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ABSTRACT Emerging mobile environments motivate the need for the development of new distributed
technologies which are able to support dynamic peer to peer content sharing, decrease high operating costs,
and handle intermittent disconnections. In this paper, we investigate complex challenges related to themobile
disconnection tolerant discovery of content that may be stored in mobile devices and its delivery to the
requesting nodes in mobile resource-constrained heterogeneous environments. We propose a new adaptive
real-time predictive multi-layer caching and forwarding approach, CafRepCache, which is collaborative,
resource, latency, and content aware. CafRepCache comprises multiple multi-layer complementary real-
time distributed predictive heuristics which allow it to respond and adapt to time-varying network topology,
dynamically changing resources, and workloads while managing complex dynamic tradeoffs between them
in real time. We extensively evaluate our work against three competitive protocols across a range of metrics
over three heterogeneous real-world mobility traces in the face of vastly different workloads and content
popularity patterns. We show that CafRepCache consistently maintains higher cache availability, efficiency
and success ratios while keeping lower delays, packet loss rates, and caching footprint compared to the three
competing protocols across three traces when dynamically varying content popularity and dynamic mobility
of content publishers and subscribers. We also show that the computational cost and network overheads of
CafRepCache are only marginally increased compared with the other competing protocols.

INDEX TERMS Mobile disconnection tolerant networks, content discovery and retrieval, content caching,
latency awareness, congestion awareness.

I. INTRODUCTION
We live in the era when smart, ubiquitous devices are embed-
ded in our day-to-day activities and allow us to form diverse
dynamic communities in which we are able to share rich
and complex data. Majority of the applications and services
which are hosted in the mobile edges today suffer from two
related problems: they do not handle well limited network
coverage and they may generate dynamically changing vol-
umes of traffic which can cause localized congestion. Both
of these cause delays and packet losses in the network and so
seriously impair end-user service quality [4], [19], [39], [40].
There is currently limited work that combines support
for rich collaboration of dynamically varying numbers of
simultaneous distributed mobile users with predictive local-
ized responsiveness to congestion in the face of lack of
global network information and unknown-in-advance user

publishers and subscribers activity patterns. While mobile
offloading approaches [35] and content distribution network
approaches [19] address problems of fast increasing data in
mobile networks and traffic surges respectively, they do not
address high topology dynamics with intermittent disconnec-
tions and dynamically changing publishers and subscribers
workload patterns which we focus on in this paper.

We propose to integrate distributed predictive adaptive
localized ad-hoc real-time decision making for content
retrieval across multiple layers to include predictive con-
gestion avoidance in mobile disconnection tolerant networks
and predictive content-centric layer in the face of unknown-
in-advance dynamically changing social, interest and net-
work structures.We investigate complex challenges ofmobile
latency aware and disconnection tolerant discovery of con-
tent stored in remote mobile devices and its delivery to
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the requesting nodes in heterogeneous mobile disconnection
prone environments.

At the heart of our approach is a distributed edge based col-
laborative caching which uses several multidimensional pre-
dictive analytics that builds multi-attribute complementary
predictive heuristics and utilities. We build on the principle of
dynamic predictive relative utilities [14], [18] and propose a
new intelligent collaborative caching algorithm which allows
individual nodes to achieve greater caching utility compared
to the case where no collaboration is used inmaking decisions
in distributed mobile disconnection tolerant caching. The
questions we specifically focus on are: where to cache, what
to cache and how to manage the cache. Previous research has
shown that collaborative caching usually outperforms both
locally and centrally optimized algorithms [22]. Note that our
focus is not to build a protocol that forces nodes to collab-
orate or provide protection against malicious behavior, but
rather to design an underlying algorithm that can adaptively
share distributed cache space across trusted collaborators
when both network topology and workloads are dynamically
varying. We extend the idea of behavioral locality to exploit
similarities between the content interests and users’ connec-
tivity patterns. We expand the idea of content popularitywith
popularity stability in order to minimize the negative impact
of flash crowds [4]. We tackle the challenge of maximizing
the number of data chunks retrieval with as low delay as
possible even in sparse fragmented topologies. We propose
that distributed nodes use CafRepCache algorithm to form
dynamic transient interest and data dissemination topologies
based on predictive analysis and commonalities between their
interests, caches and retrieval histories as well as connectiv-
ity histories. This provides each node with a set of overlay
neighbors whose browsing history most closely resembles
their own. CafRepCache emerges from this topology as the
federation of the local caches of a node’s ego network and the
closest available nodes. We argue that adaptive replication
and caching are both necessary to address multi-user data
communications in dynamic fragmented and sparse topolo-
gies. We envisage that CafRepCache will be an integral part
of a robust network support that will allow reliable operation
of future richmobilemultimedia services in a variety of appli-
cation areas (such as smart transportations [31], [42] or smart
festivals mass events [33], [34]) where users often suffer from
limited network coverage and congestion.

The rest of the paper is organized as follows. Section II
provides a systematic review of related work across a range
of specific multilayer challenges in peer-to-peer content shar-
ing in mobile disconnection prone networks and outline ten
criteria which we use to evaluate the related work and guide
our proposal. In Section III, we describe key features of
our proposal to address the identified criteria and propose
congestion, latency and content aware adaptive predictive
and collaborative protocol, CafRepCache. More specifically,
we propose a novel distributed multi-layer real-time pre-
dictive and adaptive CafRepCache design, provide its ana-
lytical model and identify multiple novel complementary

real-time predictive CafRepCache’s heuristics that enable
CafRepCache to manage adaptive real-time complex trade-
offs among time-varying networks, dynamically changing
resources, dynamically changing workloads, and changing
content popularity. Section IV describes CafRepCache archi-
tecture and design space, and provides pseudo-code which
uses multiple complementary multi-layer adaptive fully dis-
tributed real-time predictive analytics to allow CafRepCache
nodes to dynamically adapt to dynamic underlying topolo-
gies, dynamic resources, workloads and content popularity.
Section V provides a detailed description of multiple sets
of experiments which we perform to evaluate CafRepCache
performance against three state-of-the-art intelligent caching
algorithms in heterogeneous real-world mobile disconnec-
tion prone networks. More specifically, we compare CafRep-
Cache against SocialCache [9], HyMobi [10] and Least
Recently Used (LRU) across a range of metrics over three
heterogeneous real-world mobile social and vehicular traces
for dynamically varying workload patterns and content popu-
larity. We show that CafRepCache fully localized single node
and ego network adaptive real-time collaborative predictive
heuristics can better predict and adapt to dynamically varying
regional and temporal resources, forwarding possibilities and
data interests. CafRepCache consistently manages to achieve
higher content discovery and delivery rates and better caching
efficiency while keeping lower delays and packet loss rates
compared to three competing protocols for very different
real-world dynamically changing mobile topologies. We also
show that CafRepCache computational and network overhead
costs are only marginally increased compared to the other
competing protocols. Section V gives a conclusion and out-
lines future work.

II. RELATED WORK
In this section, we provide systematic review of related work
across a range of specific challenges for peer to peer content
sharing in mobile disconnection prone networks with dynam-
ically changing workloads. We begin with reviewing useful
state of the art content centric and content distribution tech-
niques for peer to peer content sharing and identify what pre-
vents them from being used in the dynamically changing and
disconnection prone network environments and workloads.
We thenmove to reviewing state of the art approaches for data
forwarding and congestion control in mobile disconnection
tolerant networks on which we build our proposal. Subse-
quently, we review emerging intelligent caching mechanisms
which are most relevant for dynamic content and network
scenario and identify their limitations. We present a table
which summarizes ten core criteria which we used to evaluate
the related work and which guide our proposal.

A. P2P CONTENT SHARING
Recent advances in peer-to-peer content sharing and content-
centric networks focus on improving the performance of
content discovery and retrieval by increasing success ratio
and reducing the delivery latency and cost in fixed network
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TABLE 1. Overview of the techniques that deal with efficient content dissemination and query in mobile disconnection prone networks.

scenarios [19], [20], [25]. Dernbach et al. [19] propose a
regional caching approach of video content that captures
the overlap between inter-regional and intra-regional prefer-
ences to provide better cache performance. Frey et al. [20]
propose a peer-to-peer cache-oriented approach for Web
applications based on the principles of Behavioral Local-
ity inspired by collaborative filtering. Dernbach et al. [19]
and Frey et al. [20] apply centralized decision making
and require global information, thus do not support fully-
localized distributed decision making which we aim to
do in our proposal (see Table 1). Carofiglio et al. [25]
propose an approachwhich combines latency-aware fully dis-
tributed caching and load-aware dynamic forwarding strate-
gies in order to improve the content-centric network delivery
performance. To optimize performance of popularity-aware
caches which requires optimal split of the forwarded traffic,
Carofiglio et al. [25] route more popular content requests
through a single path without considering congestion control
and avoidance (Table 1). Carofiglio et al. [25] also do not sup-
port fully-localized (i.e. open loop) decision makings. None
of the above approaches support disconnection tolerance and
dynamically changing workloads and network topologies
which are inherent in the scenarios of mobile publishers and
subscribers [5].

The problem of content sharing among mobile pub-
lishers and subscribers is still not understood sufficiently
clearly [7], [38], [45] and leads to lower quality of service.
In the rest of this section, we review the state-of-the-art
forwarding, replication, congestion control and caching
protocols which have been proposed for the context of
mobile heterogeneous environments. Even though these pro-
tocols support fully-localized distributed decision making for
mobile subscribers and publishers, they do not address all of
the criteria we identify and tackle in our proposal.

B. CONTENT FORWARDING, REPLICATION, CONGESTION
CONTROL AND AVOIDANCE IN MOBILE DISCONNECTION
PRONE NETWORKS
Daly and Haahr [18] propose SimBetTS which combines
betweenness, similarity and tie strength for social routing

metric to direct the traffic to more central nodes and increase
the probability of finding the optimal relay for delivering
packets to the destination. Costa et al. [38] propose Social-
Cast which is a routing framework for publish-subscribe that
utilizes social metrics (i.e. colocation and mobility patterns
among communities) to identify the best relay nodes that
support delay-tolerant communication in human networks.
Zhou et al. [37] propose an efficient data forwarding in oppor-
tunistic networks which uses predictive nodes’ social contact
patterns from the temporal perspective. None of the above
approaches supports latency awareness, resource awareness,
congestion control and avoidance (Table 1) which is neces-
sary for improving network reliability of social routing and
forwarding that may congest at the points with higher social
centrality.

Radenkovic and Grundy [14] propose fully localized adap-
tive forwarding, replication and congestion control proto-
cols, Café and CafREP, to enable congestion-aware mobile
social framework for predictively adaptive data forwarding
and rate adaptation over heterogeneous disconnection tol-
erant networks. Flores et al. [10] propose a social-aware
hybrid offloading strategy based on node’s stability which
is measured by contact frequency and duration in order to
improve the availability of offloading support for mobile
users. However, Flores et al. [10] do not consider predic-
tive congestion and latency awareness (Table 1). The above
approaches mainly focus on adaptive content forwarding,
replication and congestion control in mobile disconnection
prone networks, but have not focused on in-network fully-
localized predictive caching which is important to address-
ing latency awareness which we aim to do in this paper
(see Table 1). In the next section, we review the state of the
art content caching algorithms in mobile disconnection prone
networks.

C. CONTENT CACHING IN MOBILE DISCONNECTION
PRONE NETWORKS
Le et al. [9] propose a forwarding and cache replacement
policy for SocialCache based on content popularity driven
by frequency and freshness of content requests. As part of
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its replacement, SocialCache may remove a cached content
from the network, thus reduce the cache hit ratio and increase
delays. This problem is exacerbated when the resource is
limited and the replacement rate is high as [9] is not resource
and congestion aware (Table 1).

Vigneri et al. [32], [41] show that vehicles and people
acting as mobile relays can store more replicas of popular
content and thus can increase the ‘‘effective’’ storage capacity
a user has access to since a user can meet a large number
of vehicles and people. Vigneri et al. [32], [41] focus on the
problem of offloading data traffic from main infrastructure
to vehicles acting as mobile caches. However, the above
approaches neither address dynamic changing topologies and
workload pattern, nor take into account resource awareness,
network overhead cost and social awareness (e.g. between
vehicles and people) which have been shown in Table 1 as
important criteria in mobile disconnection prone networks.

Wang et al. [2] propose a low-complexity heuristic
FairCache algorithm that models collaborative caching as a
bargaining game to address the fairness problems in fixed
environments. Wang et al. [2] suffer from multiple limita-
tions when applied to the mobile dynamic heterogeneous
context: i) Wang et al. [2] do not support dynamic content
request patterns which is significant for fully-localized col-
laborative predictive caching (Table 1). ii) Wang et al. [2]
consider cache hit ratio to define utility function but does not
take into account end-to-end latency (Table 1) [3] which is
important for our mobile disconnection tolerant scenarios [4].
iii)Wang et al. [2] do not support congestion control, resource
awareness (Table 1) nor considers the trade-off between
caching performance and overheads which is necessary for
more realistic scenarios (i.e. note that optimal solution for
the bargaining game requires either global knowledge which
is infeasible in dynamic topology or massive messages
exchanged between individuals).

Wang et al. [2] and Bertsimas et al. [13] have shown that
collaborative caching usually outperforms locally optimized
algorithms [22] and attaining a global optimum often disad-
vantages some parties e.g. nodes may be unfairly exploited by
other caches redirects (at the cost of their own performance),
thus we argue that our work does not aim to achieve the global
optimum as in [24] and [26], but to propose a distributed
fully-localized predictive caching algorithm in collaborative
manner which allows every individual node to achieve greater
utility.

Our previous work [4] describes our early proof of con-
cept CafRepCache that combines multi-path content and
interest forwarding and replication with latency aware adap-
tive collaborative cognitive caching in heterogeneous oppor-
tunistic mobile networks which utilizes fully localized and
ego networks multi-layer predictive heuristics about dynam-
ically changing topology, resources and popularity content.
CafRepCache [4] does not require the global knowledge of
network topology and content, and it aims to enable the high-
performance efficiency of individual caches while avoid-
ing draining the resources of other nodes and decreasing

their performances. In this work, we formalize the model
and provide comprehensive performance analysis of CafRep-
Cache in a wide range of different context scenarios and
against more competitive and benchmark protocols.

D. SUMMARY
In Table 1 we systematically outline core criteria that we
used to review the related work and guide our proposal for
a distributed multi-layer real-time predictive and adaptive
forwarding and caching framework in mobile disconnection
prone networks (CafRepCache).

Table 1 presents a summary of the techniques discussed
in this section in terms of the ten criteria. Note that, apart
from CafRepCache, none of the existing approaches pro-
vides support for all criteria: adaptive forwarding, adaptive
replication, fully-localized collaborative predictive caching,
congestion awareness, social contact awareness, resource
awareness, full localisation, disconnection tolerance, end-to-
end latency awareness and dynamic changing topologies.
In our section V, we compare our CafRepCache algorithm
against state-of-the-art intelligent forwarding and caching
algorithms inmobile disconnection tolerant networks: Social-
Cache [9] and HyMobi [10], and also use Least Recently
Used (LRU) algorithm as a benchmarking cache replacement
algorithm.

III. CAFREPCACHE PROPOSAL
CafRepCache framework has a distributed multilayer struc-
ture as shown in Fig. 1. CafRepCache is able to per-
form distributed predictive analytics of multivariate mixed
data (e.g. content and mobility) and manage dynamic
trade-offs between minimizing the end-to-end latency and
maximizing content delivery while enabling resource effi-
ciency and congestion avoidance. Fig. 1 shows CafRep-
Cache cross-layer architecture which consists of multi-layers:
Physical Layer, Mobile Disconnection Tolerant Network
(Mobile DTN) Layer, Content-Centric Network (CCN) Layer
and Application Layer. Nodes in Physical Layer may include
IoT mobile devices (e.g. car, smartphone, etc.) or static
devices (e.g. Road Side Units) with different dynamic
physical constraints (e.g. storage, computational resources,
energy, etc.). In the Mobile DTN Layer, nodes are cou-
pled with users whose connectivity forms scale-free graph
that has power-law connectivity patterns (such as complex
social graphs have). Nodes in the Mobile DTN Layer scan
and discover neighbors, exchange information via multi-
dimensional vectors which may include predictive analytics
of node connectivity patterns, predictive analytics of resource
availability of nodes and their ego networks. In the Content-
Centric Network Layer, contents are generated by publishers
and requested by subscribers; publishers and subscribers may
be mobile or static devices in the network. We consider that
each content has a list of attributes (e.g. name, topic, type,
etc.) but the knowledge on content popularity, content local-
ity, content distribution and content availability are not known
in advance. Each content in the network consists of multiple
chunks which have their own characteristics such as chunk
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FIGURE 1. Multi-layer CafRepCache architecture.

size, chunk popularity, etc. Based on both node’s and con-
tent’s characteristics, we propose three integrated modules:
Resource Management, Social Analytics and Congestion
Awareness. Resource Management module allows real-time
predictive buffer storage, intelligently schedules and priori-
tizes packets; Social Analytics module examines social met-
rics (e.g. similarity, betweenness, tie strength) of neighbors
and continuously evaluates its social heuristic utility value;
Congestion Awareness module resolves the retentiveness,
receptiveness and congesting rate of nodes to avoid overload
and congestion. On the top of our framework, the Application
Layer offers two types of services: content dissemination and
multi-attribute content query.

A. CAFEREPACHE FRAMEWORK AND SYSTEM MODEL
We model CafRepCache system as a network G that consists
of a set N of nodes and a set E of edges, G = (N, E). As the
connectivity of the network and the state of the nodes change
over time, we model each of these sets as time series, thus
N = {N t

: t ∈ T } and E = {E t : t ∈ T}.
We assume that each CafRepCache node in the network

ni ∈ N has a cache of size θi. We denote with O a set of con-
tent files that can be requested by the network. Each content
otk ∈ O (or ok for simplicity) is published at time t and has
the size δk . Content ok consists of an array of chunks ok,l . For
simplicity, we assume all chunks ok,l of a single content ok
will have the same chunk size δk,l without losing generality.
We also denote r tk as the interest about content ok at time t .
At each node ni ∈ N , qti,k is the normalized request rate of
the content ok (i.e. content popularity) observed locally from
ni at time t ,

∑
k q

t
i,k = 1; zti,k is the normalized aggregated

request rate of the content ok observed from all the neighbors
of ni at time t ,

∑
k z

t
i,k = 1. When two CafRepCache nodes

are in contact, they exchange their local content popularity
observations. Each node continuously resolves the value of
dynamically changing content popularity based on its local

observation and the collaborative observations it gets from
others.
W (qti,k , z

t
i,k ) = αq

t
i,k+βz

t
i,k denotes the function to weight

the value of collaborative observations over local observation.
At time t , each node ni ∈ N may act as either a subscriber

of content ok , denoted by S ti,k or a publisher P
t
i,k or a caching

point C t
i,k with caching capability. Thus for any content ok ,

a set of subscribers who are interested in ok is denoted as
S tk = {S

t
i,k |ni ∈ N } and so on.

We integrate ‘‘ego network’’ of each node ni: EN i as a
dynamic network consisting of the node ni and contacts it
meets most frequently or most recently. In this way, ego
network allows each node to give its own regional or temporal
perspective of the network (or both are included).

To model our caching strategy, we denote x ti,k ∈ {0, 1}
whether node ni decides to cache or not content ok at time t ,
yti,j,k ∈ {0, 1} whether node ni forwards or not content ok ’s
request to neighbor nj ∈ EN i at time t , ωti,j,k ∈ {0, 1}
whether node ni decides to offload or not content ok to nj and
εi,k ∈ {0, 1}whether node ni decides to drop or not content ok
at time t .
Table 2 sums up the main notations used in the paper.
In Game Theory each node aims to optimize its personal

‘‘utility’’. We model our collaborative cognitive caching
as a ‘‘bargaining game’’ inspired by heuristic algorithm
FairCache [2] and extend it to address real-world chal-
lenges about the lack of support for dynamic demand
matrix, dynamic node availability and congestion identified
in [2], [4], and [10]. CafRepCache does this by enabling
responsiveness to dynamically changing network topol-
ogy, congestion avoidance and varying patterns of content
publishers/subscribers while allowing low latency content
retrieval, high cache efficiency and efficient use of resources.
Our cognitive caching utility aims to serve subscribers with
the lowest possible delay and without saturating available
resources, thus either using its local cache or by redirecting
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TABLE 2. Table of notions used in the paper.

a request to a nearby collaborative cache, rather than forward-
ing to the original publisher.

B. BACKGROUND OF BARGAINING GAMES
The bargaining game is a model [1] aims to understand better
how individuals collaborate when they target to reach a mutu-
ally beneficial agreement. We model our CafRepCache algo-
rithm as a bargaining game where nodes reach an agreement
on how to efficiently share the utility gained by cooperating
with others.
Definition 1: An in-network caching problem is a pair <

U ,
(
u01, u

0
2, u

0
3, . . . , u

0
i

)
> where U ⊂ RN is a compact and

convex set, containing all values gained via collaboration and
u0i is an initial disagreement value defined as the worst utility
value payoff a node would accept for collaboration.
Definition 2: A fair caching solution is a function f:

U e
→ ϕ,U e

⊂ U is the Pareto frontier of set U such that
(u∗1, u

∗

2, . . . u
∗
i ) = f (U , u01, . . . , u

0
i ).

A cache solution is fair if it satisfies the axioms imposed:
• Individual Rationality: u∗i > u0i
• Feasibility: u∗i ∈ U
• Pareto efficiency: If ui, u′i ∈ U , ui < u′i then f(

U , u0i
)
6= ui

• Symmetry: If (u1, u2) ∈ S ↔ (u2, u1) ∈ S,
u01 = u02 then u

∗

1 = u∗2
• Independence of irrelevant alternatives: If(u∗1, u

∗

2, . . . u
∗
i )

∈ U ′ ⊂ U then = f (U ′, u01, . . . , u
0
i ) = f (U , u01, . . . ,

u0i ) = (u∗1, u
∗
i )

• Independence of linear transformation: Let u′1 = c1u1+
c2, u′2 = c3u2 + c4, . . . then f (U ′, c1u01 + c2, . . . , cxu

0
i

+cx+1) = (c1u
∗

1 + c2, . . . , cxu
∗
i + cx+1)

Theorem 1: There is a unique solution called Nash
Bargaining Solution (NBS) that satisfies all the axioms
above:

arg(U1,U2,...)∈U ,Ui>u0i
max

∏
ni∈N

(Ui − u0i )

The symmetry axiom implies that all players are equal in the
bargaining game. However, to be more realistic, we argue
that some nodes have priority over others, thus we modify
the objective function to:

arg(U1,U2,...)∈U ,Ui>u0i
max

∏
ni∈N

(Ui − u0i )
w′i (1)

in which w′i is a weighing parameter that values each node’s
priority.

C. CAFREPCACHE
Core CafRepCache utility aims to provide higher delivery
success and lower delay when serving dynamically chang-
ing users’ demand patterns in dynamic mobile networks.
The node’s utility is improved by a caching node using
its local cache, or redirecting the request to nearby col-
laborative cache. In order to improve cache performance,
we integrate the following hybrid and complementary the
criteria:

• Content utility: Content utility is dynamically resolved
by performing predictive analytics of local cache hit
rates and collaborating with other nodes – this increases
the cache’s utility since the relay nodes serve contents
on behalf of publishers.

• Social utility: Social utility is collaboratively ana-
lyzed and resolved based on complex network
metrics [18], [4]: similarity, betweenness and tie strength
that is used to find the higher centrality nodes for caching
contents or forwarding requests in order to increase the
higher chances of requested contents being successfully
delivered to subscribers (i.e. the success ratio). The
intuition behind is that the caching nodes not only
need to predict and cache the right contents but also
have to deliver successfully that requested contents to
subscribers.

• Resource utility: Resource utility [14] is based on
dynamic real-time predictive analytics of available
dynamic in-network storage, dynamic in-network delays
that node ni may add to content ok before cache hit
happens and the content are sent towards subscriber
and by how likely caching (or forwarding a request of)
content ok will result in a congestion.

• Energy utility: Energy utility [8] is based on real-time
predictive analytics of nodes’ energy levels and energy
cost of multi-path forwarding.
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• End-user utility: End-user utility monitors and analyses
numbers of different subscribers that adds value to the
cache’s utility in order to avoid serving content requests
to only a small number of subscribers in specific local
region.

More specifically, multiple, multi-layer and complementary
CafRepCache utility metrics can be defined separately as
below:

1) CONTENT UTILITY
Content utility is resolved dynamically by performing
caching decisions on whether to cache, forward or delegate
content chunks based on local and collaborative content
popularity predictions. Intuitively, node ni’s content utility
will be maximized when it caches the highest popularity
contents as it will improve the cache hit ratio. Node ni
will also gain content utility by helping to redirect the
request to a collaborative cache and a hit is attained there.
The utility gained is proportional to the size of the cached
content.∑
ok∈O

δkW (qti,k , z
t
i,k )x

t
i,k +

∑
ok∈O

∑
nj∈EN i

δkW (qtj,k , z
t
j,k )y

t
i,j,k (2)

Our content popularity analytics is defined as:

P(Ti) =
ObservedTimePeriod(Ti)∗

Total − time ∗ Betweeness (Ti) ∗ Recency(Ti)

P (Ti) measures probability caching decision over a certain
period (i.e. temporal locality) in which P is the weight that
identifies the content popularity. Betweeness(Ti) is the tem-
poral function that measures the time gap between con-
tinuous requests and Recency(Ti) denotes the most recent
interest request. P(Ti) aims to provide a trade-off between
current observed content popularity versus long-term interest
in it in order to balance between potentially fake news and
long-term useful content. When a caching node detects it
is likely to start congesting, it ranks the content in terms
of its popularity and delegates the least popular content to
a suitable node. Nodes suitability is ranked in terms of the
samemulti-criteriametric we described (social, resources and
workload).

2) SOCIAL UTILITY
Social utility is based on complex temporal social metrics
(betweenness, similarity and tie strength [18], [4]) that favors
higher centrality nodes to cache contents as they may have a
high probability to deliver that content to their subscribers
successfully. The intuition behind this is that in order to
gain utility, node ni not only needs to cache the right con-
tent but also need to ensure that the cached content will be
delivered successfully to the subscriber. In mobile hetero-
geneous environments, only cache hit ratio does not guar-
antee for a subscriber to retrieve its requested content. The
same logic is applied when node ni decides to forward the
request to its ego network that is shown in the second term

of (3).∑
ok∈O

∑
s∈S tk

US i,s · x ti,k +
∑
ok∈O

∑
nj∈EN i

∑
s∈S tk

US j,s·yti,j,k

US i,s =
1
|F |
∗

∑
f ∈F

αUS fi,s

f ∈ F = {Social,EN Soc|Social = {Betweenness,

Similarity,TieStrength}} (3)

Social utility of node ni is measured by the Betweenness value
of ni as well as the Similarity and Tie Strength between ni and
subscriber s ∈ S tk .
USBeti,s =

∑N
a=1

∑a−1
b=1

gab(ni)
gab

, gab(ni) is the number of
paths linking node a and node b that includes ni
USSimi,s = |Ni ∩ Ns| is the similarity of contact between

node ni and subscriber s.
USTSi,s =

f (s)
F(n)−f (s) +

rec(s)
T (n)−rec(s) +

d(s)
D(n)−d(s) combine both

frequency and recency of contacts between cache node ni and
subscribers.
USENi,s =

1
EN

∑
nj 6=ni∈EN US

Bet
j,s + US

Sim
j,s + US

TS
j,s is the

utility value of ni’s ego networks.

3) RESOURCE UTILITY
Resource utility is analyzed based on the remaining storage,
the delay that ni may add to content ok before a cache hit
happens and the content is sent towards subscriber. Further-
more, resource utility is also measured by how likely caching
(or forwarding a request of) content ok will result in a con-
gestion.∑
ok∈O

∑
s∈S tk

URi,s · x ti,k +
∑
ok∈O

∑
nj∈EN i

∑
s∈S tk

URj,s·yti,j,k

URi,s =
1
|F |
∗

∑
f ∈F

αURfi,s

f ∈ F = {Resource,ENRes|Resource = {Retentiveness,

Receptiveness,CongestingRate}} (4)

URReti,s = θi −
∑

ok∈O sk as the node’s available storage at
time t , measured by the sum of all cached content occupancy
subtracted from the node’s cache buffer capacity.
URRepi,s =

∑
ok∈O tnow − t

i
received as the delay node ni adds

to content ok , measured by the sum of differences between
the current time and the time each content was received.

URCRi,s = (
tcongestionend − tcongestionstart

tcongestion+1start − tcongestionend

)
f
ef

where tcongestionstart

or tcongestionend denotes the time when congestion occurs or
finishes, tcongestionstart and tcongestion+1start are two adjacent conges-
tions occurred, f is the observed congestion frequency. For
simplicity, we assume f = 1.

URENi,s =
1
EN

∑
nj 6=ni∈EN

URRetj,s − UR
Rep
j,s − UR

CR
j,s
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4) ENERGY UTILITY∑
ok∈O

UE i,kx ti,k +
∑
ok∈O

∑
nj∈EN i

UE j,kyti,j,k (5)

We denote Ei as a remaining energy of node ni. Energy utility
UE i,k is measured as the remaining lifetime RT of node ni
which is defined as RT i,k =

γE i
costk

in which costk is the energy
cost to transmit the content ok . γ will be set low if node ni is an
important node which has to be protected from being battery
drainage.

5) NUMBER OF SERVED SUBSCRIBERS
The utility value of node ni increases as it serves to as many
different subscribers as possible. The intuition behind is that
a caching point will be encouraged to fairly serve not only
highly connectivity subscribers requesting high popularity
contents but also those who have lower connectivity and
requests lower popularity contents.∑

ok∈O

S tkx
t
i,k +

∑
ok∈O

∑
nj∈EN j

S tky
t
i,j,k (6)

As the result, we define the total cache’s utility function U t
i

(or Ui for simplicity) for node ni as:

Ui = µ1 (2)+ µ2 (3)+ µ3 (4)+ µ4 (5)+ µ5 (6)

=

(∑
ok∈O

(
µ1δkW (qti,k , z

t
i,k )+ µ4UE i,k + µ5S tk

)
+

∑
ok∈O

∑
s∈S tk

(
µ2US i,s + µ3URi,s

))
x ti,k

+

(∑
ok∈O

∑
nj∈EN i

(
µ1δkW (qtj,k , z

t
j,k )

+µ4UE j,k + µ5S tk

)
+

∑
ok∈O

∑
nj∈EN i

∑
s∈S tk

(
µ2US j,s + µ3URj,s

))
yti,j,k

(7)

In [14] and [44], we show that assigning different weights µ
to each of the CafRep’s and CafRepCache’s utilities results
in different performance for real-world traces. We argue that
there is a need to study and evaluate both empirically and
theoretically the performance of different utility weighting
models for multiple complementary heuristics in order to
understand its impact on every layer of our caching frame-
work. In this paper’s experiments, we assume equal weight
between each heuristic utility of CafRepCache as studying
weighting models are out of scope of this paper and we plan
to investigate adaptive weighting across utilities in the future
work.

We propose CafRepCache as a low-complexity distributed
and predictive heuristic algorithm that does not require the
global knowledge of network topology and content, com-
bines multi-path content and interest forwarding with adap-
tive collaborative cognitive caching and replication that allow

individual nodes to achieve greater utility compared to the
case when there is no collaboration in making decisions.

IV. CAFREPCACHE WITH COMPLEMENTARY MULTI-
LAYER REAL-TIME PREDICTIVE HEURISTICS
We describe CafRepCache which comprises of multiple
mobile edge predictive heuristics that leverage information on
the local available resources, connectivity patterns, mobility
of publishers/subscribers and dynamic content popularity.
Fig. 2 shows CafRepCache’ architecture and design space.

FIGURE 2. CafRepCache’s design space and CafRepCache node
architecture.

We provide CafRepCache pseudo code in Table 3.
Each node has a unique ID and every routedmessage has an

associated key and state information which may contain con-
tent topics and content data, publishers’ IDs, subscribers IDs,
timestamps, location, IDs of other encountered nodes, times
stamps of these meetings etc. Contents are tagged with a
set of attributes which are hashed and stored in DHT-like
overlay that effectivelymatches the hash value of interest with
attributes representing the content.

Each publisher proactively advertises its list of content
name to neighbors who have high social utility and availabil-
ity utility using CafRepCache forwarding protocol. Interme-
diate nodes keep track of the content name associated with
the publisher ID and forward the advertisement to next-hops.
Eventually, the knowledge of which node owns which content
in the network will be disseminated throughout the network.
Each subscriber sends its interest to neighbors who also have
high sociality and availability. Intermediate node first checks
if it has the requested content, then forward the content
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TABLE 3. CafRepCache’s pseudo code.

to the subscriber. Otherwise, it checks whether if it knows
who owns the content (results from content advertisement
process), then forward the request to next hops.

When interest packet reaches the nearest cached con-
tent or the publisher, the node forwards the actual content
data back to the subscriber using CafRepCache forward-
ing scheme. During content retrieval process, using interest
forwarding table, relay node matches the content topic and
summary vector of the subscriber with the information it has
about the published content, and forwards it to the subscriber.
Alongwith forwarding the content or queries to next hops that

have high social centrality and resources, intermediate nodes
decide whether to cache the content, forward it or delegate it
in case of resources limitations. When a caching node detects
it is likely to start congesting, it ranks the content in terms
of its popularity and delegates the least popular content to
a suitable node. Nodes suitability is ranked in terms of the
samemulti-criteriametric we described (social, resources and
workload).

Each caching point tries to maximize its utility value or in
other words, minimize its total cost. During the operation,
the node adapts with changing environment and adjusts its
local caching strategy (x tn,k , y

t
n,i,k ) that may decide whether

to cache the content if it improves the utility value, or stop
retrieving a content from another node due to high cost.

V. EVALUATION
A. EVALUATION METHODOLOGY
In order to better understand performance characterizes of
the multi-dimensional and multi-layer design of CafRep-
Cache, we perform two major groups of experiments each
aiming to compare CafRepCache with multiple state-of-
the-art and benchmark proposals across a range of criteria
and in different contexts. As mobility and connectivity of
the nodes have a major impact on the performance of any
opportunistic communication protocol, it is fundamental to
evaluate our caching algorithm over multiple heterogeneous
real-world mobile data sets. We use San Francisco Cab [21],
RollerNet [29] and Infocom [30] traces in ONE [17].
San Francisco Cab Trace [21] includesGPS traces of 550 cabs
over a period of 30 days in the San Francisco Bay Area.
RollerNet [29] spans three hours during which 62 roller-
bladders travel about 20 miles in Paris and utilize Bluetooth
on their cell phones for communication. Infocom [30] is
a 4-day trace that consists of 78 volunteers equipped with
Bluetooth devices and additional 20 static long-range devices
placed at various semi-static and static locations of the con-
ference venue. Fig. 3 shows analysis of the distribution of
contact duration, isolation duration and number of contacts
in these different mobile heterogeneous datasets.

San Francisco trace [21] is the most challenging trace
compared with RollerNet [29] and Infocom [30] due to very
short connectivity durations, very high disconnections and
low number of contacts during connected times. We observe
that both San Francisco [21] and RollerNet [29] traces exhibit
short contact durations (a mean of 45 s and 33 s, a median
of 11 s and 24 s and a maximum of 73 s and 42s respectively)
while Infocom [30] has substantially longer contact durations
(a mean of 2.5 min, a median of 2 min and a maximum
value of 4 min). San Francisco trace suffers from the longest
isolation periods (a mean of 0.5 h, a median of 1.7 h and a
maximum value of 3 h) compared to RollerNet and Infocom
(with a mean of 1.5 min and 4 min, a median of 1 min and
6 min, and a maximum of 4 min and 10 min respectively).
In addition, RollerNet trace has the highest observed number
of contacts compared to San Francisco Cab and Infocom
traces.
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FIGURE 3. Distribution of contact duration, isolations and number of contacts.

In the first set of experiments, we compare CafRepCache
against two state-of-the-art intelligent caching algorithms in
opportunistic networks, SocialCache [9], HyMobi [10] and a
benchmark protocol Least Recently Used (LRU) over differ-
ent criteria: cache hit ratio, success ratio, delay and packet
loss in the face of dynamically varying content popularity
skewness in order to evaluate our forwarding and caching
algorithm in the presence of dynamic content request pat-
terns. We analyze two parts of end-to-end content retrieval
(shown in Fig. 4): content discovery(i.e. time taken between
sending interest packets to the network and discovering a
requested content) and content delivery (i.e. time taken for
the content to be delivered successfully to the interested sub-
scribers from the time content was discovered in the network)
in order to provide more insightful analysis of CafRepCache
compared with other state of the state of the art and bench-
marks protocols.

FIGURE 4. Content Retrieval: Content Discovery and Content Delivery.

In the second set of experiments, we conduct perfor-
mance analysis of CafRepCache against two state-of-the-
arts caching algorithms (SocialCache [9], HyMobi [10]) and
a benchmark algorithm (LRU) while dynamically varying
patterns of subscribers (in terms of their geographical and
connectivity properties as well as their numbers). We show
that CafRepCache outperforms other competing protocols in
terms of success ratio, delay, packet loss and relative footprint
reduction for content discovery, content delivery and the

end-to-end content retrieval process in the presence of het-
erogeneous network connectivity and dynamic workloads.

In terms of forwarding interests, we assume nodes with
higher social utility (i.e. betweenness and similarity cen-
trality) and resource utility are preferred. Note that in the
experiments, we assume interest packet size are relatively
small compared to the content packet. The general simulation
parameters details are shown in Table 4.

TABLE 4. Values of the simulation parameters.

B. EVALUATION IN THE PRESENCE OF DYNAMIC
CONTENT POPULARITY SKEWNESS
We generate content requests to follow Zipf-distribution
using Hawkes process [28] in which the probability for a
request of the kth most popular content is P (k, α,K ) =

1/kα∑K
q=1 1/qα

with α refers to the popularity skewness. The

smaller α leads to a more uniform popularity distribution,
meaning contents are randomly requested. We vary content
popularity skewness α while constantly setting localisation
factor β = 0.8 to evaluate caching performance in the
presence of dynamic content popularity overmultiple criteria:
cache hit probability, success ratio, latency and packet loss.
We run six increments with content popularity skewness α
ranging from 0.2 to 1.2 as we observe that our caching
performance converges when α gets larger than >1.2. For
each experiment with α, we assume that a random 50% of
node population are subscribers and a random 25% of nodes
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FIGURE 5. Cache hit rate vs. Content popularity skewness.

FIGURE 6. Content discovery success ratio vs. Content popularity skewness.

are publishers. All experiments are repeated ten times and
averaged. We assume that contents are uniformly distributed
among publishers. We compare CafRepCache performance
against benchmark protocol LRU and state-of-the-art Social-
Cache [9] and HyMobi [10] over three heterogeneous traces
ranging from vehicular to social: SF Cab [21], RollerNet [29]
and Infocom [30]. In order to enable fair analysis, we imple-
ment LRU over social forwarding as other algorithms have
different social forwarding algorithms and all three traces
have been shown to have social character [4], [14].

We begin by analyzing the performance of cache hit ratio
which refers to how many interest packets are matched with
the contents in caching points without being forwarded to
publishers and indicates the efficiency of caching decisions
and locations. In Fig. 5, we show that CafRepCache achieves
the highest cache hit ratio (typically above 88% for all
three traces and in the face of dynamic content popularity
skewness α) compared to state of the art algorithms
SocialCache and HyMobi and benchmark protocol (LRU).
CafRepCache is followed by HyMobi, which manages
up to 70% for all three traces, SocialCache ranges from
56%-66% for San Francisco and RollerNet traces and up

to 77% for Infocom trace. LRU has the worst performance
manging around 44%-48% for San Francisco, 58%-64% for
RollerNet and up to 70% for Infocom.We observe that higher
α leads to bigger performance gap between CafRepCache
and other competing protocols. This is because CafRep-
Cache profits from its adaptive caching and smart partial
replication which allow it to minimize packet loss rates and
better predict and cope with fragmentation more efficiently.
CafRepCache is also able to take advantage of highly skewed
content popularity and content request locality to efficiently
predict the incoming content requests.

Similarly to the improved cache hit ratios for CafRep-
Cache, content discovery success ratios in CafRepCache
outperforms other state-of-the-art and benchmark protocols
across all three traces and for dynamically changing con-
tent popularity (as shown in Fig 6). As we vary the con-
tent popularity in each trace, CafRepCache manages to keep
above 95% content discovery success ratio while HyMobi
and SocialCache managed up to 88% and 76% respectively.
HyMobi shows an improvement of 12% compared to Social-
Cache (without offloading) due to its offloading policy and
no content replacement. However, when the cache spaces
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FIGURE 7. Content discovery packet loss vs. Content popularity skewness.

FIGURE 8. Content discovery delay vs. Content popularity skewness.

become limited and the content replacement rate is high,
both only removing strategy and offloading strategy result
in decreased content discovery. LRU has the worst perfor-
mance of 75% as it suffers from resource congestion and non-
adaptive content management.

In Fig. 7, CafRepCache shows lowest packet loss rates
compared to HyMobi, SocialCache and LRU because it uses
distributed predictive analytics of how likely the nodes and
their ego networks are to congest and predictive in-network
delay analytics in order to be able to avoid offloading from
one node to another node where congestion may happen.
SocialCache and LRU have highest packet loss rates as
they push the contents to the nodes with the highest social
degree and may cause their congestion. HyMobi aims to
offload the contents to other nodes which have more resource
currently in order to avoid removing the cached content
from the network, however it does not consider how fast
these resources are likely to congest and thus may result
in delayed congestion. LRU and SocialCache packet loss
rates are significantly higher (up to 2 to 3 times higher)
than CafRepCache and HyMobi as shown in Fig 7. Because
CafRepCache performs adaptive and predictive analytics on
the content, connectivity and resource levels, fRepCache is

able to choose the most suitable set of nodes to offload the
cached content and the most suitable set of contents to remove
from nodes leading to the lowest packet loss compared to
the other algorithms. Fig. 8 shows performance analysis of
content discovery delays between CafRepCache, two state of
the art and one benchmark algorithms over three traces and
varying content popularity skewness. CafRepCache achieves
the lowest delay across all three traces and in the face of
all very different content popularity patterns (i.e. it manages
below 33 min for San Francisco, below 5 min for RollerNet,
and below 3 min for Infocom). CafRepCache is followed by
HyMobi which manages on average 38min, 5min and 4sec,
LRUmanages 38min, 6 min, 6 min and SocialCache (33min,
5 min and 4 min) for San Francisco, RollerNet and Info-
com traces respectively). CafRepCache minimizes delays
through its predictive analytics of in-network delays and
predictive node and ego network congesting rates. This in
turn also enables the highest cache hit ratio and allows the
requested contents to be mainly found in the caching points in
CafRepCache (thus avoiding the need for getting the content
from the publishers directly). Although HyMobi has slightly
higher discovery success ratio than SocialCache, it has higher
latency when finding the requested content because the
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FIGURE 9. End-to-end content retrieval success ratio vs. Content popularity skewness.

FIGURE 10. End-to-end content retrieval delay vs. Content popularity skewness.

FIGURE 11. End-to-end content retrieval packet loss vs. content popularity skewness.

content may be pushed farther away from the subscribers
during the offloading process.

Our extensive experiments have shown that the perfor-
mance of content delivery from caches to subscribers is sig-
nificantly higher than that of content discovery (e.g. the delay
in content delivery is much lower than that in content discov-
ery). The overall content retrieval performance (success ratio,

delay, packet loss) is thus significantly affected by the content
discovery process, which in turn, is affected by the cache
hit ratio for all three traces. Therefore we move to analyzing
content retrieval performance for the rest of the paper.

Figures 9-11 show the end-to-end success ratio, delay
and packet loss for content retrieval over three traces
(San Francisco, RollerNet and Infocom) and dynamically
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varying content popularity. We observe that CafRepCache
achieves highest content retrieval success ratio (82% for
San Francisco, 88% for RollerNet and 92% for Infocom),
lowest delay (below 40min for San Francisco, 6min for
RollerNet and 3min for Infocom) and lowest packet loss
(below 13% for San Francisco, 4% for RollerNet and 1% for
Infocom). HyMobi outperforms LRU and SocialCache but
underperforms CafRepCache. LRU, in overall, has the lowest
performance.

We observe that higher α leads to the more significant gap
in performance between CafRepCache and state of the art
(HyMobi and SocialCache) and benchmark protocols (LRU).

Across the three traces, CafRepCache manages to keep
lower delays compared to the other protocols due to the
following two reasons: First, CafRepCache is able to predict
regional in-network delays with good accuracy because of
checking for the in-network delays of both the nodes and
their ego networks. In this way, CafRepCache is able to
more quickly identify (potentially) longer but less congested
paths with lower delays than the other protocols. Neither
SocialCache, LRU nor HyMobi are able to adaptively for-
ward interest and content nor adaptively manage the content
chunks. Second, using Social utility as part of the CafRep-
Cache utility, CafRepCache ensures the best prediction of the
most direct route to the destination. Neither of the HyMobi,
LRU, SocialCache uses predictive social metrics and resource
metrics together and are thus not able to adjust to the dynam-
ics in both of these dimensions.

Similarly, across all three traces, CafRepCache sustains
higher node and region availability than other protocols. This
is because CafRepCache is able to make good predictions
of node and ego network availability which avoids deplet-
ing the caching resources of frequently used caching nodes
and regions in the network that may drop packets. HyMobi,
SocialCache and LRU protocols result in lower node caching
availability as they congest the regions that are highly central
and where the nodes cannot offload the traffic faster than the
traffic is generated (that is the example application scenario
we are considering).

SocialCache and LRU heuristics perform well because
they allow congruency with distributed mobile data queries
and dynamic interactions while depicting dynamics of the
underlying topology (all three topologies have social char-
acter [4] with social metrics being applicable). HyMobi is
more successful compared to SocialCache and LRU as it
performs in-network predictive resource analytics and rebal-
ances the caching nodes locations so that it avoids con-
gestion while keeping high social metrics to drive caching
closer to the subscribers. CafRepCache is most successful as
it includes both social and resource metrics, but when the
caching node predicts that it is likely to get congested, it
delegates caching of the least popular content from its local
cache to another node that has most appropriate contact it
meets.

Fig. 12 shows the importance of CafRepCache caching
by comparing delays between requesting content with and

FIGURE 12. Difference in delay in two scenarios: cache hit and cache
miss.

without caching points. We show that caching helps to
significantly reduce the delays compared to when there are
no caches and interests have to traverse the network in order
to be matched the content at the publishers.

C. EVALUATION IN THE PRESENCE OF DYNAMIC
PATTERNS OF SUBSCRIBERS
In order to understand the influence of variable workloads,
in these experiments, we vary the patterns of subscribers
requesting contents from a fixed number of publishers
(e.g. 20%) and evaluate success ratio, delay and packet loss
of different caching algorithms on different content retrieval
processes. We assume that subscribers are mobile and not
uniformly distributed as well as that they can have dif-
ferent connectivity patterns. Note that connectivity patterns
(i.e. how central subscribers are in the network) and their
locations (how close to the publishers and to each other
subscribers may be) strongly influences content retrieval
characteristics. We first rank the nodes in terms of
their connectivity (more specifically degree centrality).
In Figures 13-15, we increase the numbers of subscribers
starting from top 10% best connected random nodes, fol-
lowed by increments of 15% (i.e.25, 40%, 55, 70 and 85%).
This allows us to show how CafRepCache performs in a
wide range of different topologies ranging from dense to
sparse. We compare CafRepCache against two state of the art
(HyMobi and SocialCache) and one benchmark (LRU) algo-
rithms over multiple criteria and over three heterogeneous
mobility traces.

Fig.13 shows that, in terms of content retrieval success
ratios, CafRepCache outperforms the other competing algo-
rithms SocialCache and HyMobi [9], [10] as well as LRU.
CafRepCache starts off with 85% to 95% success ratio in
end-to-end content retrieval process when there are 10%
of subscribers with high connectivity requesting the con-
tents while other algorithms are 10-50% lower across all
three traces. When we increase numbers and diversity of
subscribers requesting hybrid content popularity, CafRep-
Cache algorithm manages to keep success ratio above 80%
for all three traces. CafRepCache is followed by HyMobi,
SocialCache, and LRU whose performance is lower and
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FIGURE 13. Content retrieval success ratio vs. Number of subscribers.

FIGURE 14. Content retrieval delay vs. Number of subscribers.

FIGURE 15. Content retrieval packet loss vs. Number of subscribers.

ranges between 50-70% due to the lack of multilayer adap-
tation mechanisms. More specifically, predictive analytics of
resources and connectivity enables CafRepCache to man-
age topologies with very different density/sparseness patterns
while predictive content analytics enables both smart caching
and replication of suitable content at the suitable nodes.

Note that sparse networks present limited forwarding and
caching options at any given time, while dense networks
are prone to suffering from transmission collisions due to
wireless interference and high content workload. CafRep-
Cache not only manages to cognitively cache and replace
the right contents due to its predictive content analytics but
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also be able to place the interest and content packets in
the most suitable locations due to its adaptive forwarding
and replication that diverts the content workload from its
conventional social aware path at times of congestion and
directs it via a different path that decreases the load of caching
points, thus reduces end-to-end delays while keeping high
success ratios. HyMobi, SocialCache and LRU either under-
utilise or overutilise the forwarding, caching opportunities
and the resources, thus results in lower success ratios and
higher delays.

In Fig.14 and Fig.15, CafRepCache achieves the lowest
overall delay and packet loss compared to the other state of
the art caching algorithms [9], [10] and LRU. We observe
that the delays are slightly increased for all protocols when
the diversity and number of subscribers increase but this
is due to increase in subscribers with lower connectivity
degree. CafRepCache reduces delays 20-30% compared with
SocialCache, LRU or HyMobi. CafRepCache manages to
keep packet loss to less than 10% when serving an increasing
number of subscribers with the dynamic content workload.
This is due to CafRepCache managing dynamic real-time
trade-off between predictive in-network node and ego net-
work delay analytics and predictive content analytics, and
thus enables collaborative adaptive and predictive forward-
ing, caching and replication necessary for content retrieval
in heterogeneous mobile environments. More specifically,
SocialCache uses social driven heuristics for both contacts
and contents that exploits contact relationships among nodes
and social-based popularity of contents in order to allow
optimal directionality, caching opportunity and delivery prob-
ability of a node, thus helps to reduce the end-to-end delays.
HyMobi uses resource-driven heuristics to offload the traffic
from high central nodes and avoid congestion which helps
to reduce the packet loss compared to SocialCache but may
increase the delays as it does not adapt to regional conges-
tions and may push the contents far away from interests
packets.

CafRepCache dynamically combines implicit content,
social and resource (buffer availability, in-network delays,
congesting rate) heuristics in addition to ego network
(regional) driven heuristics that aim to detect and adapt buffer
availability, delays and congesting rates of different parts of
the network, thus keep the delay and packet loss as low as
possible. Selecting the node that represents the best carrier
for the right contents and deciding on the optimal number of
replicas to forward and cache are multiple attribute decision
problems across multiple measures that CafRepCache is able
to deal with, where the aim is to select the best contents to
cache, the most suitable nodes to carry the contents and the
number of cached contents that provide the maximum utility
in the presence of dynamic content workload, connectivity
and resources in heterogeneous mobile environment.

Similarly to [3], we consider caching footprint and aim
to keep it a low as possible. We analyze a relative footprint
reduction metric rather than footprint reduction metric pro-
posed [3] as it is more suitable for Content Centric Networks

in mobile heterogeneous environments.

Relative footprint reduction

= success ratio ·
(
1−

hop count
hop count when no cache

)
.

where average hop count and footprint reduction are consid-
ered to be two key metrics for evaluating cache performance.
Higher footprint reduction value indicates higher cache hit
ratio and traffic reduction. As shown in the formula above,
a solution for improving the relative footprint reduction is to
place the popular content as close to subscribers as possible
that also means lower average hop count. Fig. 16 shows that
CafRepCache outperforms HyMobi, SocialCache and LRU
in terms of footprint reduction. This is because we not only
get highest success ratio, but also cache the content as close
as possible to the subscribers that requires less hop for the
interests to reach the cache and for the requested content to
traverse back to the subscribers.

FIGURE 16. Content Retrieval – Footprint Reduction.

TABLE 5. Location efficiency.

In Table 5, we evaluate the efficiency of CafRepCache
individual caches in terms of howmuch of the cached content
they store is delivered to the subscribers. We show that the
caching efficiency for each traces is very high: 90% (Info-
com), 70% (San Francisco) and 84% (RollerNet). Similarly,
we investigate individual partial replication efficiency and
show in Table 5 that its efficiency is very high too across all
thee traces: 93% (Infocom), 68% (San Francisco) and 67%
(RollerNet) (Table 5). In this way, we show that our col-
laborative and adaptive cognitive caching manages to select
highly suitable locations for caching and replication as well
as suitable content chunks to cache and replicate when needed
for very heterogeneous mobility and connectivity trances.

Figures 17 and 18 show a comparative analysis of resource
consumptions of CafRepCache, SocialCache, HyMobi and
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FIGURE 17. Average Computational Cost vs. Number of subscribers.

FIGURE 18. Total number of packets forwarded vs. Number of subscribers.

LRU-SocialForwarding in terms of average computational
cost (CPU usage) and routing cost (total number of packets
forwardedwhile routing). In Fig. 17, we observe that CafRep-
Cache has a small computational increase (up to 11.2%,
20.7% and 27.9%) compared to HyMobi, SocialCache and
LRU-SocialForwarding respectively while it has much higher
success ratio, lower delay and packet loss compared to the
competing protocols. Regarding the total number of pack-
ets forwarded, Fig. 18 shows that CafRepCache has up to
18.4% increase in the number of forwarded packets compared
to SocialCache and LRU-SocialForwarding. Note that this
increase is only transient in nature when network congestion
is predicted and the traffic is adaptively moved to less con-
gested parts of the network (this is a feature which other pro-
tocols do not support). Interestingly, CafRepCache has fewer
packets forwarded compared to HyMobi (above 10.9%) due
to CafRepCache being able to both choose the most suitable
set of nodes to forward the cached content to as well as the
most suitable set of contents to remove from congested nodes,
thus avoid unnecessarily forwarding, offloading packets and
reduce the total cost of routing.

In [44], we showed that different weights of CafRep-
Cache’s utilities may result in significantly different perfor-
mances for dynamic workloads and network connectivity.
Computing optimal weights that adaptively favor different
utilities differently at different times is a very challenging
problem even with the complete knowledge about the envi-
ronment [14], thus we plan to extensively study the per-
formance of each complementary heuristic and investigate
different utility weighting models in order to understand the
impact of each one on every layer of our caching frame-
work across heterogeneous real-world mobility, connectivity
traces for different workload and content popularity patterns.
More specifically, we plan to evaluate and compare different
content forwarding protocols in mobile disconnection prone
networks, then conduct performance analysis of different
content forwarding protocols built with resources awareness
algorithm in order to evaluate the influences of our resources
aware heuristics on the performance of content dissemination
and query. After that, we plan to evaluate the performance
of the forwarding protocols with resource awareness and
our cognitive collaborative caching algorithms built on the
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content layer in order to analyze the effect of our adaptive
content-aware caching protocol in the presence of dynamic
content request patterns, dynamic mobility and connectivity.

Additionally, in [43], we argue that the question on how to
adaptively weight and combine the value of local observation
and different collaborative observations is an important and
challenging problem that needs to be addressed in order to
utilize efficiently the exchanged information, thus improve
caching performance. We integrated ‘‘ego network’’ of each
node as a dynamic network consisting of that node and
contacts it meets most frequently or most recently. Thus,
ego network allows each node to give its own regional
and temporal perspective of the network. However, as not
every node’s perspective of the network may have the same
importance and level of accuracy, we plan to investigate if
fuzzy approaches or fully distributed collaborative reputation
approaches may be helpful towards proposing new adaptive
weighting mechanisms which can evaluate and weight differ-
ent exchanged observation derived from different nodes in the
network in a predictive manner and congruent with the under-
lying network mobility, connectivity and content interest in
order to improve the overall performance of our framework.
Note that we assume there are no malicious nor selfish nodes
in the network in this paper, but for our future work we
plan to investigate different incentive mechanisms (such as
proposed in [36]) as well as to explore extending CafRep-
Cache to adaptively utilize the exchanged information from
trusted collaborators. More specifically, we plan to focus
on the content-centric layer of CafRepCache and investigate
complex challenges related to content popularity weighting
process in CafRepCache suitable for heterogeneous mobile
disconnection prone environments. We aim to propose a new
intelligent popularity weighting mechanism that will allow
CafRepCache to adapt to realistic cases where caching points
gathering content popularity observed by others may not take
into account equally all nodes but differentiate between them
according to nodes’ dynamic reputation values or fuzzy logic
which will enhance the accuracy of CafRepCache predictive
content analytics and improve its cache hit ratio.

VI. CONCLUSION
This paper proposed CafRepCache, a multi-layer predictive
caching framework that combines real-time adaptive multi-
path content and interest forwarding, with adaptive cognitive
collaborative caching. We showed that CafRepCache signif-
icantly improves the performance of content discovery and
retrieval over very different time-varying real-world network
topologies and mobility patterns for wide range of dynamic
changing workload of content publishers and subscribers
against the three competing protocols across a range of met-
rics. CafRepCache utilizes both single node and ego net-
works multi-layer real-time predictive heuristics to manage
complex dynamic trade-offs between dynamically changing
topology, dynamic resources and varying content popularity
and interest in order to achieve high cache availability, cache

efficiency and success ratio while keeping low delays, packet
loss rates and cache footprint.

In our future work, we plan to investigate energy efficient
data sharing approaches that will make CafRepCache smart
data dissemination and query more usable, reliable and scal-
able in opportunistic disconnection tolerant networks. In part-
nership with Nottingham City Council, we will build and
deploy a real-world testbed which integrates CafRepCache
with a lightweight publish/subscribe messaging transport
protocol designed for connecting constrained devices, people,
vehicles and infrastructure to contribute towards integrative
smart city planning. We envisage that CafRepCache will be
an integral part of a more robust and reliable network support
that allows the scalable operation of rich mobile services with
and without the infrastructure.
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