URL +http://dx.doi.org/

10.1093/bioinformatics/bth499
36. Kim, H., Golub, G.H., Park, H.: Missing value

estimation for DNA microarray gene expression
data: local least squares imputation. Bioinfor-
matics 22(11), 1410–1411 (2006). DOI 10.1093/
bioinformatics/btk053. URL +http://dx.doi.org/

10.1093/bioinformatics/btk053
37. Kim, H., Park, H.: Nonnegative matrix factoriza-

tion based on alternating nonnegativity constrained
least squares and active set method. SIAM Journal
on Matrix Analysis and Applications 30(2), 713–
730 (2008)

38. Koehler, M.: matrix2latex, updated.
http://www.mathworks.com/matlabcentral/

fileexchange/4894-matrix2latex (2004). Last
accessed: 24 March 2014

39. Komarov, O.: Set functions with multiple in-
puts, updated. http://uk.mathworks.com/

matlabcentral/fileexchange/28341-set-

functions-with-multiple-inputs/content/

SetMI/unionm.m (2010). Last accessed: 24 March
2014

40. Larose, D.T., Larose, C.D.: Discovering knowledge
in data: an introduction to data mining, 2nd edn.
John Wiley & Sons, Inc., Hoboken, New Jersey
(2014)

41. Layek, A.K., Gupta, A., Ghosh, S., Mandal, S.: Fast
near-duplicate detection from image streams on on-
line social media during disaster events. In: India
Conference (INDICON), 2016 IEEE Annual, pp. 1–
6. IEEE (2016)

42. Leitao, L., Calado, P., Herschel, M.: Efficient and
effective duplicate detection in hierarchical data.
IEEE Transactions on Knowledge and Data Engi-
neering 25(5), 1028–1041 (2013)

43. Manning, C.D., Raghavan, P., Schütze, H.: Intro-
duction to information retrieval, vol. 1. Cambridge
University Press Cambridge (2008)

44. McCallum, A.K., Nigam, K., Rennie, J., Seymore,
K.: Automating the construction of internet portals
with machine learning. Journal of Information Re-
trieval 3(2) (2000)

45. Meilă, M.: Comparing clusterings — an information
based distance. J. Multivariate Anal. 98, 873–895
(2007)

46. Monge, A.E., Elkan, C.P.: Efficient domain-
independent detection of approximately duplicate
database records. In: Proc. of the ACM-SIGMOD
Workshop on Research Issues in on Knowledge Dis-
covery and Data Mining (1997)

47. Naumann, F., Herschel, M.: An introduction to du-
plicate detection. Synthesis Lectures on Data Man-
agement 2(1), 1–87 (2010)

48. Nuray-Turan, R., Kalashnikov, D.V., Mehrotra,
S.: Adaptive connection strength models for
relationship-based entity resolution. Journal of
Data and Information Quality (JDIQ) 4(2), 8
(2013)

49. Pang, G., Jin, H., Jiang, S.: CenKNN: a scalable and
effective text classifier. Data Mining and Knowledge
Discovery 29(3), 593–625 (2015)

50. Papadakis, G., Ioannou, E., Palpanas, T., Niederee,
C., Nejdl, W.: A blocking framework for entity res-
olution in highly heterogeneous information spaces.
IEEE Transactions on Knowledge and Data Engi-
neering 25(12), 2665–2682 (2013)

Unsupervised record matching with noisy and incomplete data 23

51. Papadakis, G., Nejdl, W.: Efficient entity resolu-
tion methods for heterogeneous information spaces.
In: Data Engineering Workshops (ICDEW), 2011
IEEE 27th International Conference on, pp. 304–
307. IEEE (2011)

52. Papenbrock, T., Heise, A., Naumann, F.: Progres-
sive duplicate detection. IEEE Transactions on
Knowledge and Data Engineering 27(5), 1316–1329
(2015)

53. Pigott, T.D.: A review of methods for missing data.
Educational Research and Evaluation 7(4), 353–383
(2001)

54. Ramya, R., Venugopal, K., Iyengar, S., Patnaik, L.:
Feature extraction and duplicate detection for text
mining: A survey. Global Journal of Computer Sci-
ence and Technology 16(5) (2017)

55. Duplicate detection, record linkage, and identity un-
certainty: Datasets. http://www.cs.utexas.edu/

users/ml/riddle/data.html. Last accessed: 24
March 2014

56. van Rijsbergen, C.J.: Information Retrieval, 2nd
edn. Butterworth-Heinemann, Newton, MA, USA
(1979)

57. Salton, G., Buckley, C.: Term-weighting approaches
in automatic text retrieval. Information Processing
& Management 24(5), 513–523 (1988)

58. Salton, G., Wong, A., Yang, C.S.: A vector space
model for automatic indexing. Commun. ACM
18(11), 613–620 (1975)

59. Scannapieco, M., Figotin, I., Bertino, E., Elma-
garmid, A.K.: Privacy preserving schema and data
matching. In: Proceedings of the 2007 ACM SIG-
MOD International Conference on Management of
Data, pp. 653–664. ACM (2007)

60. Strehl, A., Ghosh, J.: Cluster ensembles — a knowl-
edge reuse framework for combining multiple par-
titions. Journal of Machine Learning Research 3,
583–617 (2002)

61. Tamilselvi, J.J., Gifta, C.B.: Handling duplicate
data in data warehouse for data mining. Inter-
national Journal of Computer Applications (0975–
8887) 15(4), 1–9 (2011)

62. Tejada, S., Knoblock, C.A., Minton, S.: Learning
object identification rules for information integra-
tion. Information Systems 26(8), 607–633 (2001)

63. Traud, A.L., Kelsic, E.D., Mucha, P.J., Porter,
M.A.: Comparing community structure to charac-
teristics in online collegiate social networks. SIAM
Review 53(3), 526–543 (2011)

64. Traud, A.L., Kelsic, E.D., Mucha, P.J., Porter,
M.A.: zrand. http://netwiki.amath.unc.edu/

GenLouvain/GenLouvain (2011). Last accessed: 24
March 2014

65. Tromp, M., Reitsma, J., Ravelli, A., Méray, N., Bon-
sel, G.: Record linkage: making the most out of er-
rors in linking variables. In: AMIA Annual Sympo-
sium Proceedings, 2006, p. 779. American Medical
Informatics Association (2006)

66. Watada, J., Shi, C., Yabuuchi, Y., Yusof, R., Sahri,
Z.: A rough set approach to data imputation and its
application to a dissolved gas analysis dataset. In:
Computing Measurement Control and Sensor Net-
work (CMCSN), 2016 Third International Confer-
ence on, pp. 24–27. IEEE (2016)

67. Whang, S.E., Marmaros, D., Garcia-Molina, H.:
Pay-as-you-go entity resolution. IEEE Transactions
on Knowledge and Data Engineering 25(5), 1111–
1124 (2013)

68. Winkler, W.: String comparator metrics and en-
hanced decision rules in the fellegi-sunter model of

record linkage. In: Proceedings of the Section on
Survey Research Methods, pp. 354–359. (American
Statistical Association) (1990)

69. Winkler, W.E.: The state of record linkage and cur-
rent research problems. In: Statistical Research Di-
vision, US Census Bureau (1999)

70. Winkler, W.E.: Methods for record linkage and
Bayesian networks. Tech. rep., Series RRS2002/05,
U.S. Bureau of the Census (2002)

71. Winkler, W.E.: Overview of record linkage and cur-
rent research directions. Tech. rep., Bureau of the
Census (2006)

72. Xiao, C., Wang, W., Lin, X., Yu, J.X., Wang, G.: Ef-
ficient similarity joins for near-duplicate detection.
ACM Transactions on Database Systems (TODS)
36(3), 15 (2011)

