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A B S T R A C T

Improved markers for the progression of Parkinson's disease (PD) are required. Previous work has proven that
iron dependent MRI scans can detect the largest Nigrosome (N1) within the substantia nigra (SN) pars compacta
and changes in PD. Histopathological studies have shown that N1 is particularly affected in early PD whereas the
other nigrosomes (N2–N5) and the surrounding iron-rich SN are affected later. In this study we aimed to de-
termine whether MRI can detect the smaller nigrosomes (N2–N5) and whether graded signal alterations can be
detected on T2*-weighted MRI at different disease stages consistent with histopathological changes.

An observational prospective study was performed within the research imaging centre at the University of
Nottingham, UK. Altogether 26 individuals with confirmed PD (median Hoehn&Yahr stage= 1, Unified PD
Rating Scale [UPDRS]=12.5) and 15 healthy controls participated. High resolution T2*weighted 7T MRI of the
brain was performed and visibility of N1-N5 within the SN was qualitatively rated. Normalised T2*weighted
signal intensities in manually segmented N1–N5 regions and iron-rich SN were calculated. We performed group
comparisons and correlations with severity based on UPDRS. Qualitative measures were a nigrosome visibility
score and a confidence score for identification. Quantitative measures were T2*weighted contrast of N1–5 and
iron-rich SN relative to white matter.

We found that visual assessment of the SN for N1–N5 revealed normal range visibility scores in 14 of 15
controls. N1 was identified with the highest confidence and visibility was in abnormal range in all 26 PD pa-
tients. The other nigrosomes were less well visible and less confidently identified. There was a larger PD induced
signal reduction in all nigrosomes than in the iron-rich SN (median signal difference N1–5 PD compared to
controls: 19.4% [IQR=24%], iron-rich SN 11% [IQR=24%, p=0.017]). The largest PD induced signal re-
duction was in N1: 37.2% [IQR=19%] which inversely correlated with UPDRS in PD (R2= 0.19).

All nigrosomes can be detected using 7T MRI, and PD induced T2*weighted signal reduction was greatest in
the nigrosomes (especially N1). The graded T2*weighted signal alterations in the nigrosomes match previously
described differential histopathological effects of PD. N1 was identified with the highest confidence and
T2*weighted signal in N1 correlated with UPDRS confirming N1 as the most promising SN marker of PD pa-
thology.

1. Introduction

The loss of dopaminergic neurons of the substantia nigra pars
compacta (SNpc) is a well-known early histological characteristic of
Parkinson Disease (PD). Using the immunohistochemical compounds
against Calbindin D28K and Tyrosine Hydroxylase the SNpc can be

segmented into a Calbindin positive iron-rich SN and five Calbindin
negative nigrosomes (N1 to N5) (Damier et al., 1999a). Nigrosomes
contain clusters of dopaminergic cells and are sequentially affected
throughout the progression of PD (Damier et al., 1999b). Nigrosomes
have lower iron content than the surrounding iron-rich SN in healthy
subjects and the largest nigrosome N1 has previously been identified as
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a small, high signal intensity region in the posterior SN on T2* weighted
(T2*w) or other iron sensitive MRI sequences at 7Tesla (Blazejewska
et al., 2013; Cosottini et al., 2014) and 3 Tesla (Cosottini et al., 2015;
Reiter et al., 2015; Schwarz et al., 2014). PD induced cell loss and as-
sociated increased iron deposition causes MRI signal reduction in N1
allowing differentiation of early stage PD from non-PD with high ac-
curacy at 7T (Blazejewska et al., 2013; Cosottini et al., 2014, 2015) and
3 T (Cosottini et al., 2014, 2015; Mahlknecht et al., 2017; Noh et al.,
2015; Reiter et al., 2015; Schwarz et al., 2014). The ‘swallow tail sign’
has been proposed as a memorable radiological sign to describe the
appearance of the healthy N1 on 3 T axial T2*w MRI, a feature that is
lost in PD (Schwarz et al., 2014). Post mortem investigations have
confirmed that all five nigrosomes can be demonstrated using ultra-
high field 9.4 T MRI (Massey et al., 2016) in both healthy and PD af-
fected brains.

The physiological and functional relevance of the different nigro-
somes is unknown, but from histological studies regional differences in
the time course of PD induced loss of dopaminergic cells across the
individual nigrosomes can be inferred. The cells of N1 are affected
early, sequentially followed by cells in N2, N4, N3 and finally N5 in the
later disease stages (Damier et al., 1999b). This is also supported by
findings from post mortem studies using alternative algorithms for SN
segmentation that are independent of nigrosomes. PD induced neuronal
loss is greatest (averaging 91%) in the region described as ‘lateral
ventral tier’ which topographically overlaps with N1 (Fearnley and
Lees, 1991) whereas average cell loss in regions termed the ventral and
dorsal tiers was smaller (71% and 56% respectively) which corresponds
to the nigral regions where N2–N5 can be found.

Pathological iron accumulation throughout the substantia nigra has
long been established in PD (Sofic et al., 1988). Although the cause of
the iron increase is poorly understood it has been hypothesised that
unbound iron contributes to free hydroxyl radicals, which may cause
lipid per-oxidation and contribute to dopaminergic cell death (Dexter
et al., 1989). Dopaminergic neurons of the SN also contain neurome-
lanin pigment, a dark protein polymer, which is implicated in the iron
homeostasis (Zecca et al., 2008). PD induced iron changes in the SN
result in signal alterations on iron sensitive T2, T2*, T2’ and inversely
correlated R2, R2* and R2’ weighted MRI sequences (Gorell et al.,
1995; Lotfipour et al., 2012). However, it is unclear if there is pre-
ferential progression of iron related signal changes in the nigrosomes or
in the adjacent iron-rich SN during the course of the disease. The pa-
thological iron deposition in the individual nigrosomes may follow a
similar sequential pattern as the dopaminergic cell loss throughout
different disease stages (Damier et al., 1999b).

This study aimed to determine whether all five nigrosomes could be
visualized in vivo and to investigate whether there was a specific dis-
ease severity dependent pattern of T2*w signal attrition on ultra-high
field (7T) high resolution T2*w MRI in the substantia nigra and ni-
grosomes which matched changes previously reported in histopatho-
logical studies. This would be an important step in refining this MRI
biomarker to detect very early pathological and progressive PD
changes.

2. Methods

2.1. Standard protocol approval and patient consent

This study and the study protocols were approved by the institu-
tional review board and the local Research Ethics Committee (National
Research Ethics Service, Derbyshire Research Ethics Committee). All
participants gave informed consent before enrolment into the study and
were offered reimbursement of travel cost for the study. Participants
did not receive further compensation. The study was conducted from
May 2011 to November 2015 and analysis was performed periodically
from October 2014 to January 2017.

2.2. Participants

Participants were prospectively recruited from local movement
disorder clinics of the Nottingham University Hospitals NHS Trust and
Royal Derby Hospital NHS Trust in England. Twenty six PD patients (8
females) with confirmed PD (average age of 64.8, median UPDRS: 12.5,
median Hoehn&Yahr score: 1, median disease duration: 1.5 years) and
15 controls (10 females, average age: 65.3) were recruited (list of
participant details see supplementary data: Appendix A). Controls were
recruited from spouses/friends of patients when attending the same
service or through advertisements within Nottingham University
Hospitals. PD patients were diagnosed clinically upon fulfilment of the
UK PD Brain Bank clinical criteria (Hughes et al., 1992) or in case of
diagnostic uncertainty (16 subjects) by additional usage of an ioflupane
iodine-123 single photon emission tomography (DaTscan™). All pa-
tients were seen by a movement disorder specialist consultant (N.B.).
The Unified Parkinson's disease Rating Scale (UPDRS) rating was per-
formed by a neurology consultant (N.B.) or clinical research nurse
(Charlotte Downes) with>10 and 2 years of clinical PD research re-
spectively. The term UPDRS used in the manuscript always refers to the
total UPDRS score (Section I – IV of the UPDRS) according to Fahn et al.
(1987). MRI scans from three participants (two PD) had to be excluded
due to poor quality relating to susceptibility/movement artefacts.
Twenty-five of 26 PD patients and all 15 healthy controls were assessed
for cognitive impairment by usage of the Addenbrooke's cognitive ex-
amination (ACE) test battery (Bak and Mioshi, 2007). PD patients had a
significantly lower ACE score than controls (average ± std., patients:
91.1 ± 6.5; controls: 96.5 ± 3.6; t-test, p=0.006). The mini mental
test score (MMSE) was borderline not significantly different (patients:
27.8 ± 2.2, controls 29 ± 1.7, t-test, p=0.08).

2.3. MRI protocol and image analysis

Magnetic resonance imaging was performed on a 7T Philips Achieva
scanner using a 32-channel receiver coil. Following previous experience
in patient scanning and to minimize motion artefact, a 2D T2*w se-
quence optimized to image the substantia nigra at 7T was used
(Blazejewska et al., 2013). High resolution T2*w MRI was obtained
using a 2D Fast-Field Echo sequence with TE/TR=16/412ms, nominal
flip angle α=40°, no sense, 2 signal averages, Field of
View=180×160×16mm3, and 0.35× 0.35× 1mm3 resolution in
9.5 min.

A neuroradiologist (STS) blinded to subject information scored the
detectability of nigrosomes 1–5 on a 6 point nigrosome visibility scale
(VS: 5=normally bright and present; 4= slightly more difficult to see
than normal/reduced size - but definitely identifiable, 3= very difficult
to see but identifiable, 2= possibly parts of the outline visible but not
definitely identifiable, 1= not identifiable as not different from sur-
rounding low signal, 0= darker than surrounding SN). Unilateral or
bilateral VS of 0–2 were considered pathological. The rater also drew
ROIs outlining the nigrosomes. If it was difficult to definitely identify
the nigrosome (VS= 1–2) ROIs were placed in the expected position of
the individual nigrosomes (Fig. 1). Confidence in how well the nigro-
somes could be identified was also scored on a 3 points confidence scale
([CS], 1=high confidence, 2=moderate confidence, 3= low con-
fidence). The T2*w signal in the nigrosome ROIs was normalised by
signal from a local white matter (WM) region, drawn at the same level
as the red nucleus. Signals from the right and left sides were averaged.
T2*w of the iron-rich SN was derived by averaging signal from a seed-
based automatic segmentation with manual refinement (Neuroi:
https://www.nottingham.ac.uk/research/groups/clinicalneurology/
neuroi.aspx) based on signal intensity of the SN with nigrosome ROIs
removed, and was normalised to local WM of the brainstem tegmentum.

All images were registered to a final near-isotropic template of
0.67×0.67×0.7mm using FLIRT from FSL, using a sinc-interpolation
to minimize blurring and to facilitate the segmentation of the
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nigrosomes in 3D. For inter- and intra- rater reliability assessment of the
nigrosome- segmentation ten random scans from the data set were
blindly scored by two raters (STS–9 years of experience and YX–4 years
of experience in PD imaging research) and twice by one of the raters
(STS).

2.4. Statistics

All results such as confidence scale, visibility and T2*w normalised
signal are presented as median and interquartile range. Relative signal
changes between healthy controls and PD were calculated in relation to
the median value observed in the healthy control group (Median-per-
cent-change) to account for outliers and skewed distributions (Geraci
et al., 2013). In some parts of the analysis the UPDRS in controls was
assumed to be 0 without assessment. Patients were arbitrarily grouped
into two severity groups according to the UPDRS (≤10 [n=10] “very
early PD” and> 10 [n=16] “early to moderate PD) or for an “over-
view colour-chart” of SN signal (Fig. 4) into three severity groups
(UPDRS≤ 10 [n= 10], 11–30 [n=9],> 30 [n=7]).

All statistics were produced using SPSS (V23) or the Curve Fitting
Toolbox™ in Matlab (The MathWorks Inc., Natick, MA). t-Tests were
used for normally distributed data, Mann-Whitney U test for non-nor-
mally distributed data. The relationship between UPDRS and the nor-
malised T2*w data was assessed using linear regression or a simple
exponential regression analysis using the Pearson correlation coeffi-
cient. The tests were corrected for multiple comparison describing
Bonferroni corrected p-values when necessary. The intraclass correla-
tion coefficient (ICC) was used to measure the degree of consistency
among ratings made by one investigator twice and two different in-
vestigators on visibility scores of the nigrosomes.

3. Results

3.1. Nigrosome visibility

All five nigrosomes could be visualized in both SNpc in 14 of 15
control subjects (VS of 5–3). The visibility of N1 was high in controls
(VS of 5–3, 14/15, both SNpc) and low in all 26 PD patients (VS of 2–0).
The visibility of N2–N5 was poorer than the visibility of N1 in controls
and there was a smaller difference between the visibility scores of N2-
N5 in controls and patients when compared to N1 (Table 1). This
translates into a sensitivity, specificity and accuracy of 100%, 93% and
98% respectively for using the visibility of N1 on high resolution T2*w
7T MRI to differentiate PD from controls, using defining VS≤ 2 as
abnormal (see methods). VS for N2–N5 were less reliable in differ-
entiating PD and controls with a lower inter- and intra-rater reprodu-
cibility (Table 1).

3.2. Nigrosome identification confidence

The position of N1 was identified with greatest confidence in con-
trols (Median CS= 1, Table 1, Mann-Whitney U vs N2–N5 controls all
P < 0.001). The confidence was lower for identifying the position of
N1 in PD and of the other nigrosomes (Table 1).

3.3. Nigrosome identification reliability

The reproducibility of NS visibility scores was assessed in a subset of
ten participants (n=20 SN, N1–5) demonstrating a good and excellent
inter- and intra-rater reproducibility of the N1 scores respectively. The
inter- and intra- rater reproducibility of the N2–N5 scores where lower
ranging from fair to good.

Fig. 1. Identification and ROI placement of N1 to N5 in controls and PD.
Sample images of the rostral, medial and caudal substantia nigra before and after ROI placement in the five nigrosomes in a healthy control (first two columns,
age= 65 years, male) and a patient with PD (column three and four, age= 60 years, male, UPDRS 10, disease duration=1 year, HY score 1). The ROIs placed in the
regions of the different nigrosomes are colour coded with N1=purple, N2= yellow, N3=blue, N4= red and N5= green.
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3.4. Nigrosome and SN T2*w signal in PD compared to controls

The average T2*w signal in all nigrosomes was higher than in the
iron-rich SN in both, controls and PD, reflecting the brighter appear-
ance observed visually. There was a significant PD induced signal re-
duction for all nigrosomes combined and also in the SN excluding ni-
grosomes (Fig. 2). The absolute and relative (in relation to controls)
signal reduction within all nigrosomes was greater than in the adjacent
substantia nigra (relative median signal reduction in all nigrosomes of
PD patients: 19.4% [IQR=24%, min=−4%, max= 59%] vs. median
signal reduction in the substantia nigra without nigrosomes of PD pa-
tients 11.1% [IQR=24%, min=−19%, max= 59%], Mann-Whitney
U test p=0.017). When interrogating the data using a univariate
analysis of variance with the T2*w signal of the substantia nigra/ni-
grosomes as dependent variable and group and NS/SN as independent
variable we found a positive interaction of group with NS/SN (F
(1,81)= 5.59, p=0.021, partial eta squared= 0.067).

The relative signal loss (in relation to controls) in the individual
nigrosomes was greatest in N1 (Median signal reduction by 37.2%
[IQR=19%, min= 14%, max= 75%]) and smallest in the iron-rich
SN (see above: median signal reduction by 11.1%, p < 0.001). There
was less relative signal loss in N2–N5 when compared to N1 (sig-
nificantly highest PD induced signal loss in N1 when comparing vs.

N2–N5 all p > 0.05, Bonferroni corrected). This is consistent with PD
induced preferential darkening of the nigrosomes, especially of N1
(Fig. 3).

3.5. Variation in T2*w signal of nigrosomes and iron-rich SN with UPDRS

When comparing the T2*w signal change in PD patients with
UPDRS > 10 to very early PD patients (UPDRS≤ 10) and the control
group, there is increasing signal loss from the early to the later PD
stages for all Nigrosomes and the iron-rich SN (Fig. 3). The prominent
signal loss in N1 in comparison to the other nigrosomes and the iron-
rich SN is also descriptively visualized in a colour chart reflecting the
T2*w signal change in the individual nigrosomes and iron-rich SN in
relation to controls (Fig. 4).

Using simple exponential regression analysis and assuming controls
to have UPDRS of 0, the highest correlation between T2*w signal and
UPDRS score was seen in N1 (R2= 0.43) with a lower correlation in
N2–5 (averaged) and the iron-rich SN (R2=0.34, R2= 0.21 respec-
tively) (Fig. 5). Using a linear regression analysis instead did show the
same trend (R2= 0.40, R2= 0.32, R2= 0.21 for N1, N2–5 and iron-
rich SN respectively). To account for the fact that we did not measure
the UPDRS in our controls and assumed a UPDRS of 0 we also per-
formed a simple exponential regression analysis including only data
from PD patients (n=26). This revealed a significant negative asso-
ciation between T2*w signal in N1 and UPDRS (F(1,25) = 5.46,
p=0.026, R2=0.19), but the correlation did not reach significance for
N2–5 or the iron-rich SN. There was no significant correlation of disease
duration with the signal in any of the nigrosomes. There was a sig-
nificant correlation of signal in N3 with the HY score (F(1,25) = 4.89,
p=0.037, R2= 0.17) but no significant correlation of HY score with
the other nigrosomes. This result did not pass multiple comparisons
correction. We did not find a significant correlation of normalised and
non-normalised T2*w signal in any of the nigrosomes or the iron-rich
SN with age in our control cohort.

4. Discussion

Using ultra-high field 7T MRI with high resolution T2*w imaging
we were able to identify all five nigrosomes in vivo in healthy controls
using a qualitative descriptor on the range of visibility and identifica-
tion confidence. We found that the nigrosomes were less visible in the
PD patients than in controls. N1 was identified with highest confidence,
and yielded the highest sensitivity and specificity for PD pathological
changes. The T2*w signal in N1 was also inversely correlated with
disease severity (UPDRS).

MRI assessment of N1 as a sensitive and specific diagnostic marker
of PD is a relatively new concept introduced by our research group four
years ago using 7T MRI and 3 T MRI high resolution T2*w MRI. The
validity of this imaging test has been confirmed by other research
groups using both 3 T (Cosottini et al., 2015; Mahlknecht et al., 2017;
Noh et al., 2015; Reiter et al., 2015; Schwarz et al., 2014) and 7T
(Blazejewska et al., 2013; Cosottini et al., 2014, 2015) iron sensitive

Table 1
Visibility of nigrosomes 1–5, confidence of NS identification and reproducibly of NS scores in Parkinson's and controls.

Nigrosome Visibility Confidence ICC

HC (IQR) PD (IQR) Mann W U HC (IQR) PD (IQR) Mann W U Inter Intra

N1 5 (0) 1 (0.75) p < 0.001 1 (0) 2 (0) p < 0.001 0.84 0.98
N2 4 (2) 3(3) p < 0.001 2 (2) 3 (1) p=0.001 0.4 0.57
N3 4 (1.25) 2 (2) p < 0.001 3 (1) 3 (0) p=0.007 0.53 0.59
N4 4 (1) 4 (1) p=0.05 1.5 (1) 2 (1) p=0.007 0.38 0.81
N5 4 (1) 3.5 (1) p=0.04 2 (0.25) 2 (1) p=0.044 0.7 0.52

The visibility and confidence score is shown as median in controls (HC) or patients (PD) of each SNpc separate for each nigrosome, together with the Interquartile
range (IQR) in brackets. The reproducibility of nigrosome visual scoring was tested using Intra-class correlation measures for the visibility scores (ICC).

Fig. 2. Nigrosomal and iron-rich SN T2*w signal in controls and PD.
Box and whiskers plot of T2*w signal (normalised to WM in brainstem teg-
mentum) in all the nigrosomes and the surrounding iron-rich SN in Controls and
PD. (***p < 0.001, **p < 0.01, Mann-Whitney U test).
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sequences. A previous in vivo study confirmed an internal 3-tier com-
plex organisation of the SN using 7T MRI (Cosottini et al., 2014). In the
study the importance of the internal architecture of the SNpc and the
presence of several high-signal intensity T2*w structures has been de-
monstrated and related to pathological changes in PD. Although the
authors speculated that the signal might relate to the presence of ni-
grosomes, the individual nigrosomes were not separately demonstrated
or assessed. A recent post mortem study comparing histopathological
PD induced nigrosome alterations with 9.4 T MRI demonstrated that all
nigrosomes can be visualized on high resolution T2w MRI in patients
post mortem with and without PD (Massey et al., 2016). However, the
ability to visualize all five nigrosomes in vivo has not been demon-
strated previously.

The results of our study suggest that ultra-high-resolution iron-
sensitive MRI can track the histopathologically known spatiotemporal
progression of dopaminergic cell loss from N1 to the other nigrosomes.
Damier described a sequential loss of dopaminergic neurons with N1
most prominently affected in the early stage of the disease followed by
N2, N4, N3, N5 and then the iron-rich SN in later disease stages (Damier
et al., 1999b). Correspondingly we found that N1 showed the highest

correlation of T2*w signal loss with UPDRS and the iron-rich SN one of
the lowest correlations in our sample. The signal loss in nigrosomes is
probably related to iron deposition or other intrinsic signal alterations
rather than due to nigrosome volume loss, as a previous study has
shown that NS volumes are not significantly changed throughout the
disease (Massey et al., 2016). Alterations to the SN iron content may be
the result of PD induced loss of neuromelanin pigment. We recently
have been able to demonstrate a correlation of UPDRS with neurome-
lanin related SN signal (Schwarz et al., 2017). Neuromelanin is in-
volved in the intra-cellular iron metabolism and PD induced alteration
of neuromelanin content and structure may lead to a pathological in-
crease in intra- or extracellular iron (Zecca et al., 2006; Zucca et al.,
1996).

There is a slight difference in degree of signal change we found in
the individual nigrosomes and the neuronal loss described by Damier
et al. (1999b). This might due to a non-linear relationship of neuronal
loss and SN iron content or due to the different ranges of diseases se-
verities of our (disease duration<8 years) and Damier's study (disease
duration< 32 years).

Multiple publications have confirmed the ability to demonstrate

Fig. 3. PD severity dependence of T2*w signal of the individual nigrosomes.
Variation of T2*w signal (normalised to adjacent WM) in the different nigrosomes and the iron-rich SN in controls (blue) patients with early PD (green, UPDRS≤ 10)
and patients with mild to moderate PD (beige, UPDRS=11–47). Significant differences between groups using Mann Whitney U test in each region of interest
indicated: ***p < 0.001, *p < 0.05. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 4. Colour chart representation of PD severity dependence of T2*w signal in the different nigrosomes.
The T2*w signal of the individual nigrosomes was normalised to the average signal measure in control subjects and relative signal loss is demonstrated on a colour
scale with red indicating the most prominent signal reduction. PD patient's were grouped into three severity groups according to the UPDRS. The largest signal
reduction in relation to the signal in controls is seen in N1, whereas the signal change in the other nigrosomes and the iron-rich SN is smaller. The figure is in
accordance of the style of the original illustration which was published by Damier et al. (1999a, 1999b) when introducing the concept of different nigrosomes with
disease severity dependent vulnerability.
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disease severity related changes by estimating SN iron content of the
whole SN or the SNpc using iron sensitive MRI sequences or quantita-
tive susceptibility mapping (Fu et al., 2016; Lotfipour et al., 2012;
Martin et al., 2008; Wallis et al., 2008). The signal alterations have
been shown to correlate with disease severity measures such as motor
severity (Bunzeck et al., 2013; Martin-Bastida et al., 2017; Wallis et al.,
2008; Zhang et al., 2010). Progressive iron related signal reduction over
the course of the disease can be seen in longitudinal studies (Ulla et al.,
2013; Wieler et al., 2015). However, there has been considerable var-
iation in ROI definition in the literature and no definite imaging fea-
tures allow an easy segmentation of the SN into pars compacta and pars
reticulata. This is a well-recognised limitation of nigral MRI as a bio-
marker of PD (Schwarz et al., 2013). In this study we were able to
demonstrate that the PD induced iron related T2*w signal loss was most
prominent in N1, suggesting that outlining N1 might improve accuracy
to track disease severity related changes particularly in the very early
stage of the disease.

4.1. Limitations

Segmenting N1-N5 can be challenging especially in PD as the phy-
siological bright nigrosomal T2*w signal is lost. However, we achieved
fair to good inter- and intra-rater reliability confirming the validity of
this method. Semi-quantitative measurement of the T2*w signal of each
nigrosome was performed comparing signal from each nuclei to ad-
jacent WM. Improved estimation of the SN iron content may be
achieved by quantitative assessment of signal using multi-echo T2*w
techniques or quantitative susceptibility mapping. Quantitative esti-
mation of the susceptibility change of the nigrosomes during disease
progression would be very valuable in the future, but technical chal-
lenges such as patient motion need to be overcome to be able to acquire
high resolution quantitative susceptibility data of these small features
within the SN in vivo.

We assessed the patients' UPDRS whilst they were fully medicated
which limits the accuracy to capture individual motor and non-motor
symptoms of PD and also limits the reliability of UPDRS as measure of
disease severity. A further limitation is that the UPDRS in controls was

assumed to be 0 without assessment. This is presumably an under-
estimation of the true UPDRS in controls (Wilson et al., 2002). How-
ever, the demonstrated UPDRS values of our PD patient cohort “on
medication” are also expectantly lower than the UPDRS “off treatment”.

5. Conclusion

All Nigrosomes 1–5 can be detected using high resolution 7T T2*w
MRI and are all less confidently identified in PD patients when com-
pared to controls. The PD induced T2*w signal reduction was greater in
the nigrosomes than in the iron-rich SN with the significantly highest
signal reduction in N1. The graded T2*w signal alterations in the ni-
grosomes match previously reported differential pathophysiological
disease effects of PD on nigrosomes and the iron-rich SN at different
stages of the disease. Comparing all nigrosomes and the iron-rich SN,
MRI signal interrogation in N1 has the most favourable biomarker
characteristics as it exhibited the largest PD induced signal change even
in the earliest stages of the disease. N1 was identified with the highest
confidence and correlated best to UPDRS as a measure of disease se-
verity.
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Fig. 5. Correlation of nigrosomal T2* signal with UPDRS.
T2*w signal in a) N1 b) averaged across N2–N5 and c) in the iron-rich SN plotted against UPDRS score for patients and controls (UPDRS=0). An exponential fit is
superimposed and the R-squared value is given as a measure of the goodness of fit (including controls).
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