
Abstract

In this work, an effective macroscale description is derived
for the growth of tissue on a porous scaffold. A multiphase
model is employed to describe the tissue dynamics; linearisation
to facilitate a multiple-scale homogenisation provides an effective
macroscale description, which incorporates dependence on the
microscale structure and dynamics. In particular, the resulting
description admits both interstitial growth and active cell motion.
This model comprises Darcy flow, and differential equations for the
volume fraction of cells within the scaffold and the concentration
of nutrient, required for growth. These are coupled to underlying
Stokes-type cell problems that provide permeability tensors, with
multiscale dependence incorporating active cell motion, with which
to parameterise the macroscale flow. A subset of solutions are
illustrated by numerical simulations.
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1 Introduction

Tissue growth is a complex phenomenon, comprising a wide range of
processes, and spanning multiple spatial and temporal scales. Over many
decades, a range of mathematical models has been constructed to describe
the growth of tissue in applications that include tissue engineering, wound
healing and cancer treatment. In tissue engineering, cells, scaffolds and
biologically active molecules are combined to create functional tissues for
diverse uses such as organ replacement [71], toxicological research [25, 67]
and cultured meat [7]. Mathematical models have been used to provide
insight into a range of tissue engineering processes, including: the influence
of the bioreactor (tissue culture device) on tissue morphology [57, 78]; to
investigate mechanotransduction [55] and cell behaviour under different
bioreactor flow rates [60]; and to optimise scaffold design [16]. In the
case of wound healing, recently proposed models have sought to investigate
how tissue stress and growth contribute to successful healing [8], that is
of particular relevance to diabetic and geriatric patients [65]. A number
of models have been developed to investigate the uncontrolled division
and growth associated with cancer including avascular growth [76, 77],
the processes of angiogenesis [58] and importantly, the delivery [35] and
effectiveness of cancer drugs.

The above models are applicable at the tissue scale, and thereby
do not incorporate explicitly dependence on the tissue microstructure,
or otherwise employ detailed computational approaches. Recently, the
method of multiscale homogenisation has been utilised in a number of
biological models [2, 44, 48, 53, 54, 61, 69, 70] as it allows the incorporation
of important microscale effects at the macroscale, without the high
computational cost associated with a microscale level description of a
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macroscale sized domain. Multiscale homogenisation has a rich history
of use in the study of porous flow [5, 13, 30, 37, 39, 66], including in the
study of soil and reservoirs [33, 62, 63]. These methods, discussed and
compared in [22, 59], are used to derive suitable macroscale equations from
an underlying microscale description, rather than stating them ab initio.
Microscale information, such as the geometry and dynamics, is thereby
incorporated into the ‘effective’ equations describing macroscale behaviour.
In order to use these techniques one is required to make the assumptions
that the micro- and macro-length scales are well-separated and that there
is local microscale periodicity.

More recently, these techniques have begun to be employed in the
context of growing materials. In O’Dea et al. [54] a simple model of
tissue growth within a porous scaffold, represented by nutrient-limited
microscale accretion of a rigid solid structure, was considered. A macroscale
description of growth and transport was obtained using a multiple-scales
technique, to accommodate explicit dependence on microscale dynamics
and structure. A similar analysis by Penta et al. [61] described accretion in
a poroelastic setting, the underlying model therein being popularly used for
the description of cartilage [26, 38, 43, 46]. To permit analysis, the authors
of [54, 61] (and other similar studies) exploit asymptotic restrictions on
the underlying model, considering slow (quasi-static) growth and linearised
deformation. In Collis et al. [17], such assumptions are relaxed to consider
a macroscale representation of finite volumetric nutrient-limited growth of a
hyperelastic solid, employing the Arbitrary-Lagrangian-Eulerian approach
[12] to ameliorate the challenges involved in applying two-scale asymptotics
to such a system.

The underlying description of growth, and tissue dynamics in these
models [17, 54, 61] is highly idealised, being restricted to accretion [54, 61]
or simple volumetric growth of a solid body [17]. An alternative approach
is to employ a multiphase, or mixture theory, description [23, 73], that
provides a natural framework to accommodate the complexity associated
with tissue growth dynamics and has therefore been widely used in the
context of tumour growth [14, 21, 31, 45] and tissue engineering [40, 41, 55];
see also the review article [52]. Of particular relevance here is the study of
Lemon et al. [42] in which tissue growth within a tissue engineering scaffold
is described using a porous flow mixture theory model. The growing cell
population is represented by a viscous fluid as in [45] but additionally
accommodates cell-cell interactions via the specification of extra pressure,
introduced by Breward et al. [10].

More recently these ideas, of mixture theory and multiscale
homogenisation, were brought together in a tumour model investigating
drug transport and response [18, 19]. At the microscale the tumour
was modelled as a multiphase fluid mixture and an effective macroscale
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description, of flow, transport and mixture evolution, was obtained via
multiscale homogenisation. In this work, the limit of large interphase
drag was adopted, as in [27, 56], in which case each phase is subject to
a common velocity and pressure. Whilst this reduction permitted the
multiscale analysis that followed, the resulting description can be viewed
as essentially equivalent to an accretion type model with growth occuring
in a thin boundary layer at the tumour periphery.

In this work we address this deficiency, employing a two phase viscous
fluid model of the kind presented in [42] to obtain an effective macroscale
description of nutrient limited tissue growth on an artificial scaffold, in
which we relax the assumption of large interphase drag so that active
cell motion is permitted, caused by their tendency to aggregate or repel.
The model therefore accommodates a more complex description of tissue
dynamics, as well as permitting volumetric growth. A fully nonlinear
analysis is complicated by the more complex mass-transfer features that
we consider (see Collis et al. [17] for a discussion). Moreover, our
aim here is to obtain a more tractable description that permits coupling
between micro- and macro-scale processes. We therefore consider a
linearisation of the model, which permits a more straightforward multiscale
analysis. The macroscale model that we derive comprises a Darcy flow,
a partial differential equation for the volume fraction of cells within the
scaffold, and an advection-reaction equation for the nutrient concentration,
coupled to the underlying microscale dynamics via suitable problems
defined on a prototypical ‘unit cell’. These so-called ‘cell problems’,
determine microscale behaviour that is subsequently employed to specify
effective coefficients in the macroscale description. Importantly, and in
contrast to other similar studies, these unit cell problems are themselves
parameterised by the macroscale dynamics, so that the micro- and macro-
scale descriptions are fully coupled.

Whilst the model is presented here in the context of tissue engineering
it has the potential to be applied to other applications, in particular the
development of biofilms, for example in the subsurface [20] or in the fouling
of filters [6].

This article is organised as follows. The setup of the multiphase
model at the microscale is described in section 2 for a periodic microscale
cell, followed by its linearisation about a steady state and analysis of
its linear stability. In section 3 multiscale homogenisation is used to
derive an effective macroscale description, incorporating dependence on
the microscale structure and dynamics. As is often the case in this kind
of analysis, we are required to make further constitutive assumptions in
order to obtain a closed macroscale model. In particular, we must specify
the motion of the free tissue boundary at the microscale. To provide
insight, we therefore consider in detail (in section 4) the travelling wave
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behaviour of the underlying multiphase model (in a similar manner to [41])
to thereby rationalise a constitutive statement for the boundary velocity in
terms of the model parameters. We present illustrative numerical solutions
in a particular limit case in section 5, indicating how microstructural
information and cells’ motile characteristics influence macroscale model
behaviour. Finally, in section 6 we make some concluding remarks and
suggest possible directions for future work.

2 Model formulation

We consider a model of broad relevance to tissue engineering applications
where tissue growth occurs on a structured periodic scaffold (see Figure 1
for sample periodic cells), such as can be achieved through the use of 3D
printing [36, 75, 79]. The characteristic lengthscales of the full extent of
the scaffold and the porestructure, denoted L, and the l respectively, are
well separated and related by the dimensionless parameter ε ą 0, where

ε “
l

L
! 1. (2.1)

Henceforth we refer to the two lengthscales as the micro- and macro-scale.
We model the scaffold, ΩS , as a rigid solid. The tissue, ΩT , is modelled

as a two phase mixture of cells and interstitial fluid which covers the
scaffold, whilst the interstitial space, ΩI , contains only fluid. Henceforth,
we refer to the interstitial fluid as water, for concision. Both cells and water
are modelled as viscous fluids, described by Stokes equations, an approach
taken by [45]. As the motion of the two fluids is very slow the inertial terms
can be neglected; if they are retained, we find that in view of the scalings
we adopt, they are, in any case, of lower order than we consider. The three
domains that comprise the periodic cell are illustrated in Figure 1.

Increase in the cell volume fraction of the mixture depends on the
concentration of some generic nutrient, as well as the availability of water.
Tissue growth is represented by movement of the boundary Γ, between
ΩT and ΩI . This may occur as a consequence of nutrient limited phase
transition, increasing the cell volume fraction (especially in the case of
differences in phase density) or due to cell aggregation/repulsion.

2.1 Model equations

2.1.1 The tissue, ΩT

We describe the tissue using a multiphase mixture approach. This has
been used by many authors in the context of tissue growth, building on
the general theory of multiphase (porous) flow developed in, for example,
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Figure 1: Schematic diagrams of the microscale domain, Ω, composed of scaffold,
ΩS , tissue ΩT and interstitial fluid, ΩI . The scaffold boundary is denoted by BΩS

and tissue-interstitial boundary by Γ. paq A sample three-dimensional geometry.
pbq A two-dimensional geometry used in the illustrative numerical experiments,
section 5. We highlight that this geometry results in a disconnected interstitium,
but we restrict attention to this simplified set-up for computational ease and
thereby concentrate on the dynamics within ΩT in our illustrative results.

[9, 24, 47]. We choose to follow closely [42], in which a mixture theory
model for tissue growth in a porous scaffold is presented in general terms
and for an arbitrary number of phases, including a widely applicable form
for the mechanical interactions within and between phases.

Here, in our model, the tissue comprises two phases, cells and water, of
volume fraction θn and θw respectively, satisfying the no voids constraint

θn ` θw “ 1. (2.2)

The conservation of mass for each phase is given by

ρi

ˆ

Bθi
Bt
`∇ ¨ pθiviq

˙

“ Si for i “ n, w, (2.3)

where ρi, vi and Si denote the phase densities, velocities and source terms,
respectively. In order that mass is conserved we set Sn “ ´Sw. For
generality we do not specify Sn here but note that in general it will
have functional dependence on θn, θw and nutrient concentration c. A
suitable function will be defined for the numerical experiments in section
5. Combining mass conservation (2.3) for each phase we obtain

∇ ¨ pθnvn ` θwvwq “

ˆ

1

ρn
´

1

ρw

˙

Sn. (2.4)
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The momentum equations are given by

∇ ¨ pθiσiq ` f ij “ 0 for i “ n, w, (2.5)

where the stress tensors, σi, and interphase forces, f ij, are

σi “ ´piI ` µi

ˆ

∇vi ` p∇viqT ´
2

3
p∇ ¨ viq I

˙

, (2.6)

f ij “ p∇θi ` βijθiθj pvj ´ viq . (2.7)

In (2.6) pi denotes the pressure of the ith phase, whose constant viscosity
is µi. In (2.7) we have assumed that the only interphase interaction that
exists is passive viscous drag, with coefficient βij (which we further set to
be βnw “ βwn “ β); p denotes a common mixture pressure related to the
individual phase pressures by pw “ p and pn “ p ` φn. Active cell motion
due to cell-cell interactions is accommodated via the additional pressure
term φn, here chosen (as in [42]) as follows:

φn “ θn

ˆ

´ν `
κθn

1´ θn

˙

, (2.8)

We remark that the accommodation of cell-cell interactions (and active
forces more generally) within a multiphase framework through the
specification of extra pressure contributions has been widely employed (see
for example, [10, 14, 15, 31, 42]). While the precise functional form of these
contributions differs somewhat between authors, the key features are: (i) at
low density, cells are expected to aggregate; (ii) this aggregation is curtailed
at high density due to repulsive forces that exist between cells at high
density. Here, the first, negative, term in (2.8) represents aggregation with
strength ν ą 0, while the second term curtails this, with strength κ ą 0.
Note in particular the singularity that occurs as θn “ 1, representing high
repulsion occurring when all available space is occupied by cells.

In summary, the momentum equations are given by

θn∇pw `∇ pθnφnq ` βθnθw pvn ´ vwq

´∇ ¨

ˆ

µnθn

ˆ

∇vn ` p∇vnqT ´
2

3
p∇ ¨ vnq I

˙˙

“ 0, (2.9)

θw∇pw ` βθnθw pvw ´ vnq

´∇ ¨

ˆ

µwθw

ˆ

∇vw ` p∇vwqT ´
2

3
p∇ ¨ vwq I

˙˙

“ 0. (2.10)
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It is at times notationally convenient to refer to weighted mixture
variables such as velocity and stress; these are represented by subscript
T. For example, we define

vT “ θnvn ` θwvw, (2.11)

σT “ θnσn ` θwσw. (2.12)

2.1.2 The interstitium, ΩI

In this domain there are no cells, so θn “ 0, θw “ 1 and the flow is described
by a Stokes flow:

∇ ¨ vI “ 0, (2.13)

∇pI ´∇ ¨

´

µw

´

∇vI ` p∇vI q
T
¯¯

“ 0, (2.14)

where subscript I denotes variables in ΩI .

2.1.3 Nutrient

A generic nutrient of concentration c, on which mitosis depends, is advected
by the flows, diffuses with constant diffusivity Di, and in ΩT is taken up
by the cell phase according to some function Λpθn, cTq.

BcI
Bt
`∇ ¨ pcIvI q “∇ ¨ pDI∇cI q in ΩI , (2.15)

BcT
Bt
`∇ ¨ pcTvTq “∇ ¨ pDT∇cTq ´ Λ in ΩT . (2.16)

In the tissue, as in Lemon and King [40], we have assumed that
the concentration of nutrient in the cell and water phases is equal,
due to permeable cell membranes and reaching equilibrium rapidly on
the microscale of the mixture. The sum of the nutrient transport
equation in each phase results in (2.16), with the nutrient advected by
the composite mixture velocity (2.11) and DT representing the effective
diffusion coefficient of the nutrient in the mixture.

We suppose that DI is constant but note that diffusivity in the tissue
will, in general, have dependence on the cell volume fraction, i.e. DT “

DT pθnq. However, in the linearisation that follows (Section 2.3) we find
that this variation is relegated to lower order and so we do not specify it
here. Additionally, and in the interest of generality, we defer specification
of the uptake function Λ to section 5 when we provide illustrative numerical
experiments of a particular limit case.
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2.1.4 Boundary conditions

At the scaffold-tissue boundary we impose no slip and no penetration
conditions so that

vi “ 0 on BΩS , (2.17)

and since we assume that nutrient cannot enter the scaffold,

∇cT ¨ nS “ 0 on BΩS , (2.18)

where nS is the outward normal to the scaffold.
The tissue-interstitium boundary, Γ, exists along the surface where cells

are present on one side but not on the other. Its position is given by

BF

Bt
`∇F ¨ vΓ “ 0, (2.19)

where vΓ is the boundary velocity and the level set equation F px, tq “ 0
describes the position of the moving interface Γ.

On this boundary we impose the following flux conditions:

ρnθn pvn ´ vΓq ¨ n “ 0, (2.20)

ρwθw pvw ´ vΓq ¨ n “ ρw pvI ´ vΓq ¨ n, (2.21)

rci pvi ´ vΓq ¨ n´Di∇ci ¨ ns
`

´
“ 0 where i “ T, I, (2.22)

where n is the outward normal to the interface, Γ and r s`´ denotes the
jump across the boundary. The first of these simply implies that the normal
velocity of the boundary is given by the normal velocity of the cells there;
i.e. no cells are permitted in ΩI . The second enforces the conservation of
mass flux of water across the boundary whilst the third describes the flux
of nutrient concentration. In addition, we impose continuity of tangential
velocity, normal stress and nutrient concentration on Γ:

rvi ¨ ts
`

´
“ 0 rσi ¨ ns

`

´
“ 0, rcis

`

´
“ 0 for i “ T, I. (2.23)

2.2 Nondimensionalisation

We non-dimensionalise our model equations by using the following scalings:

x “ lx̂, v “ V v̂, c “ Cĉ, p “
µnV

l
p̂, t “

l

V
t̂, (2.24)

Sn “
ρnV

l
Ŝn, β “

µn
l2
β̂, µ “

µw
µn
,

Di

V l
“

1

Pei
, Λ “

V

l
Λ̂, ρ̄ “

ρn
ρw
.

in which circumflexes denote dimensionless variables and V , and C are
a characteristic microscale velocity and nutrient concentration. These
characteristic quantities are to be determined by the specific application,
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dependent, for example, on the imposed fluid pressure drop in the
bioreactor and the choice of nutrient. In the interest of generality we do
not specify them here. As we work exclusively in dimensionless variables
in subsequent sections, we drop the circumflex notation for convenience.

2.3 Steady state and linearisation

As is typical in homogenisation problems of this type, where flow, transport
and (more recently) growth of porous media is considered, we reduce
the degree of non-linearity of the microscale model to enable a more
straightforward multiscale analysis that follows; fully nonlinear approaches,
such as that undertaken in Collis et al. [17] are discussed in section 6.
In Collis et al. [19] this was achieved through imposing large interphase
drag, forcing the phase velocities within the mixture to be equal, and
thereby removing the nonlinearities present in the continuity equations.
To extend this model by allowing active cell motion, and hence distinct
phase velocities, here we instead linearise the equations about a uniform
steady state, across ΩT , with the following expansions:

θn “ θ˚n ` δθn,1 ` . . . (2.25a)

vi “ δvi,1 ` . . . for i “ n, w, I (2.25b)

pi “ p˚i ` δpi,1 ` . . . for i “ w, I (2.25c)

c “ c˚ ` δc1 ` . . . (2.25d)

F “ F ˚ ` δF1 ` . . . (2.25e)

where 0 ă δ ! 1 and asterisks denote steady state values. The steady state
volume fraction and nutrient concentration are defined by

Snpθ
˚
n, θ

˚
w, c

˚
q “ 0, Λpθ˚n, c

˚
q “ 0, (2.26)

while the steady state velocity is v˚i “ 0 and p˚i is an arbitrary constant.
Whilst a steady state may exist within ΩT that has x-dependence, or one
that varies on the macroscale, we do not consider this here for simplicity.
We remark, however, that under the scalings that we employ in the
subsequent multiscale analysis, the leading order cell volume fraction,
nutrient concentration and pressure are uniform at the microscale, in partial
support of our simplifying assumption.

The linearised equations are given below. In ΩT :

Bθn,1
Bt

` θ˚n∇ ¨ vn,1 “ Sn,1, (2.27a)

Bθw,1
Bt

` θ˚w∇ ¨ vw,1 “ ´ρ̄Sn,1, (2.27b)

θn,1 ` θw,1 “ 0, (2.27c)

∇ ¨ pθ˚nvn,1 ` θ
˚
wvw,1q “ p1´ ρ̄qSn,1, (2.27d)
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θ˚n

„

∇ ppw,1 ` φn,1q ` βθ
˚
w pvn,1 ´ vw,1q ´∇2vn,1 ´

1

3
∇ p∇ ¨ vn,1q



“ 0,

(2.27e)

θ˚w

„

∇pw,1 ` βθ
˚
n pvw,1 ´ vn,1q ´ µ

ˆ

∇2vw,1 `
1

3
∇ p∇ ¨ vw,1q

˙

“ 0,

(2.27f)

BcT ,1
Bt

`∇ ¨ pc˚ pθ˚nvn,1 ` θ
˚
wvw,1qq “

1

PeT
∇2cT ,1 ´ Λ1. (2.27g)

where

Sn,1 “
BSn
Bθn

pθ˚n, c
˚
q θn,1 `

BSn
Bc

pθ˚n, c
˚
q cT ,1, φn,1 “

1

θ˚n

B pθnφnq

Bθn
pθ˚nq θn,1,

Λ1 “
BΛ

Bθn
pθ˚n, c

˚
q θn,1 `

BΛ

Bc
pθ˚n, c

˚
q cT ,1,

(2.28)
are the linearised growth, uptake and intraphase pressure functions,
respectively. Note that due to the linearisation, the Péclet number in the
tissue domain is now a function of the steady state cell volume fraction θ˚n,
and hence takes a constant value.

In ΩI the flow is governed by:

∇ ¨ vI ,1 “ 0, (2.29a)

∇pI ,1 ´ µ∇2vI ,1 “ 0, (2.29b)

BcI ,1
Bt

`∇ ¨ pc˚vI ,1q “
1

PeI
∇2cI ,1. (2.29c)

Boundary conditions are obtained by linearising (2.17,2.18) on the
scaffold surface, BΩS :

vn,1 “ vw,1 “ 0, ∇cT ,1 ¨ nS “ 0, (2.30)

while on the tissue boundary Γ:

BF1

Bt
`∇F ˚ ¨ vΓ,1 “ 0, (2.31a)

θ˚n pvn,1 ´ vΓ,1q ¨ n “ 0, (2.31b)

θ˚w pvw,1 ´ vΓ,1q ¨ n “ pvI ,1 ´ vΓ,1q ¨ n, (2.31c)

´ ppw,1 ` θ
˚
nφn,1q I ` θ

˚
n

ˆ

∇vn,1 ` p∇vn,1qT ´
2

3
p∇ ¨ vn,1q I

˙

` µθ˚w

ˆ

∇vw,1 ` p∇vw,1qT ´
2

3
p∇ ¨ vw,1q I

˙

“ ´pI ,1I ` µ
`

∇vI ,1 `∇vTI ,1
˘

, (2.31d)
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rvi,1 ¨ ts
`

´
“ 0, (2.31e)

„

c˚ pvi,1 ´ vΓ,1q ¨ n´
1

Pei
∇ci,1 ¨ n

`

´

“ 0, (2.31f)

rci,1s
`

´
“ 0, (2.31g)

where i “ T, I, and the linearised weighted mixture velocity is given by

vT ,1 “ θ˚nvn,1 ` θ
˚
wvw,1. (2.32)

2.3.1 Stability

In section 4 we investigate the travelling wave behaviour of the above model,
in a simplified limit case, in order to rationalise a constitutive statement
for the velocity of the free boundary Γ, as required to close the macroscale
description derived in section 3. For general interest, and because of its
importance in determining the travelling wave behaviour of section 4, we
next consider the stability of the steady state using the linearised equations
in one dimension. We highlight that the analysis of the full model is
presented here, while the results that pertain to a particular limit case
are employed in section 4.

By assuming that the phase densities are equal, and by elimination of
θ˚w, vw,1 and pw,1, the equations in the tissue domain, ΩT , are reduced to

Bθn,1
Bt

` θ˚n
Bvn,1
Bx

“
BSn
Bθn

pθ˚n, c
˚
qθn,1 `

BSn
Bc
pθ˚n, c

˚
qcT ,1, (2.33)

Jpθ˚nq
Bθn,1
Bx

` β
1

1´ θ˚n
vn,1 ´

4

3

ˆ

1` µ
θ˚n

1´ θ˚n

˙

B2vn,1
Bx2

“ 0, (2.34)

BcT ,1
Bt

“
1

PeT i

B2cT ,1
Bx2

´
BΛ

Bθn
pθ˚n, c

˚
qθn,1 ´

BΛ

Bc
pθ˚n, c

˚
qcT ,1, (2.35)

where

Jpθ˚nq “ ´2ν `
κθ˚np3´ 2θ˚nq

p1´ θ˚nq
2

. (2.36)

We remark that the formulation (2.33–2.35) is of similar form to that
considered in Lemon and King [41] (with additional terms reflecting the
viscosity of the water phase and dependence on nutrient concentration).
The below calculation therefore follows that presented therein and so we
omit much of the detail. We seek solutions of the form

θn,1 “ Neλt`iγx, vn,1 “ V eλt`iγx, cT ,1 “ Ceλt`iγx, (2.37)

where N , V , C are constants, γ is the wavenumber and λ the growth rate
of the perturbation. We find that the growth rate is given by

λ “
1

2

„

Gpγq ´Hpγq ˘

b

pHpγq ´Gpγqq2 ´ 4pK ´HpγqGpγqq



, (2.38)

12



where

Epγq “
β

1´ θ˚n
`

4

3
γ2

ˆ

1` µ
θ˚n

1´ θ˚n

˙

(2.39)

Gpγq “
BSn
Bθn

pθ˚n, c
˚
q ´ θ˚nγ

2Jpθ˚nq
1

Epγq

Hpγq “
1

PeT
γ2
`
BΛ

Bc
pθ˚n, c

˚
q

K “
BΛ

Bθn
pθ˚n, c

˚
q
BSn
Bc
pθ˚n, c

˚
q.

Determination of the stability of the steady state requires values of the
various model parameters as well as functions for growth Sn and nutrient
uptake Λ. We return to the stability in section 4, where we seek illustrative
numerical solutions, for given parameters and functions, as the stability of
the non-trivial steady state plays an important role in the determination
of the tissue growth behaviour.

3 Multiple scales analysis

We now work with the linearised model (2.27–2.31) and, for the sake of
clarity, drop the associated subscripts. To derive a suitable macroscale
description incorporating the microscale growth, dynamics and structure,
we follow [13, 19, 54, 61, 69] in using the method of multiple scales.
Correspondingly we rescale equations (2.27–2.31) such that the timescale
under consideration is that of macroscale advection and pressure scaling
results in the appropriate leading order problem:

t “ εt̃, p “
1

ε
p̃, (3.1)

in which tildes denote the rescaled variables. We drop the tilde notation for
convenience as we work exclusively with the rescaled variables in subsequent
sections. This choice of time rescaling simplifies the analysis by resulting
in a quasi-steady problem at leading order.

Next we introduce a macroscale coordinate X where X “ εx (x being
the microscale coordinate). Since the two length scales are well-separated
we treat x and X as independent and expand variables and differential
operators in multiple-scales form as follows:

ψ px,X, t; εq “ ψp0q px,X, tq ` εψp1q px,X, tq ` ... (3.2)

∇ “∇x ` ε∇X , ∇2
“ ∇2

x ` 2ε∇x ¨∇X ` ε
2∇2

X . (3.3)

Moreover, in addition to the boundary conditions (2.30-2.31) we assume
that ψpiq for i “ 0, 1, ... are periodic in x. We now analyse the equations at
each order in ε, with the aim of obtaining a description of the macroscale
growth and transport.
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3.1 O(1)

The equations and boundary conditions at leading order are given below.
In the tissue domain, ΩT :

θ˚n∇x ¨ v
p0q
n “ Sp0qn , (3.4a)

θ˚w∇x ¨ v
p0q
w “ ´ρ̄Sp0qn , (3.4b)

θp0qn ` θp0qw “ 0, (3.4c)

∇x ¨ v
p0q
T “ p1´ ρ̄qSp0qn , (3.4d)

θ˚n∇x

`

pp0qw ` φp0qn
˘

“ 0, (3.4e)

θ˚w∇xp
p0q
w “ 0, (3.4f)

∇x ¨

´

c˚v
p0q
T

¯

“
1

PeT
∇2

xc
p0q
T ´ Λp0q. (3.4g)

In the interstitial domain, ΩI :

∇x ¨ v
p0q
I “ 0, (3.5a)

∇xp
p0q
I “ 0, (3.5b)

∇x ¨

´

c˚v
p0q
I

¯

“
1

PeI
∇2

xc
p0q
I . (3.5c)

Boundary conditions on Γ:

θ˚n

´

vp0qn ´ v
p0q
Γ

¯

¨ n “ 0, (3.6a)

θ˚w

´

vp0qw ´ v
p0q
Γ

¯

¨ n “
´

v
p0q
I ´ v

p0q
Γ

¯

¨ n, (3.6b)

v
p0q
T ¨ t “ v

p0q
I ¨ t, (3.6c)

´
`

pp0qw ` θ˚nφ
p0q
n

˘

I “ ´p
p0q
I I, (3.6d)

∇xF
˚
¨ v
p0q
Γ “ 0, (3.6e)

c˚
´

v
p0q
T ´ v

p0q
Γ

¯

¨ n´
1

PeT
∇xc

p0q
T ¨ n

“ c˚
´

v
p0q
I ´ v

p0q
Γ

¯

¨ n´
1

PeI
∇xc

p0q
I ¨ n, (3.6f)

c
p0q
T “ c

p0q
I , (3.6g)

where
v
p0q
T “ θ˚nv

p0q
n ` θ˚wv

p0q
w . (3.7)
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Boundary conditions on BΩS :

vp0qn “ vp0qw “ 0, ∇xc
p0q
T ¨ nS “ 0. (3.8)

Lastly, we note that, in view of (2.28), the phase transfer, intraphase

pressure and nutrient uptake functions depend only on θ
p0q
n , c

p0q
T (and the

relevant steady states), so that

Sp0qn “ Sn,1

´

θp0qn , c
p0q
T

¯

, φp0qn “ φn,1
`

θp0qn
˘

, Λp0q “ Λ1

´

θp0qn , c
p0q
T

¯

. (3.9)

Equation (3.6e) provides ∇xF
˚ “ 0 or v

p0q
Γ ¨ n “ 0, but the latter

holds most generally and so the tissue-interstitium boundary is stationary
at leading order. Correspondingly, we rescale mass-transfer and nutrient
consumption to Opεq (as in other multiscale models [19, 54]). Note that
this occurs as a consequence of the scaling choice (3.1).

Equations (3.4e,f) and (3.5b) imply that the leading order pressures are
independent of the microscale coordinate x. Using the boundary condition
(3.6d) we find that the pressure everywhere is given by

pp0qpX, tq “ p
p0q
I pX, tq “ pp0qw pX, tq ` θ˚nφ

p0q
n pX, tq. (3.10)

Moreover, in view of the above rescaling, and following the argument in
[54],

cp0qpX, tq “ c
p0q
T pX, tq “ c

p0q
I pX, tq (3.11)

and, furthermore, φ
p0q
n “ φ

p0q
n pX, tq, θ

p0q
n “ θ

p0q
n pX, tq.

3.2 O(ε)

The equations and boundary conditions at O(ε) are given below. In ΩT :

Bθ
p0q
n

Bt
` θ˚n

`

∇x ¨ v
p1q
n `∇X ¨ v

p0q
n

˘

“ Sp0qn , (3.12a)

∇x ¨ v
p1q
T `∇X ¨ v

p0q
T “ p1´ ρ̄qSp0qn , (3.12b)

θ˚n
“

∇x

`

pp1qw ` φp1qn
˘

`∇X

`

pp0qw ` φp0qn
˘

` βθ˚w
`

vp0qn ´ vp0qw
˘

´∇2
xv

p0q
n

‰

“ 0,
(3.12c)

θ˚w
“

∇xp
p1q
w `∇Xp

p0q
w ` βθ˚n

`

vp0qw ´ vp0qn
˘

´ µ∇2
xv

p0q
w

‰

“ 0, (3.12d)

Bcp0q

Bt
` c˚

´

∇x ¨ v
p1q
T `∇X ¨ v

p0q
T

¯

“
1

PeT
∇2

xc
p1q
T ´ Λp0q, (3.12e)

where v
p1q
T “ θ˚nv

p1q
n ` θ˚wv

p1q
w . In ΩI :

∇x ¨ v
p1q
I `∇X ¨ v

p0q
I “ 0, (3.13a)

∇xp
p1q
I `∇Xp

p0q
´ µ∇2

xv
p0q
I “ 0, (3.13b)

Bcp0q

Bt
` c˚

´

∇x ¨ v
p1q
I `∇X ¨ v

p0q
I

¯

“
1

PeI
∇2

xc
p1q
I . (3.13c)
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On Γ:

θ˚n

´

vp1qn ´ v
p1q
Γ

¯

¨ n “ 0, (3.14a)

θ˚w

´

vp1qw ´ v
p1q
Γ

¯

¨ n “
´

v
p1q
I ´ v

p1q
Γ

¯

¨ n, (3.14b)

v
p1q
T ¨ t “ v

p1q
I ¨ t, (3.14c)

´
`

pp1qw ` θ˚nφ
p1q
n

˘

I ` θ˚n

´

∇xv
p0q
n `

`

∇xv
p0q
n

˘T
¯

` µθ˚w

´

∇xv
p0q
w `

`

∇xv
p0q
w

˘T
¯

“ ´p
p1q
I I ` µ

ˆ

∇xv
p0q
I `

´

∇vp0qI

¯T
˙

,

(3.14d)

BF p0q

Bt
`∇xF

˚
¨ v
p1q
Γ “ 0, (3.14e)

c˚
´

v
p1q
T ´ v

p1q
Γ

¯

¨ n´
1

PeT

´

∇xc
p1q
T `∇Xc

p0q
¯

¨ n

“ c˚
´

v
p1q
I ´ v

p1q
Γ

¯

¨ n´
1

PeI

´

∇xc
p1q
I `∇Xc

p0q
¯

¨ n, (3.14f)

c
p1q
T “ c

p1q
I . (3.14g)

On BΩS :
vp1qn “ vp1qw “ 0, ∇xc

p1q
T ¨ n`∇Xc

p0q
T ¨ nS “ 0. (3.15)

3.3 Macroscale equations

3.3.1 Ansatz

In what follows we require a method of averaging variables across the
various domains of the periodic cell. We therefore define the following
integral average for some variable, g, over domain Ωi, by

xgyi “
1

|Ω|

ż

Ωi

g dV, (3.16)

where Ω “ ΩI YΩT YΩS . Due to the linearity of the momentum equations,
we take an appropriate form for the macroscale velocities and microscale
pressures to be given by

v
p0q
i “ ´Ki∇Xp

p0q and p
p1q
i “ ´ai∇Xp

p0q
´ p̄i for i “ n, w, I, (3.17)
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where Ki are tensors describing the permeability, p̄i are the mean values of
the first order pressures in Ωi, hence microscale invariant, and ai are first
order tensors imparting microscale variation; see, for example, [22, 54, 69].

Substituting (3.17) into the mass and momentum conservation
equations (3.4a, 3.4b, 3.5a, 3.12c, 3.12d, 3.13b) and boundary conditions
(3.6a–c, 3.14d), provides the following ‘cell problems’ that determine Ki

and ai in each domain. A ‘cell problem’ is one posed on the microscale
periodic unit or ‘cell’ that makes up the macroscale domain, from which
one establishes the microscale variation of certain quantities (here, the
permeability) in order to specify effective coefficients in the macroscale
description. For example, here Figure 1 illustrates sample periodic cells.
In ΩI :

∇x ¨K
T
I “ 0, (3.18)

∇xa
T
I ´ I ´ µ∇2

xK I “ 0. (3.19)

In ΩT :

∇x ¨K
T
n “ 0, ∇x ¨K

T
w “ 0, (3.20)

“

∇xa
T
w ´ I ´ µ∇2

xKw ´ βθ
˚
n pKn ´Kwq

‰

∇Xp
p0q
` θ˚n∇Xφ

p0q
n “ 0,

(3.21)
“

∇xa
T
n ´ I ´∇2

xKn ´ βθ
˚
w pKw ´Knq

‰

∇Xp
p0q
´ θ˚w∇Xφ

p0q
n “ 0.

(3.22)

On Γ:

KT
i n “ 0 for i “ n,w, I, (3.23)

`

θ˚nK
T
n ` θ

˚
wK

T
w

˘

t “KT
I t, (3.24)

´aT b I `
´

∇KT ` p∇KTq
T
¯

“ ´aI b I ` µ
´

∇K I ` p∇K I q
T
¯

,

(3.25)

where the microscale invariant contributions to stress are continuous, i.e.
p̄I “ θ˚np̄n ` θ

˚
wp̄w and

KT “ θ˚nKn ` µθ
˚
wKw and aT “ θ˚nan ` θ

˚
waw. (3.26)

Finally, on BΩS :
Kn “ 0, Kw “ 0. (3.27)

For uniqueness in the ‘cell problems’, we use a standard approach [50, 54,
61, 69] and impose that in the relevant domain

xaiy “ 0, (3.28)
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i.e. that the average of the microscale variation in pressure, imparted by
ai, is zero over the volume of the periodic cell.

We note that, while a standard Stokes-type cell problem is obtained
in ΩI , the multiphase dynamics in ΩT leads to significantly increased
complexity. In particular, we obtain a pair of coupled modified Stokes
problems, determining the permeability tensors Ki and extra pressures
ai for each phase, which are further coupled to the flow in ΩI via
stress and velocity continuity boundary conditions. Moreover, and in
contrast to other simplified analyses of this type, the microscale cell
problems and corresponding macroscale dynamics are coupled through the
macroscale pressure and active cell behaviour terms. Such a multiscale cell
problem poses significant computational challenges; in section 5 we present
illustrative numerical simulations in a simplified limit case. Methodologies
for computations of the full multiscale problem are discussed in section 6.

3.3.2 Averaging

Averaging equations (3.13a) and (3.12b), using the definition in (3.16),
then applying the divergence theorem we find

∇X ¨ xv
p0q
I yI “

1

|Ω|

ż

Γ

v
p1q
I ¨ n dS, (3.29)

∇X ¨ xv
p0q
T yT “ ´

1

|Ω|

ż

Γ

v
p1q
T ¨ n dS ` xp1´ ρ̄qSp0qn yT . (3.30)

Note that the contribution from the scaffold-tissue boundary arising in
(3.12b) is zero since all phase velocities are zero there. Using boundary
conditions (3.14a) and (3.14b) and defining the average macroscale velocity
by

v̄p0q “ xv
p0q
T yT ` xv

p0q
I yI , (3.31)

we obtain
∇X ¨ v̄

p0q
“ xp1´ ρ̄qSp0qn yT . (3.32)

In view of (3.17), this yields an equation for the macroscale pressure,

∇X ¨
`

K̄∇Xp
p0q
˘

“ ´xp1´ ρ̄qSp0qn yT , (3.33)

where
K̄ “ xθ˚nKn ` θ

˚
wKwyT ` xK IyI . (3.34)

Averaging the nutrient concentration equations (3.12e) and (3.13c) over
their respective domains gives

|ΩT |

|Ω|

Bcp0q

Bt
` c˚ p1´ ρ̄q xSp0qn yT “

1

PeT
x∇2

xc
p1q
T yT ´ xΛ

p0q
yT , (3.35)

|ΩI |

|Ω|

Bcp0q

Bt
“

1

PeI
x∇2

xc
p1q
I yI . (3.36)
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The sum of (3.35) and (3.36), after the application of the divergence
theorem and boundary condition (3.14f), yields the macroscale nutrient
concentration equation,

|ΩT Y ΩI |

|Ω|

Bcp0q

Bt
` c˚ p1´ ρ̄q xSp0qn yT “ ´xΛ

p0q
yT . (3.37)

Finally, averaging the equation for the cell volume fraction (3.12a) and
applying the divergence theorem and boundary condition (3.14a) we find

B

Bt
xθp0qn yT ` θ

˚
n

´

∇X ¨ xv
p0q
n yT ` xv

p1q
Γ ¨ nyΓ

¯

“ xSp0qn yT . (3.38)

3.3.3 Summary

From an underlying pore-scale multiphase tissue growth model, we have
derived a macroscale description that incorporates explicitly the microscale
structure and dynamics. The microscale problem comprises a set of coupled
Stokes problems (3.18–3.27) that provide permeability tensors with which
to parameterise the macroscale Darcy flow PDE (3.33) and thereby the
reaction equations describing tissue component volume fractions (3.38) and
nutrient concentration (3.37). In common with other studies of this type,
tissue growth at the microscale influences macroscale dynamics by inducing
a leading order flow and by source and sink terms in the equations governing
the phase volume fraction and nutrient concentration. In contrast, however,
we note that the permeability tensor K̄ retains multiscale dependence
through the pressure and cell motility forcing that appears in (3.20,3.21)
and so, despite the simplified analysis that we employ, the micro- and
macro-scale problems remain fully coupled. This increase in complexity
is somewhat offset by the fact that the macroscale formulation simplifies
significantly, with the resulting evolution equations for θn and c containing
no spatial component, except that imbued by initial data.

We remark that in many biological applications the density differences
between phases may be small (and so terms in (3.32, 3.33, 3.37) associated
with the corresponding change in volume as mass transfer occurs will
vanish) and that these are often neglected in the tissue growth literature.
As in Collis et al. [19], in the following, we choose to retain non-infinitesimal
density differences in the interests of generality, and to highlight the full
model dynamics. Lastly, we note that as is common in analyses of this
type, the macroscale model we obtain is not closed: we are required to
specify constitutively the Opεq boundary velocity v

p1q
Γ ¨ n (cf. [19, 34]).

This is explored in the following section; and in section 5 is illustrated in
the special case of inviscid water, under which simplification, the Stokes
problem loses its dependence on the macroscale pressures.
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4 Closure of macroscale model

In order to close the macroscale model we require information on the
boundary velocity, v

p1q
Γ ¨n. In principle this can be obtained by considering

a suitable free-boundary problem. Instead, we choose to specify v
p1q
Γ ¨ n

constitutively. To provide a rationale we investigate numerically the full
non-linear model (see section 2.1) in one spatial dimension, to explore
the impact of various model parameters on tissue growth, thereby gaining
insight in to the qualitative behaviour of growth in the multiphase context
and informing the choice of a suitable constitutive equation for the
boundary velocity.

The multiphase model of [42], on which our tissue description is
based, was further investigated in [41], concentrating on its travelling wave
behaviour. The variation of the wave speed with the model parameters
was investigated, using both analytical and numerical methods. Due to
the similarities between their model and our own, and the correspondence
between such travelling wave behaviour and the free boundary motion
v
p1q
Γ ¨ n, we follow a similar approach here. We provide brief summaries

of various methods employed but for further detail refer the reader to [41].
Note that unlike [41] we do not include the scaffold as a component of the
multiphase mixture. Also, we initially include viscosity of the water phase,
before setting µw “ 0 in the numerical experiments.

Since in the multiscale model, the concentration of nutrient is
independent of the microscale at leading order, here we correspondingly
assume that c is constant across the tissue. Lastly, we remark that for
simplicity, and consistency with [41], we consider the case for which ρn “ ρw
and concentrate instead on the dependence of travelling wave speed on the
cells’ motile properties. Our simplified setup is illustrated in Figure 2.

0 Γ
x

tissue, ΩT interstitium, ΩI

sc
a
ff
o
ld
,
Ω

S

Figure 2: Illustration to show the three domains for the 1D model. The
scaffold-tissue boundary at x “ 0 is fixed while the tissue-interstitial
boundary at x “ Γ is a free interface whose motion arises due to growth
and active cell motion.
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4.1 Model equations and numerical method

In ΩI the equations (2.13,2.14) in one dimension reduce vI and pI to
constants which, assuming vI , pI Ñ 0 as xÑ 8, implies vI “ pI “ 0.

In the tissue domain, elimination of θw, vw and pw reduces the governing
equations (2.2–2.4,2.9,2.10) in 1D to

Bθn
Bt
`
B

Bx
pθnvnq “ Sn, (4.1)

A
B2vn
Bx2

`B
Bvn
Bx

` Cvn “ D, (4.2)

where

A “
4

3
θn pµn ` pµw ´ µnq θnq , (4.3)

B “
4

3

Bθn
Bx

1

1´ θn

`

pµn ´ µwqθ
2
n ` 2pµw ´ µnqθn ` µn

˘

, (4.4)

C “ ´βθn `
4

3

µwθn
1´ θn

˜

B2θn
Bx2

`
1

1´ θn

ˆ

Bθn
Bx

˙2
¸

, (4.5)

D “ p1´ θnq

ˆ

´2νθn `
κθ2

n p3´ 2θnq

p1´ θnq
2

˙

Bθn
Bx

, (4.6)

and following [41] we choose

Sn “ kmcθn p1´ θnq ´ knθn. (4.7)

Suitable boundary conditions (see [41]) are given by

at x “ 0 :
Bθn
Bx

“ 0, vn “ 0, (4.8)

at x “ Γ : θn “ 0,
Bvn
Bx

“ 0. (4.9)

For consistency with the multiscale numerical experiments that follow,
we investigate the behaviour when the water phase is inviscid (µw “ 0).
Such a simplification is common in multiphase studies of tissue dynamics
[1] and is consistent with [41], in particular.

To solve (4.1) we use a semidiscrete MUSCL (Monotonic Upstream-
centered Scheme for Conservation Laws) scheme [74], a finite volume
scheme, with monotonized central (MC) slope limiter [74] and upwind flux.
At each time step the finite difference form of (4.2) is used to calculate the
cell velocity given the current solution for θn. The resulting system is time-
stepped via ode23.m, a Runge-Kutta method with adaptive step size, in
MATLAB. To aid the solution of (4.2), we adopt an approach from the
study of dry-bed dam-break problems, described in [32], as follows. A
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small tolerance value for the cell volume fraction, θtol, is chosen such that
if θn ă θtol on both sides of a finite volume interface, no flux is permitted.
The cutoff value is chosen such that the behaviour of θn and vn is not
significantly impacted. Throughout this section we use θtol “ 0.001.

In the following numerics we use the parameter values given in Table 1
unless otherwise indicated. These values are based on those in [41] where
one can find a discussion on how these are obtained. The initial condition,
a flat region at the steady state value for cell volume fraction with a smooth
yet relatively steep drop to zero at the edge, is given by

θn px, 0q “ θ˚

«

ˆ

1´

„

x´ 0.45

0.05

˙2

rH px´ 0.45q ´H px´ 0.5qs

`1´H px´ 0.45q

ff

,

where H is the Heaviside step function.

Table 1: Parameter values employed in the microscale numerical experiment
unless stated otherwise, for equations (4.1–4.7). Values for km and kn taken from
[41], determined by fitting a similar model to experimental data of chondrocytes
seeded on porous scaffolds. Other values are chosen based on the range explored
in [41], with alternative values for each parameter investigated in the following
analysis.

Parameter Value

km 1.8ˆ10´4

kn 3.4ˆ10´5

ν 1.2ˆ10´2

κ 8.0ˆ10´3

β 1.0ˆ104

c 1
µn 1

4.2 Travelling wave speed

Numerical simulations (Figure 3) display three different behaviours of the
tissue: forward or backward travelling waves and break up of the tissue,
independent of the choice of initial condition, as observed in the similar
model of Lemon and King [41]. The break up of tissue, illustrated by
Figures 3(e,f), occurs when the choice of parameters leads to the non-trivial
steady state becoming unstable, i.e. the parameter values give a positive
perturbation growth rate (2.38).
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As may be observed from the numerical results, the wave-front takes
the form of a fast-varying transition to zero. The boundary layer analysis
of [41] provides an equation defining the cell volume fraction at the inner
edge of the moving layer, termed the aggregate density, which satisfies:

νθ:2n ´
κθ:3n

1´ θ:n
`

4

3
θ:n

`

km
`

1´ θ:n
˘

´ kn
˘

“ 0. (4.10)

For fixed mitotic and necrotic rates, km and kn, the value of the
aggregate density θ:n depends on the ratio of the cells aggregation and
repulsion strength. The wave direction is determined by the relationship
between the non-trivial steady state, θ˚n “ 1 ´ kn{km and θ:n. For θ:n ă θ˚n
forward waves are observed (Figures 3(a,b)) whilst increasing ν relative to
κ leads to θ:n ą θ˚n and the direction reverses (Figures 3(c,d)).

These regions, of forward, backward and unstable waves, across pν, κq
parameter space are illustrated by Figure 4(a). The choice of initial
condition only determines the initial transient behaviour of the wave;
subsequent behaviour depends on the parameter values relative to each
other.

Since our focus is on tissue growth in the numerical experiments that
follow we confine our choice of parameters to those which result in forward
travelling waves. Moreover we remark that the numerical solutions become
badly behaved in the other two cases, due to the steepening of the leading
edge. Note that the results for the backward and unstable cases, Figures
3(c–f), correspond to shorter time spans than for the forward travelling
wave, because of these numerical difficulties.

Following the analysis of [41], we find that approximate expressions for
the wave speed can be obtained in two particular cases. Firstly, when the
cell volume fraction does not vary appreciably through the wavefront, when
θ˚n « θ:n, one can linearise the equations about

θn “ θ˚n, vn “
Bvn
Bx

“ 0.

Rearranging the linearised equations and solving provides the following
boundary velocity approximation:

vΓ «
Sn

`

θ:n
˘

θ:n

d

4´ 3θ˚nJ pθ
˚
nq {S

1

n pθ
˚
nq

3β p1´ θ˚nq
´1 . (4.11)

Secondly, an approximation can be obtained in the case where there is
no interphase drag. Here, numerical solutions show that the wave profiles
attain a constant cell volume fraction of θ:n and constant velocity gradient
Bvn{Bx. Substituting this information into (4.1) and integrating shows that

vΓ «
Sn

`

θ:n
˘

θ:n
Γptq, (4.12)
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Figure 3: Cell volume fraction distribution and cell velocity obtained from
numerical simulations of equations (4.1–4.7) for increasing time, showing
the changing behaviour of the tissue as, for fixed repulsion strength, the
aggregation parameter is increased. For low values, forward-travelling
waves occur, while for increased aggregation the waves travel backwards
and even higher values cause the break up of the tissue, due to the
instability of the non-trivial steady state. Parameter values: (a), (b)
ν “ 0.012, t “ 50000, (c), (d) ν “ 0.08, t “ 200, (e), (f) ν “ 0.3, t “ 40.
All other parameters as given in Table 1.
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(a) (b)

Figure 4: (a) Regions of pν, κq space where forward travelling, backwards
travelling and unstable waves occur. Lines for stationary waves (separating
white and grey region) and stability (separating grey and black region) are
plotted using (4.10) (with θ: “ θ˚) and (2.38). (b) Comparison of (4.13)
(black) with linear estimate (4.11) (grey) for boundary velocity. Parameter
values: κ “ 4ˆ10´3. All other parameters for both figures as given in Table
1.

and hence the tissue grows, and the boundary velocity increases,
exponentially.

Henceforth we employ the above results to help rationalise a more
general constitutive representation for the boundary velocity v

p1q
Γ ¨ n of

the growing tissue domain ΩT in the multiscale model presented in section
3.3.2. We reiterate that since our focus is tissue growth, we focus on forward
travelling waves. We computed the travelling wave velocity for a range of
parameter values (concentrating on ν, κ, β and nutrient concentration c,
with the remainder chosen to be consistent with [41], as given in Table 1).
Then, by employing MATLAB’s curve fitting tool, a suitable estimate for
the boundary velocity for this one dimensional model is given by

vΓ “
100
?
β

ˆ

c´ c˚

1´ c˚

˙

“

γ1κ
α1ν3

` γ2κ
α2ν2

` γ3κ
α3ν ` γ3κ

α4
‰

, (4.13)

where

c˚ “
kn pν ` κq

kmκ
, (4.14)

and values of parameters αi and γi are given in Table 2. Whilst our focus
here is on the qualitative nature of the fit, we note that the R2 values
obtained for the numerical fits shown in figure 5 are all above 0.983.

In Figure 4(b), we indicate the accuracy of the linear approximation
(4.11) in comparison to that provided by (4.13), highlighting that (4.11)
provides a good approximation only for slow-moving waves. Figure 5 shows
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Table 2: Parameter values for boundary velocity estimate (4.13).

Parameter Value Parameter Value

α1 ´2.6 γ1 ´2.8ˆ10´7

α2 ´1.6 γ2 5.1ˆ10´6

α3 ´0.49 γ3 ´4.1ˆ10´5

α4 0.53 γ4 1.0ˆ10´4

the correspondence between the fitted function (4.13) and the numerical
results.

In this section we have considered in detail the travelling wave speeds
arising in the fully non-linear multiphase model that forms the basis of our
macroscale description (3.32,3.33,3.37,3.38), in order to inform its closure

through constitutive specification of the boundary velocity v
p1q
Γ ¨ n. To

facilitate numerical solution of this highly complex free-boundary problem,
and to maintain consistency with the closely related study [41], we restrict
attention to 1D. There is, therefore, not a direct correspondence between
the two models; the representation (4.13) nevertheless provides a useful

approximation for v
p1q
Γ ¨ n in (3.38), thereby enabling closure of our

multiscale description.

5 Numerical experiments

We now present a series of illustrative numerical simulations of the
microscopic cell problems and the corresponding effective macroscale
description. The microscale problem (3.18–3.27) poses significant
challenges since, unlike other studies of the type, the unit cell problems
remain coupled to the macroscale dynamics. For simplicity, we therefore
consider the case for which the water phase is inviscid and the more familiar
micro-macro decoupling is achieved. First we recapitulate the relevant
equations.

5.1 Microscopic cell problem

In this particular sub-case, we set µ “ 0 (but retain the interphase viscous
drag term). In this case, an appropriate ansatz is:

v
p0q
i “ ´Ki∇Xp

p0q
w and p

p1q
i “ ´ai∇Xp

p0q
w ´ p̄i for i “ n, w, (5.1)

where pressures p
p0q
w , p̄i are microscale invariant and Ki, ai are tensors as

described in section 3.3.1, with xaiyT “ 0. In the tissue domain, ΩT , the
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(a) (b)

(c) (d)

Figure 5: Graphs showing the relationship between boundary velocity of
a forward travelling wave, found from the solution of (4.1) and (4.2), and
(a) aggregation ν, (b) repulsion κ, (c) nutrient concentration c and (d)
interphase drag β. Crosses denote values obtained from numerics whilst
solid lines are suggested fits to the data. Parameters (a) κ “ 2ˆ10´3 ´

1.2ˆ10´2, (b) ν “ 0´ 1.2ˆ10´2. All other parameters as given in Table 1.
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Stokes problem is given by:

∇x ¨K
T
n “ 0, ∇x ¨K

T
w “ 0, (5.2)

∇xa
T
w ´ I ´ βθ

˚
n pKn ´Kwq “ 0, (5.3)

∇xa
T
n ´

ˆ

1´
1

θ˚n

˙

I ´∇2
xKn ´ βθ

˚
w pKw ´Knq “ 0. (5.4)

On Γ:
KT

nn “ 0, KT
wn “ 0,

`

θ˚nK
T
n ` θ

˚
wK

T
w

˘

t “ 0. (5.5)

On BΩS :
Kn “ 0, Kw “ 0. (5.6)

Finally solutions must be periodic on the boundaries of the periodic cell.
The equations in this case have been simplified by the use of the continuity
of pressures (3.10) which becomes 0 “ p

p0q
w ` θ˚nφ

p0q
n .

In ΩI equations (3.18–3.19) do not apply we, instead, have p
p0q
I “ 0 and,

thereby, vI “ 0. We note that despite the simplifications outlined above,
the cell problem comprises a non-trivial coupled Darcy-Stokes problem.
Together with its dependence on θ˚ and the boundary conditions relevant
to the microscale set-up it is therefore similar to, but distinct from, the cell
problems encountered in other related studies [19].

5.2 Macroscale description

The macroscale description is given by (3.32,3.33,3.37,3.38) where

v̄p0q “ xθ˚nv
p0q
n ` θ˚wv

p0q
w yT (5.7)

K̄ “ xθ˚nKn ` θ
˚
wKwyT (5.8)

Additionally, we are required to specify the linearised growth and nutrient
uptake functions for (3.37) and (3.38). For generality we choose S

p0q
n and

Λp0q that support non-trivial steady states θ˚n, c˚ as follows:

Sp0qn “

#

kmθ
˚
np1´ θ

˚
nqc

p0q if cp0q ą 0,

knθ
˚
nc
p0q if cp0q ă 0,

(5.9)

Λp0q “

#

λkmθ
˚
nc
p0q if cp0q ą 0,

0 if cp0q ă 0.
(5.10)

Such a choice corresponds to a threshold (steady state) nutrient
concentration, c˚, below which cell growth is negligible whilst above it
we neglect cell death. Finally, we take v

p1q
Γ ¨n to be some constant multiple

of (4.13), with this additional parameter denoted Υ.

28



5.3 Microscale Problem

We now present representative numerical experiments demonstrating the
numerical approximation to the solution of the microscale system derived
in section 3.3.1. Our focus here is to parameterize the dependence of
macroscopic model derived in section 3.3.2 on the underlying microscopic
geometry. For computational simplicity, we consider only two-dimensional
calculations. However, we note that the methods employed here translate
naturally to three dimensions.

In the following computations we consider the microscale geometry Ω “
p0, 1q2, decomposed into disjoint subsets ΩI , ΩT and ΩS . For simplicity, we
choose a symmetric geometry that may be parameterized by five parameters
(rE, rI , rC , `1 and `2). A schematic diagram of the microscale geometry is
provided in Figure 6.

2rC

`1

`2

rI

rE

ΩI

ΩT

ΩS

Figure 6: Schematic diagram of the microscale domain, Ω, employed in the
example numerical solution of equations (5.2–5.4).

It is beyond the scope of this work to provide a full description of
the discretizations applied to the microscale PDEs; here we provide only
details of the finite element spaces and application of boundary conditions
and appropriate references. We employ standard finite element methods
for the coupled microscale system, approximating pKw,awq with mixed
Raviart-Thomas/discontinuous Galerkin elements [11, 64], and pKn,anq
with Taylor-Hood elements [72]. The periodic boundary conditions on
BΩT X BΩ are strongly imposed on the approximation of Kw and Kn.
Similarly, the boundary conditions for Kw on Γ given by (5.5), and both
Kn and Kw on BΩS given by (5.6) are strongly imposed. Finally, the
condition onKn on Γ given by (5.5) is weakly imposed, see [4, 51]. Figure 7
shows representative numerical solutions of the microscale system obtained
using the parameter values provided in Table 3. Further, we note that under
the assumptions on the geometrical parameters, the sizes of the respective
domains are given by |ΩI | “ 0.36, |ΩT | “ 0.48 and |ΩS | “ 0.16 (i.e. the
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porosity is 84%, in line with [29]).

Table 3: Parameter values employed in the microscale numerical experiment.

Parameter Value

β 1.0ˆ 104

θ˚n 0.8111
θ˚w 0.1889
rE 0.05
rI 0.2
rC 0.05
`1 0.25
`2 0.2

(a) (b)

(c) (d)

Figure 7: Numerical approximation of Kn and Kw, from the solution of the
microscale problem given by equations (5.2–5.4).

Due to the symmetries of ΩI , ΩT and ΩS , the computation of
`

Kn{w

˘

11

and
`

Kn{w

˘

12
is sufficient to specify Kn{w in ΩT . Given this observation,

we may use the numerical approximations shown in Figure 7 to calculate
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the spatially averaged permeabilities as

xKwyT “

ˆ

3.01ˆ 10-4 -5.81ˆ 10-11

-5.81ˆ 10-11 3.01ˆ 10-4

˙

(5.11)

and

xKnyT “

ˆ

-5.16ˆ 10-6 -2.90ˆ 10-11

-2.90ˆ 10-11 -5.16ˆ 10-6

˙

. (5.12)

We note that the off-diagonal entries of xKwyT and xKnyT are,
effectively, zero: under the choice of geometry shown in Figure 6, we would
expect xKwyT and xKnyT to be isotropic, to within the discretization error
in numerical scheme, and the results (5.11) and (5.12) are consistent with
this.

5.4 Macroscale Problem

We now consider numerical experiments demonstrating the corresponding
macroscopic behaviour of the system derived in section 3.3.2. We
highlight that our focus here is to highlight the macroscale model
dynamics that arise from a suitable consideration of the multiscale
growth processes together with appropriate numerical methods to facilitate
their calculation. Representative parameter values, boundary and initial
data, and geometry are considered, in conjunction with microscale data
obtained from the numerical experiments discussed in section 5.3. For
computational simplicity, we once more restrict our attention to two-
dimensional calculations, though we again note that the methods employed
here generalise naturally.

Denoting the macroscale domain and its boundary, by ΩL and BΩL,
respectively, we specify the pressure boundary condition as

pp0qw “ 0 on BΩL, (5.13)

and initial conditions, at t “ 0,

cp0q “ 1 in ΩL (5.14)

and
θp0qn “ 0.6 in ΩL, (5.15)

on the nutrient and cell volume fractions, respectively. Further, we define

our macroscale domain to be ΩL “

!

X :
a

X2
1 `X

2
2 ă 1

)

.

To compute the numerical approximation of the macroscale flow system
we employ a mixed Raviart-Thomas/discontinuous Galerkin finite element
[11, 64]. As there is no spatial component to the evolution of the cell
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volume fraction and nutrient concentration, we simply employ an explicit
Euler time-stepping scheme in the discretization of (3.38) and (3.37).

Figure 8 shows the dependence of θ
p0q
n on a range of parameters in the

macroscale model. The effect of cell-cell aggregation and repulsion on the
cell volume fraction is illustrated by Figures 8(a) and (b), showing that

increased repulsion or decreased aggregation results in lower θ
p0q
n . Figures

8(c) and (d) show the dependence of θ
p0q
n and cp0q on λ, with increasing

uptake depleting nutrient faster and hence leading to slower increase in
θ
p0q
n . Figure 8(e) depicts the effect of varying Υ on θ

p0q
n . We note that cp0q

does not vary strongly with other parameters in the model, and hence forgo
the inclusion of those plots here. In the numerical results presented in this
figure we consider only the case ρ̄ “ 1. As there is no density difference,
however, the forcing in the flow equations reduces to zero and the pressure
p
p0q
w is identically zero throughout ΩL.

In the case where there is a moderate density difference between
the viscous and inviscid fluids we obtain a non-trivial pressure p

p0q
w , the

evolution of which is shown in Figure 9. At this level of density difference,
however, (and for the other parameter values chosen) the differences in

evolution of both θ
p0q
n and cp0q are small and, therefore, we do not include

those figures here. Over the course of the simulation we are able to observe
an initial increase in the pressure inside the domain, as the cell volume
fraction decreases (cf. Figure 8(e)), followed by a decrease in pressure as
the cell volume fraction increases.

6 Discussion

We have derived an effective macroscale description for tissue growth,
from an underlying microscale model, using multiscale homogenisation.
We considered a rigid periodic lattice-like structure covered by a layer
of growing tissue. The model is therefore applicable to problems in
regenerative medicine, such as tissue growth within a tissue engineering
scaffold (our primary motivation), or biofilm growth, for example in the
subsurface or the fouling of filters. The tissue, modelled at the microscale
as a two phase mixture, consists of cells and culture medium (water), both
modelled as viscous fluids. The remaining pore space contains water only.

The method of multiscale homogenisation has been used previously for
biologically-inspired models, including fluid and nutrient or drug transport
[69] and, more recently, in studies that additionally incorporate growth
[17, 19, 54, 61]. Here, rather than a solid tissue undergoing surface [54, 61]
or volumetric growth [17], we considered a multiphase fluid tissue. This
approach was used in [19] with strong interphase drag imposed, resulting
in equal phase velocities and growth only occurring in a thin boundary
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(a) Dependence of θ
p0q
n on ν with

Υ “ 0.05, λ “ 10, κ “ 0.012.
(b) Dependence of θ

p0q
n on κ with

Υ “ 0.001, ν “ 0.009, λ “ 10.

(c) Dependence of θ
p0q
n on λ with

Υ “ 0.001, ν “ 0.009, κ “ 0.006.

(d) Dependence of cp0q on λ with
Υ “ 0.001, ν “ 0.009, κ “ 0.006.

(e) Dependence of θ
p0q
n on Υ with

κ “ 0.006, ν “ 0.009, λ “ 10.

Figure 8: Plots demonstrating the dependence of the evolution of nutrient
concentration and cell volume fraction on parameters in the macroscale model,
described by equations (3.32,3.33,3.37,3.38) and boundary conditions (5.13–5.15)
with ρ̄ “ 1.

layer. To permit active cell motion and therefore allow a more complex
description of tissue growth, we relaxed this assumption. A fully nonlinear
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(a) t “ 0 (b) t “ 500 (c) t “ 1000

(d) t “ 1500 (e) t “ 2000 (f) t “ 2500

(g) t “ 3000 (h) t “ 4000 (i) t “ 5000

Figure 9: Plots showing the leading order pressure for Υ “ 0.05, ν “ 0.009,
κ “ 0.012, ρ̄ “ 1.5, and λ “ 10, from the solution of the macroscale problem
described by equations (3.32,3.33,3.37,3.38) and boundary conditions (5.13–
5.15).

analysis of the type considered in [17] is complicated by the interphase
mass transfer that we accommodate. Moreover, since we seek a tractable
description, we consider a linearisation of the model that permits a more
straightforward multiscale analysis. Despite this, in the general case, the
resulting formulation nevertheless presents significant challenges due to the
coupling between micro- and macro-scale dynamics.

We obtain an effective description of tissue growth that comprises
a Darcy flow, dependent on the microstructure, and partial differential
equations for the volume fraction of cells within the scaffold and the
concentration of some generic nutrient, required for growth. This
macroscale formulation is parameterised by permeability tensors, with
multiscale dependence, provided by a set of modified Stokes-type cell
problems. As is a common feature with this kind of analysis, we do not have
sufficient information to obtain a closed macroscale model. A constitutive
statement for the microscale motion of the free tissue boundary is required,
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which we motivate by considering the travelling wave behaviour of a
closely related one dimensional model, obtaining a polynomial relationship
between the boundary velocity and the model parameters.

Due to the challenges associated with the coupling of the unit
cell problem to the macroscale dynamics, in our illustrative numerical
experiments we focussed on the case where the water phase is inviscid.
In particular, we consider a representative two dimensional geometry and
show how the solution to the relevant cell problems parameterises the
corresponding macroscale description. The dependence of macroscale cell
volume fraction on a range of parameters, cell aggregation, repulsion,
boundary velocity and nutrient uptake, over time is illustrated. For
moderately different phase densities the behaviour of macroscale pressure
is shown, whilst a lack of density difference results in trivial pressure.

In the example simulations we have considered a problem for which
there is no macroscale dependence in the cell problem. A significant
extension to this would be to consider numerical examples for the viscous-
viscous case, in which there is explicit macroscale dependence in the cell
problem. As the macroscopic variables are constant on the cell (as a
result of the strong separation of lengthscales), we are able to view the cell
problems as high-dimensional parametric PDEs. As such, there are possible
means of reducing computational requirements though use of techniques
such as empirical interpolation [3], or decomposition methods such as
proper orthogonal decomposition (POD) and dynamic mode decomposition
(DMD) [28, 49, 68].

Another important extension of the model would be to better
understand the backward travelling wave behaviour and hence deduce
a suitable expression for v

p1q
Γ ¨ n in this case. This would allow

nutrient deficiency, an important consideration in the growth of tissue,
to be investigated using the effective macroscale description derived.
Additionally, further investigation into the connection between the
constitutive choices employed in the multiphase model employed and the
functional form of the tissue-interstitium boundary velocity at a deeper
level would be of general interest and would greatly enhance the impact of
the current work.

There are limitations to the model. In particular we note that the
linearised equations describe the dynamics close to the steady state, which
itself is severely limited by the assumptions made, therefore, the extension
to the fully nonlinear case forms important future work.
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