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Abstract Instance reduction techniques are data preprocessing methods orig-
inally developed to enhance the nearest neighbor rule for standard classifica-
tion. They reduce the training data by selecting or generating representative
examples of a given problem. These algorithms have been designed and widely
analyzed in multi-class problems providing very competitive results. However,
this issue was rarely addressed in the context of one-class classification. In
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this specific domain a reduction of the training set may not only decrease
the classification time and classifier’s complexity, but also allows us to handle
internal noisy data and simplify the data description boundary. We propose
two methods for achieving this goal. The first one is a flexible framework that
adjusts any instance reduction method to one-class scenario by introduction
of meaningful artificial outliers. The second one is a novel modification of evo-
lutionary instance reduction technique that is based on differential evolution
and uses consistency measure for model evaluation in filter or wrapper modes.
It is a powerful native one-class solution that does not require an access to
counterexamples. Both of the proposed algorithms can be applied to any type
of one-class classifier. On the basis of extensive computational experiments, we
show that the proposed methods are highly efficient techniques to reduce the
complexity and improve the classification performance in one-class scenarios.

Keywords machine learning - one-class classification - instance reduction -
training set selection - evolutionary computing

1 Introduction

Data preprocessing is an essential step within the machine learning process
[41,21,42]. This kind of techniques aims to simplify the training data by re-
moving noisy and redundant data, so that, machine learning algorithms can
be later applied faster and more accurately. In the literature, we can find tech-
niques that focus on the attribute space and others that take into consideration
the instance space. From the perspective of attributes, the most well-known
data reduction processes are feature selection, feature weighting and feature
extraction [4,7,30,44]. Taking into consideration the instance space, we may
highlight instance reduction (InR) methods [17,51].

Instance reduction models search for a reduced set of instances that repre-
sents the original training data [14]. These techniques could be grouped into
instance selection [17] and instance generation [51] models. The former only
selects a subset of instances from the training dataset [35]. The latter may
select or generate new artificial instances. Thus, InR can be seen as a com-
binatorial and optimization problem. Most of the existing InR models have
been designed to improve the classification capabilities of the nearest neighbor
rule [10], and they are denoted as prototype reduction methods. Among the
existing InR methods, evolutionary algorithms have been stressed as the most
promising ones [53].

The issue of data preprocessing was so far rarely addressed in the context
of one-class classification (OCC) [28]. This branch of machine learning focuses
on scenarios in which we do not have access to counterexamples during the
training phase. Therefore, a classifier must be trained using objects coming
only from a single class, thus creating a data description. Here the quality of
training objects has even greater influence on the classification stage than in
binary and multi-class problems, as we need to capture such properties of the
target class that will allow us to discriminate against unknown outliers. Noisy
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or rare objects can undermine the performance of one-class classifier, leading
to overestimated class boundary [36]. At the same time, training OCC models
on large-scale and big data may be of high computational complexity, which
will hinder the learning process. This is especially vivid in cases of massive,
streaming or complex datasets [33]. Therefore, there is a need for dedicated
InR methods.

Our preliminary works on applying InR in OCC [32] showed the potential
of this approach. However, this study was limited only to the nearest neighbor
data description model and two simple instance reduction techniques. Addi-
tionally, we confronted issues with some datasets in which some methods did
not provide enough instances to perform the classification step. Therefore, we
concluded that there is a need to develop instance reduction methods that can
work with any one-class model and are natively tailored to the specific nature
of learning in the absence of counterexamples.

In this work, we propose to tackle the issue of InR for OCC from two
different perspectives and propose flexible methods that can be used by any
one-class classifier.

Our first proposal stems from the intuitive extension of existing InR meth-
ods to learning in the absence of counterexamples. We introduce an universal
framework for adapting any InR technique to OCC by artificial counterexam-
ples generation and overlapping data cleaning. This way one may transform a
given one-class problem into a binary one by creating outliers and then apply
any selected InR technique. Generating artificial counterexamples have been
used so far in the process of training one-class classifiers [26], but not during
the one-class preprocessing phase. This approach could be viewed as a data-
level solution, as we modify our training data to allow unaltered usage of any
InR algorithm from the literature.

The second proposal is a specific approach tailored to the nature of one-
class classification. We introduce a novel modification of evolutionary InR
technique that is based on differential evolution [15], and more concretely on
a memetic algorithm named SFLSDE (Scale Factor Local Search Differen-
tial FEvolution) [39]. By using a fully unsupervised consistency measure for
evaluating set of instances during each iteration we lift the requirement for
counterexamples during the reduction phase. Thus, our second proposal is a
pure one-class algorithm. We present filter and wrapper modes for our method.
This allows user to choose between reduced complexity and a more general so-
lution or a more costly search procedure in order to find a set of instances
better fitting the specific one-class learner. This approach could be viewed as
an algorithm-level solution, as we modify a specific InR approach to use a
criterion suitable for OCC, while leaving our data unaltered.

We present a family of data-level and algorithm-level InR methods for OCC
and validate their usefulness and impact on training set reduction, classifica-
tion accuracy and recognition time on the basis of thorough computational
experiments. Such a comparison allows us to gain an insight into how we can
reduce the size of the training set in the absence of counterexamples, while
maintaining or even improving the obtained predictive performance.
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The rest of the manuscript is organized as follows. Next section gives neces-
sary background on OCC and InR. Section 3 discusses the importance of InR
in OCC, while Section 4 describe in detail the proposed methodologies. Sec-
tion 5 presents the evaluation of examined algorithms in a carefully designed
experimental study, while final section concludes the paper.

2 Related Works

This section provides the necessary background for the remainder of the paper.

2.1 One-Class Classification

OCC works under the assumption that during the classifier training stage
objects originating only from a single class are available [28,38]. We name
this specific class as the target class (concept) and denote it as wp. The aim
of OCC is to derive a decision boundary enclosing all available (or relevant)
training objects from wy. Thus, we achieve a data (concept) description. As the
training procedure is carried out with the usage of only objects from a given
class, we may refer to OCC as learning in the absence of counterexamples.

In OCC scenario, during the classification phase, new objects may appear.
They may be new instances from the target class or come from previously
unknown distribution(s) that are outside of wr. Such objects must be rejected
by an one-class classifier, as they may be potentially undesirable, harmful or
dangerous. We name them as outliers and denote them by wo.

A proper OCC method must display good generalization properties in order
not to be overfitted on wp, and good discrimination abilities to achieve a high
rejection rate on wp. While this taks may seem as quite similar to binary
classification (having positive and negative classes), the primary difference lies
in the training procedure of a classifier. In the standard binary problems we
may expect objects from the other classes to predominantly come from one
direction (the distribution of the given class). In OCC the target class should
be separated from all the possible outliers, without any knowledge where does
outliers may appear. This leads to a need for the decision boundary to be
estimated in all directions in the feature space around the target class.

One may distinguish four main families of OCC classifiers present in the
relevant literature:

— Density-based methods aim at capturing a distribution of the target
class. During prediction phase, a new object is then compared with the
estimated distribution and a decision is made on the basis of its resem-
blance. This approach suffers from a significant limitation, as it requires
a high number of available objects from the target class and assumes a
flexible density model [45].

— Reconstruction-based methods are rooted in clustering and data mod-
eling. They aim at capturing the structure of the target class and during
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prediction phase check if new instances will fit into these structures. If the
similarity level is below a given threshold, the new instance is labeled as
outlier. [46].

— Boundary-based methods concentrate on estimating only the enclosing
boundary for the target class, assuming that such a boundary will be a
sufficient descriptor [3,48]. Thy try to find the optimal size of the volume
enclosing the given training objects, as one that is too small can lead to
an overtrained model, while one that is too big may lead to an extensive
acceptance of outliers into the target class.

— Ensemble-based methods [43,58] propose a more flexible data descrip-
tion by utilizing several base classifiers. By combining mutually comple-
mentary learners one may achieve a better coverage of the target class,
especially when dealing with complex distributions [11]. This requires a
proper exploitation of competence areas of each base classifier, like unique
model properties (for heterogeneous ensembles [40]), or diversified inputs
(for homogeneous ensembles [55]). Additionally, often a classifier selection
/ ensemble pruning step must be conducted to chose the most complemen-
tary and effective learners from the available pool [31].

2.2 Instance Reduction in Standard Classification

This section provides a formal definition about InR techniques and its current
trends. A formal notation of the InR problem is as follows: Let TR be a
training dataset and TS a test set, they are formed by a determined number
n and t of samples, respectively. Each sample z,, is a tuple (z},22, ..., 2%, w;),
where, z¥ is the value of the p-th feature of the i-th sample. This sample
belongs to a class w;. For the TR set the class w; is known, while it is unknown
for TS.

InR techniques aim to reduce the available training set TR = {(z1,w1), -+, (Tn,wn)}
of labeled instances to a smaller set of instances RS = {z}, x5, - ,z}}, with
r < n and each z; either drawn from 7R or artificially constructed. The set
RS is later used to train the classifier, rather than the entire set TR, to even-
tually classify the test set 7S. Thus, the instances of RS should be efficiently
computed to represent the distributions of the classes and to discern well when
they are used to classify the training objects.

Most of the existing InR models have been designed and combined with
the nearest neighbor classifier [10]. As a lazy learning algorithm [1] it clas-
sifies unseen instances to the class to which the majority of their k nearest
neighbors in the training set belongs based on a certain distance or similarity
measure [9]. Thus, the reduction of the training set allows to alleviate the low
computational efficiency and high storage requirement of this classifier. Many
works extended the application of instance reduction techniques to other clas-
sifiers [8] and different domains, such as imbalanced classification [20]. High
computational complexity of InR, especially in case of processing large-scale
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datasets, inspired the development of efficient distributed architectures for this
task [13,54].

As we stated before, InR is usually divided into those approaches that
are limited to select instances from 7R, known as instance selection (InS)
[17], and those that may generate artificial examples if needed, named as
instance generation (InG) [51]. Both strategies have been deeply studied in the
literature. Most of the recent proposals are based on evolutionary algorithms
to select [16] or generate [53,27] an appropriate RS.

3 The Role of Instance Reduction in One-Class Classification

In OCC the quality of training data has a direct influence on the estimated
data description. If we deal with well-sampled and representative set of exam-
ples, then we can assume that it will reflect the true target class distribution.
This will allow us to train a classifier displaying at the same time good general-
ization over the target concept and high discriminative power against outliers,
regardless of their nature. This is however an idealized scenario.

In practice we often deal with uncertain or contaminated training sets in
OCC [12]. This means that some objects can be influenced by feature or class
label noise, thus offering misleading information regarding the nature of the
target concept. When a one-class classifier is being trained on such objects
it will output an overestimated decision boundary that will lead to increased
acceptance of outliers during the prediction phase. Therefore, to improve the
one-class classifier performance such objects should be removed beforehand
[37].

Some of training objects may be redundant, not carrying any additional
useful information for creating an effective data description. This is especially
common in large-scale or big data, where abundance of training examples does
not directly translate onto their usefulness. Presence of such objects signifi-
cantly increase the training and testing times of one-class classifiers. A good
example of this can be seen during training one-class methods based on Sup-
port Vector Machines [48]. Here one is interested only in objects that have high
potential of becoming future support vectors [59]. Thus, reducing the number
of potential candidates will speed-up the training procedure.

One must also be aware of the possible negative results of InR in OCC.
Firstly, InR methods are unadvised for density-based one-class classifiers. This
family of algorithms requires a large sample of the target class in order to
properly estimate its density in the feature space. Hence, reducing the size of
the training set will negatively impact the quality of the estimation procedure.

From the point of view of any one-class classifier, preserving the original
structure of the target class is of uttermost importance. When the training
set is subject to a significant level of reduction, the probability of one-class
classifier overfitting to a small target concept increases. This will in turn lead
to deterioration of generalization capabilities. One cannot assume that only
borderline objects within the target concept are important, as outliers may also
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overlap with the target concept. Therefore, it is highly important to maintain
the original object structure, concentrating on removing only redundant or
noisy cases. Such a situation is depicted in Figure 1.

Finally, as in standard classification tasks, InR is a trade-off between spend-
ing additional computational effort for training set reduction versus achieving
a speed-up during the classification phase. As we assume that the classifier,
once trained, will be extensively used for continuous decision making, thus
improving the classification speed is the priority for us.

(b) Incorrectly reduced instances. (c) Correctly reduced instances.

Fig. 1: Examples of instance reduction in OCC. Figure (a) depicts an one-class
classifier trained on complete set of target class objects. Figure (b) presents
an one-class classifier trained on incorrectly reduced set of objects. Here vital
objects both within and on the borders of target concept were removed, thus
leading to overfitted data description. Figure (c) shows a one-class classifier
trained on a reduced set of instances that preserves the characteristics of the
original training set.
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Instance Reduction for OCC has so far been rarely addressed in the lit-
erature. Angiulli [2] introduced a Prototype-based Domain Description rule
that is similar to standard nearest neighbor-based one-class classifier but ex-
ploits only a selected subset of the training set. Cabral and de Oliviera [6]
proposed to analyze every limit of all the feature dimensions to find the true
border which describes the normal class. Their method simulates the novelty
class by creating artificial prototypes outside the normal description and then
uses minimal-distance classification. Hadjadji and Chibani [25] described a
special model of Auto-Associative Neural Network that can select samples for
its own training in each iteration. This approach is not a strict instance re-
duction method as it aims only at removing noisy examples. One must notice
that these literature proposals are specific only to a given classifier (neighbor-
based or neural network). Therefore, there is a lack of universal InR methods
for OCC that could be used with any type of one-class classifier.

4 Applying Instance Reduction to One-Class Classification

In this paper we propose two approaches for applying InR for OCC problems:

— A scheme for adapting existing InR solutions to one-class scenarios.
— A new method based on evolutionary InR with one-class evaluation crite-
rion.

Both of these solutions will be described in detail in the following sections.

4.1 Adapting Existing Instance Reduction Methods to One-Class
Classification

The first proposed approach is a general framework for adapting any existing
InR method to OCC problems. As most of InR methods were designed for
binary problems, we need to have access to examples from both classes in order
to use them. As in real-life OCC scenarios outliers are not available during the
training phase, one needs to find another way to have access to them. We
propose to generate artificial counterexamples and use them to transform the
input one-class problem into a binary one for the sake of InR procedure. This
is a data-level approach that modifies the supplied training set in order to
make it applicable to any InR methods, without modifying them in any way.

We will show now how to generate meaningful outliers when only objects
from the target class are available. We assume that outliers are distributed
uniformly around the target concept. For this, we can use a d-dimensional
Gaussian distribution, following these steps [47]:

1. Generate a set of new outlier objects OS from a specified Gaussian distri-
bution with zero mean and unit variance (making outliers appear all over
the decision space similar to white noise):

OS ~ N(0,1). (1)
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2. For each artificial object calculate its squared Euclidean distance from the
target concept origin. Please note that this squared distance 72 is dis-
tributed as x? possessing d degrees of freedom. This allows to determine
the overlap ratio between outliers and target concept.

r? = ||, (2)

3. Apply the cumulative distribution of x? (denoted here as x2) in order to
transform the 2 distribution into an uniform distribution p? € [0; 1], which
would lead to determining the new outliers distribution:

p* = x50 = x5l (3)

4. Rescale the obtained distribution p? using ' = (pz)% that ' is distributed
as v’ ~ r?, where r € [0;1]:

5 2

= (p*)7 = (x3lz[*) . (4)

5. Apply rescaling to all of artificially generated objects using obtained factor
r’ in order to adapt them to the given decision space:

!
’ r

T ™ )

These steps allow us to generate a set of artificial outliers uniformly in a d-
dimensional hypersphere. They will be located in all directions surrounding the
target class. This way we are able to transform the original one-class problem
into a binary setting and apply any InR algorithm on it.

However, this outlier generation method has a significant drawback. There
is a high probability that generated artificial outliers will highly overlap with
the real target class objects. This can lead to improper selection of proto-
types. We are interested in retaining examples that will maintain the best
data description. Having outliers within the target class during InR procedure
will lead to improper estimation of such potential boundary-building objects.
Thus we extend this artificial object generation procedure by a data cleaning
step.

For this task we propose to apply Tomek links method [50]. Tomek link
is a pair of closest neighbors from opposite classes. Let us assume that we
have two objects (z;, x;), where z; € wr and z; € wo and d(z;,x;) is the
distance between these two examples. Such a pair is called a Tomek link if
there are no examples xj in the dataset that satisfy d(x;,xr) < d(z;,z;)
or d(zj,z) < d(z;,x;). Therefore if two instances form a Tomek link then
one of them is a noisy / overlapping sample or both are located on class
borders. One may use this as data cleaning method. Original attempts at this
task removed objects from both classes. In the proposed approach we clean
only artificial outliers, without affecting the original target class. This leads to
removing generated overlapping outliers and obtaining a much better problem
representation for InR method.
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This data generation approach allows us to run InR methods on a binary
set, consisting of target class examples and artificial outliers. As an output,
we receive a reduced set of instances. We discard the artificial outliers and use
only the ones selected for the target class.

We train a one-class classifier with the usage of reduced set of target class
instances.

4.2 Evolutionary Filter and Wrapper Methods for One-Class Instance
Reduction

The second proposed approach is a modification of existing InR algorithm
that allows to tailor it for OCC scenarios. Here we aim at creating a method
that will require only access to target class examples in order to evaluate their
usefulness for the classification step. This lifts the requirement for generating
artificial counterexamples.

Such an approach may be justified by the fact that introduced artificial
objects may not reflect the true nature of outliers. As we do not have any in-
formation about the real characteristic of negative objects during the training
step we are forced to make certain assumptions. This uncertainty regarding the
generated counterexamples highly affects both the pre-processing and training
phases.

This is an algorithm-level approach that modifies the specific used InR
method, without any alterations on the set of training instances. Let us now
present the details of selected InR method (Subsection 4.2.1) and how to
change it to a one-class method (Subsection 4.2.2).

4.2.1 Scale Factor Local Search in Differential Evolution for Instance
reduction

The Scale Factor Local Search in Differential Evolution (SFLSDE) was origi-
nally proposed for continuous optimization problems in [39], and then adapted
to perform Instance Reduction in [53], showing to be one of the top performing
InG methods in the experimental study. The method uses differential evolution
[15], which follows a standard evolutionary framework, evolving a population
of candidate solutions over a number of generations.

Specifically, it starts off with a population of NP candidate solutions, so-
called individuals. Each of which encodes a reduced set of instances randomly
taken from the training set. The size of each individual is typically given by
an initial reduction rate parameter that determines the percentage of initial
elements selected .

Later, mutation and crossover operators will create new individuals that
contain a new positioning for the instances. For each individual ¢;, mutation is
achieved by randomly selecting two other individuals ¢; and ¢ from the cur-
rent population. A new individual is created by increasing ¢; by the difference
of ¢; and ¢y, weighted by a scale factor F' > 0. A number of different mutation
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operators exist, but we have chosen to use the DE/RandToBest/1 strategy,
which makes use of the current fittest cpes; individual in the population. It
increases ¢; by both the difference of the two randomly selected individuals as
well as the difference of ¢; and cpest, weighting both terms by F. After mu-
tation, crossover is performed, randomly modifying the mutated individual in
certain positions. The crossover is guided by another user-specified parameter
Cr.

When new individuals have been generated, a selection operator decides
which of those and the previous individuals should survive in the population
of the next generation. For this, the one nearest neighbor algorithm is applied
classifying the instances of the training set using the instances encoded in each
individual as reference. Thus, we obtain a measure of performance of every
reduced set that allow us to take the best individuals to the next generation.

The key distinctive point of the the SFLSDE algorithm is that it uses adap-
tive values for the F' and Cr values. Specifically, each individual ¢; has their
own custom values for F; and Cr;, which are encoded within the individual
and thus updated in each iteration. The idea of using custom values for F' and
C'r comes from [5], and the reasoning behind this is that the better the values
of the control parameters lead to better individuals, they are therefore more
likely to survive and propagate those parameter values F; and Cr; to the next
generations. When updating the scale factors F;, two local searches can be
used: the golden section search and hill-climbing. We refer to [39] and [53] for
further details.

As stated above, SFLSDE was canonically used with measures such as
accuracy to evaluate the selected pool of instances. However, as in OCC we do
not have access to counterexamples during pre-processing / training stages,
we cannot use such measures.

4.2.2 Adapting SFLSDE to OCC

To adapt SFLSDE algorithm to OCC nature we propose to augment it with
optimization criterion using the consistency metric. It is a fully unsupervised
measure, requiring only access to target class objects. It indicates how consis-
tent a given classifier is in rejecting a pre-set fraction ¢ of the target concept
instances.

Let us assume that we have a one-class classifier ¥ trained to reject the
fraction ¢ of objects and a validation set VS. Mentioned VS can be either
supplied externally or separated from 7R with constraint that TR N VS = (.

As in OCC we have an access only to objects from the target concept
during the training phase, the error of such classifier may be expressed as false
negatives (FN) in a form of:

VS|
FN =Y (1-I(Fu(x;) >0)). (6)
i=1
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where F,..(z;) is the classifier’s support for object z; belonging to the target
class, I(-) is the indicator function and 6 is the used classification threshold
(estimated or inputted by the user).

We can model this as |VS| binominal experiments. This will allow us to
compute the expected number of rejected objects and the variance:

E[FN] = [[VS]t], (7)

VIFN] = |VS|t(1 — t). 8)

When the number of rejected objects from the target class exceeds some
bounds around this average (usually 20 is used [49]), the examined classifier
¥ can be deemed as inconsistent. We may say that ¥ is inconsistent at level ¢
when:

% >t 4+ 2/[VSH1 —8). ()

One may compute the consistency for an examined one-class classifier by com-
paring the rejected fraction ¢ with an estimate of the error on the target class
FN:

FN

B (10)

To use this approach, we need to have a number of models to be selected.
This is provided by consequent iterations of SFLSDE that supplies us with
varying set of target class instances. We order them by their complexity. The
model for which the boundary could be estimated with highest reliability, will
be selected. Consistency measure prefers the classifier with highest complexity
(in order to offer the best possible data description) that can still be considered
as consistent.

Therefore, SFLSDE objective is to select such set of instances that max-
imize the value of one-class classifier’s consistency, while satisfying Eq. (9).
This allows us to conduct the instance reduction using only objects from the
target class.

We propose two versions of our OC-SFLSDE:

— Filter. In this version we use an one-class Nearest Neighbor (OCNN) ap-
proach for evaluating the consistency of a reduced set of instances in each
SFLSDE iteration. The benefits of such an approach is the flexibility of
the method (it allows us to select a set of instances once that can be used
by any OCC classifier) and reduced computational complexity within each
step (OCNN is a lazy classifier, thus no training is required). The main
weakness is the fact that filter method will not take into consideration
some specific mechanism embedded in training procedures of certain one-
class classifiers.
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— Wrapper. In this version we use an user-specified one-class classifier for
evaluating the consistency of reduced set of instances in each SFLSDE it-
eration. The benefit of the method is the selection of instance set reflecting
the data description properties of selected classifier. Drawbacks include
increased computational complexity (need to re-train model for each itera-
tion, can be time-consuming for more complex classifiers) and requirement
for a priori knowledge of which one-class classifier model will be used for
the problem at hand (if an user wants to test more than a single classifier,
then OC-SFLSDE must be run for each model independently).

5 Experimental Study

The aim of this experimental study was to compare the proposed InR algo-
rithms for the OCC task with the respect to their reduction rates, influence
on classification accuracy and classification times.

5.1 Datasets

To assess the proposed methods we have selected a total of 21 datasets from the
UCIT Repository. Most of them are binary ones, where the majority class was
used as the target concept and the minority class as outliers. For the training
purposes we extract only target class object from the given training cross-
validation fold, while for testing both target concept examples and outliers
from respective test cross-validation fold are used. In case of Contraceptive
Method Choice and KDD Cup 1999 datasets, we merged all but one classes as
target concept and used the remaining one (with smallest number of samples)
as outliers. Details of the chosen datasets are given in Table 1.

We must comment that using binary datasets to transform them into one-
class problems is a popular strategy used so far. This way we can simulate a
single target concept and a possible outlier distributions with varying overlap
ratios, noise or difficult separation boundaries. However, when using binary
datasets the outlier distribution will originate from a single class and thus will
not cover all areas of the decision space. Such an observed limitation should
be a future starting point for developing new one-class benchmarks. However,
this is beyond the scope of this paper and we will use here standard approach
for evaluating one-class learners.

5.2 Methods

In our experiments, we have selected a number of popular InR methods [22]:
2 InS models, 2 InG and one hybrid InR model:

— The ENN algorithm [56] is an edition-based InS method in which an in-
stance is removed if it does not agree with the majority of its k nearest
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Table 1: Details of used datasets. Number of objects in the target class is given
in parentheses.

Lp. Name Objects Features  Classes
1. Climate Model,Simulation Crashes 540 (494) 18 2
2. Contraceptive Method Choice 1473 (629) 9 3
3. Credit Approval 690 (307) 15 2
4. Fertility 100 (88) 10 2
5. Habermans Survival 306 (225) 3 2
6. Hepatitis 155 (123) 19 2
7. Hill-Valley 606 (305) 101 2
8. Indian Liver Patient Dataset 583 (416) 10 2
9. Mammographic Mass 961 (516) 9 2
10.  Musk (Version 2) 6598 (2521) 168 2
11.  Ozone Level Detection (One Hour) 2536 (2410) 73 2
12.  Parkinsons 197 (147) 23 2
13.  Pima Indians Diabetes 768 (500) 8 2
14. Sonar, Mines vs. Rocks 208 (111) 60 2
15.  Statlog (Heart) 270 (150) 13 2
16.  Wisconsin Breast Cancer (Original) 699 (458) 10 2
17.  MiniBooNE 130 065 (93 565) 40 2
18. Twitter Buzz in Social Media 140 707 (112 932) 7 2
19.  Skin Segmentation 245 057 (50 859) 3 2
20.  Census-Income 299 285 (227 457) 40 2
21.  KDD Cup 1999 (DoS vs. rest) 494 020 (391 458) 41 2

neighbors. As such, the reduction power of this method is limited to remove
potential noisy examples.

The DROP3 [57] procedure combines an edition stage with a decremental
approach where the algorithm checks all the instances in order to find those
instances which should be deleted. The reduction rate achieved by this InS
technique is much higher than the ENN method, eliminating both noisy
and unrepresentative examples.

The ICPL [34] technique is an InG technique that integrates instances by
identifying borders and merging those instances that are not located in
these borders.

The IPADE [52] algorithm is an iterative InG model that searches for
the smallest reduced set of instances that represent the training data by
performing an evolutionary optimization process.

The SSMA-SFLSDE [53] is a hybrid InS and InG model, in which first
the InS method SSMA, determines the best quantity of instances per class
for a reduced set, and then the evolutionary method SFLSDE adjusts the
positioning of such instances.

We have selected the three following boundary-based one-class classifiers

to be used in our experiments:

One-Class Nearest Neighbor (OCNN) uses only distance to the first nearest
neighbor. It works by comparing the distance from the new object to its
nearest neighbor from the training set (which consist of labeled target class
examples) with the distance from this found nearest neighbor to its own
nearest neighbor. This means, that new object is accepted, if it satisfies
the local density of objects in the target class.

Minimum Spanning Tree Data Description (MST) [29] is a distance-based
one-class classifier that uses minimum spanning tree structure constructed
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on the target class. New instances are classified on the basis of their distance
(or similarity) to the closest edge of this tree.

— Support Vector Data Description (SVDD) [48] is a technique that gives a
closed boundary around the data in a form of a hypersphere. It is charac-
terized by a center a and radius R. In its basic form it assumes that all
objects from the training set must be enclosed by this hypersphere. Slack
variables are used to remove inner outliers from the training set, while ker-
nel function allows for searching a better representation in artificial spaces.

5.3 Set-up
Detailed parameters of used methods are given in Table 2. They are selected

based on the set-up returning the best averaged performance on examined
datasets.

Table 2: Details of algorithm parameters used in the experimental study.

Algorithm Parameters
OCNN distance = Euclidean metric
frac. rejected = 0.05
MST max. path = 20
frac. rejected = 0.05
SVDD [29] [48] kernel type = RBF
C =50
v = 0.0045

parameter optimization = quadratic programming
frac. rejected = 0.05

ENN [56] Number of neighbors = 3, Euclidean distance
DROP3 [57] Number of neighbors = 3, Euclidean distance
ICPL [34] Filtering method = RT2

IPADE [52] Iterations of basic DE = 500, iterSFGSS = 8,

iterSFHC = 20, F1 = 0.1, Fu = 0.9
SSMA-SFLSDE [53] PopulationSFLSDE= 50, IterationsSFLSDE = 500

iterSFGSS =8, iterSFHC=20, F1=0.1, Fu=0.9
OC-SFLSDE Population size = 50

Initial Reduction Rate: 0.95

Iterations = 500

iterSFGSS = 8

iterSFHC = 20

Fl =0.1

Fu=0.9

Mutation operator: RandToBest/1/Bin

In order to carry out a thorough comparison, one needs to establish an
experimental set-up consisting of evaluation metrics, training / testing modes
and statistical analysis [19]. We use the following tools on our framework:

— For evaluating classifiers we use the Balanced Accuracy metric [23] that is
skew-insensitive:
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1 TP TN
BAC (TP,FP,TN,FN) = — .
(TP.FP,TN.EN) 2(TP+FN+TN+FP>
— Additionally, we check the reduction rate metric, which measures the re-
duction of storage requirements achieved by a InR algorithm:

ReductionRate = 1 — size(RS)/size(TS).

— We use a 10 fold cross validation for training and testing.

For assessing the ranks of classifiers over all examined benchmarks, we use

a Friedman ranking test. It checks if the assigned ranks are significantly

different from assigning to each classifier an average rank.

We use the Finner post-hoc test for an 1 x n comparison. It adjusts the

value of « in a step-down manner. We select it due to its high power [18].

Additionally, we examine obtained p-values in order to check how different

given two algorithms are.

— We use the Shaffer post-hoc test to find out which of the tested classi-
fiers are distinctive among an n x m comparison. It is a modification of
popular Holm’s procedure that provides increase in power at the cost of
greater complexity of the testing procedure. We have selected it due to its
effectiveness in multiple comparison tasks [19]. Additionally, we examine
obtained p-values in order to check how different given two algorithms are.

— We fix the significance level o = 0.05 for all comparisons.

5.4 General Comments on Obtained Results

Firstly let us compare the two proposed approaches: based on adapting ex-
isting methods to OCC and using a consistency-based InR. Regardless of the
classifier used, both BAC and statistical tests results clearly point out to supe-
riority of the OC-SFLSDE solution. This can be explained by several factors.
The adaptation scheme transforms an original one-class problem into a bi-
nary one, assuming a uniform distribution of outliers and generating artificial
counterexamples. Despite using data cleaning procedures this approach may
potentially lead to ill-defined decision boundaries that may mislead the in-
stance reduction algorithm. One must remember that examined methods use
nearest neighbor approach for evaluating the reduced set of instances. There
however may not be a direct translation between decision boundaries esti-
mated by binary nearest neighbor and actual shape of data description over
the target class. Finally, by transforming a one-class task into a binary prob-
lem we overlook some difficulties embedded in the nature of OCC, such as
overestimated decision boundaries, empty areas within the data description
that lead to classifier’s incompetence, or internal noisy samples. These factors
may result in a drop of the final accuracy observed for all types of one-class
classifiers. The reduction rates displayed by each examined InR algorithm are
given in Table 3.
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Table 3: Reduction rates [%)] obtained by different examined instance reduction
approaches.

Dataset ENN DROP3 ICPL IPADE SSMASFLSDE OCC-filter OCC- 0CC- occ
wrapper-NN  wrapper-MST  -wrapper-SVDD
Climate 37.04 94.07 88.89 98.89 95.19 81.67 81.67 80.58 80.89
Contraceptive 38.86 74.18 89.01 99.46 97.01 80.25 80.25 78.94 47.28
Credit 20.00 88.99 90.33 99.13 99.42 84.89 84.89 83.92 81.28
Fertility 34.00 94.00 90.00 96.00 94.00 88.73 88.73 88.12 86.73
Habermans 41.18 86.93 87.59 98.04 98.69 85.28 85.28 82.71 83.72
Hepatitis 71.43 71.43 79.23 93.51 92.21 73.08 73.08 70.86 71.24
Hill-Valley 53.80 68.98 71.62 99.34 96.70 75.29 75.29 74.09 72.06
Indian 39.18 78.35 81.45 98.97 98.63 75.82 75.82 74.51 72.88
Mammographic 25.21 82.92 90.00 99.38 98.54 81.03 81.03 78.54 77.90
Musk 74.24 97.73 98.31 99.79 99.36 92.61 92.61 91.30 91.82
Ozone 20.27 97.87 97.85 99.68 95.11 92.30 92.30 88.58 85.60
Parkinsons 36.73 80.61 80.62 94.90 94.90 78.27 78.27 76.37 75.22
Pima 30.99 79.43 80.99 98.70 96.61 73.68 73.68 70.49 68.79
Sonar 31.73 73.08 75.97 97.12 91.35 69.42 69.42 68.76 68.03
Statlog 31.11 89.63 85.93 96.30 96.30 73.12 73.12 72.26 73.12
Wisconsin 15.80 97.70 97.13 99.14 99.14 54.83 54.83 52.64 53.14
MiniBooNE 19.37 93.54 94.19 97.54 97.36 85.49 85.49 82.71 81.09
Twitter Buzz in Social Media ~ 27.43 95.28 97.03 99.01 99.01 87.92 87.92 83.99 80.35
Skin Segmentation 31.54 91.59 91.59 94.12 97.35 81.46 81.46 81.20 80.93
Census-Income 41.54 97.42 95.89 99.11 98.89 79.82 79.82 73.10 71.69
KDD Cup 1999 63.20 89.19 90.86 93.02 93.02 83.19 83.19 82.28 81.93

To cope with these issues OC-SFLSDE (in both wrapper and filter ver-
sions) uses a consistency measure which does not require counterexamples. It
allows to evaluate the complexity of classifier and how well it captures the tar-
get concept without actually being overfitted on training data. Experimental
results show that this solution is closer to the nature of one-class problems
and offers excellent performance both in filter and wrapper modes. Interest-
ingly OC-SFLSDE is characterized by a slightly lower reduction rates than
other methods. This shows that OCC problems cannot be too strongly re-
duced and a well-represented training set is crucial for proper data description.
Additionally, OC-SFLSDE in some cases allows to improve the classification
accuracy with respect to the original training set. This shows that by using
the proposed hybrid consistency-based solution we are able to filter uncertain
or noisy objects that may harm the one-class classifier being trained. While
some of the binary methods adopted to OCC offer higher reduction rates and
thus increased classification speed-up, OC-SFLSDE returns the best trade-off
in terms of classification efficacy and time.

5.5 Results for One-Class Nearest Neighbor

The results obtained by examined InR algorithms with OCNN are presented
in Table 4, while the outcomes of post-hoc statistical test are presented in
Table 5.

OCNN was the only classifier that displayed good performance with meth-
ods other than the proposed filter approach. For some of datasets ENN and
SSMASFLSDE approaches augmented with artificial data were able to deliver
satisfactory accuracy as well. This can be explained by the minimal-distance
classification approach, similar in both binary and one-class scenarios. Hence



18 Bartosz Krawczyk et al.

Table 4: BAC [%)] results for different examined instance reduction methods
with One-Class Nearest Neighbor classifier. Please note that for this base clas-
sifier both filter and wrapper methods are identical, therefore we present re-
sults for only one of them.

Dataset No reduction ENN DROP3 ICPL IPADE SSMASFLSDE OCC-filter
Climate 75.54 75.24 74.68 72.98 70.74 75.24 78.23
Contraceptive 89.76 89.03 88.63 87.11 85.93 89.12 90.76
Credit 79.63 79.38 78.75 76.90 75.69 76.84 79.38
Fertility 86.89 86.03 85.64 86.03 85.9 86.04 87.89
Haberman 70.98 68.78 68.54 68.37 62.90 68.90 70.98
Hepatitis 67.43 67.22 67.01 64.37 61.35 66.31 67.00
Hill-Valley 86.94 86.81 86.67 86.12 85.15 86.52 86.94
Indian 93.41 93.41 93.12 92.53 88.79 92.80 93.41
Mammographic 87.37 86.21 86.92 85.11 84.06 86.80 87.04
Musk (V2) 71.38 70.79 70.54 69.79 68.94 70.50 71.27
Ozone 78.49 76.75 77.32 75.93 75.93 77.83 77.96
Parkinsons 67.39 67.04 66.78 67.02 67.12 67.14 67.39
Pima 90.52 89.78 88.43 88.75 86.42 89.78 89.78
Sonar 82.66 81.66 81.49 78.34 77.83 81.66 82.30
Statlog 68.06 66.18 66.82 64.32 62.11 67.06 70.02
Wisconsin 91.36 90.89 90.15 89.74 88.12 90.89 93.03
MiniBooNE 72.89 65.35 63.72 60.04 67.83 68.22 76.44
Twitter Buzz in Social Media 87.43 82.21 80.10 76.39 82.78 83.19 88.72
Skin Segmentation 92.91 84.90 85.18 81.99 84.78 86.11 93.27
Census-Income 71.90 59.85 60.14 57.72 63.21 63.99 70.01
KDD Cup 1999 72.88 65.31 63.20 58.84 64.25 66.96 74.06
Avg. rank 2.69 3.69 4.81 5.72 2.84 1.25

Table 5: Finner test for comparison between the proposed filter instance reduc-
tion and reference methods for One-Class Nearest Neighbor classifier. Symbol

=’ stands for classifiers without significant differences, >’ for situation in
which OCC'_f method is superior and <’ for vice versa.

hypothesis p-value
OCC-filter vs no reduction =0.197458
OCC-filter vs ENN >0.026588
OCC-filter vs DROP3 >0.000174
OCC-filter vs ICPL >0.000000
OCC-filter vs IPADE >0.000000

OCC-filter vs SSMASFLSDE  >0.013132

the evaluation of standard instance selection methods based on two-class near-
est neighbor was able to locale useful examples for being preserved in the re-
duced training set. However, our filter-based solution delivered the best perfor-
mance in 20 datasets. In this scenario filter and wrapper modes were equivalent
due to the base classifier used. Statistical testing confirms the superiority of
this approach to reference ones. Additionally, it shows that there are no sta-
tistically significant differences between this instance reduction method and
classifier trained on the full dataset.
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5.6 Results for Minimum Spanning Tree Data Description

The results obtained by examined InR algorithms with MST are presented
in Table 6, while the outcomes of post-hoc statistical test are presented in
Table 7.

Table 6: BAC [%] results for different examined instance reduction methods
with Minimum Spanning Tree Data Description classifier.

Dataset No reduction ENN DROP3 ICPL IPADE SSMASFLSDE OCC-filter OCC-
wrapper-MST

Climate 78.36 77.18 60.12 65.53 64.89 68.54 77.45 79.45
Contraceptive 87.75 86.56 76.32 79.32 80.17 80.22 86.89 87.75
Credit 82.45 81.36 62.95 69.75 68.65 75.28 81.64 83.53
Fertility 87.46 86.89 80.41 82.41 82.24 77.49 87.46 87.46
Haberman 70.13 68.53 53.58 57.74 58.05 61.93 69.15 70.02
Hepatitis 71.38 70.36 59.37 66.12 64.74 64.50 69.36 71.16
Hill-Valley 84.23 83.45 76.96 77.43 78.32 77.94 84.23 85.41
Indian 94.14 93.72 78.24 78.94 79.27 84.39 94.51 94.51
Mammographic 85.89 85.02 70.53 77.23 75.51 81.05 85.11 85.11
Musk (V2) 73.76 72.22 55.85 58.34 57.84 62.63 72.88 73.41
Ozone 77.97 77.13 69.93 71.52 72.22 76.86 78.48 80.39
Parkinsons 71.84 71.08 58.47 59.32 60.78 60.94 72.46 72.46
Pima 92.65 91.94 71.04 77.34 75.88 81.56 92.07 92.43
Sonar 81.87 80.83 63.68 67.80 69.97 73.74 81.87 81.87
Statlog 67.27 64.89 50.02 54.53 51.68 61.89 68.37 70.16
Wisconsin 93.53 93.21 84.36 87.27 87.09 90.11 93.21 93.53
MiniBooNE 74.59 62.18 60.94 58.59 63.93 65.42 74.81 77.58
Twitter Buzz in Social Media 88.92 80.05 77.92 74.11 80.22 80.44 85.72 90.01
Skin Segmentation 93.44 81.15 82.03 77.22 81.46 82.02 89.17 94.58
Census-Income 72.55 58.64 59.23 55.97 61.89 62.36 70.99 70.99
KDD Cup 1999 72.53 61.18 59.23 54.38 62.05 64.91 72.55 74.03

Avg. rank 291 6.94 5.31 5.37 4.37 1.94 1.16

Table 7: Shaffer test for comparison between the proposed filter and wrapper
instance reduction methods and reference approaches for Minimum Spanning
Tree classifier. Symbol '=" stands for classifiers without significant differences,
>’ for situation in which the first analyzed method is superior and '<’ for
vice versa.

hypothesis p-value hypothesis p-value
OCC-filter vs no reduction = 0.614851 OCC-wrapper vs no reduction > 0.041704
OCC-filter vs ENN = 0.257327 OCC-wrapper vs ENN > 0.019860
OCC-filter vs DROP3 > 0.000522 OCC-wrapper vs DROP3 > 0.000000
OCC-filter vs ICPL > 0.000000 OCC-wrapper vs ICPL > 0.000000
OCC-filter vs IPADE > 0.000000 OCC-wrapper vs IPADE > 0.000000

OCC-filter vs SSMASFLSDE > 0.00709 OCC-wrapper vs SSMASFLSDE > 0.000016
OCC-filter vs OCC-wrapper < 0.044270

MST works significantly better with OC-SFLSDE than with remaining
methods. Here we are able to analyze two operating modes: as a filter and as a
wrapper. In the first case we can see that obtained results are statistically not
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worse than when using full training set. This shows that despite the lack of
knowledge which classifier will be used the filter mode can still deliver mean-
ingfully selected training samples. However, Shaffer test pointed that there are
no significant differences between this filter method and ENN approach using
artificial counterexamples. For the wrapper mode situation changes in favor of
the hybrid evolutionary approach. Here we are able not only to significantly
outperform all other methods (including filter version), but we also get im-
proved results in comparison to using the entire training set. Using wrapper
solution allows us to evaluate the usefulness of training samples for the min-
imum spanning tree construction and eliminate redundant, similar or noisy
samples which contributes to decreased complexity and improved accuracy.
Additional cost connected to training MST at each iteration pays off in the
improved final model. When comparing classification times we can see that
both filter and wrapper solutions achieve similar reduction rates and response
times of the trained classifier.

5.7 Results for Support Vector Data Description

The results obtained by examined InR algorithms with SVDD are presented
in Table 8, while the outcomes of post-hoc statistical test are presented in
Table 9.

Table 8: BAC [%)] results for different examined instance reduction methods
with Support Vector Data Description classifier. — stands for situation in which
the number of instances after reduction was too small to efficiently train SVDD
classifier.

Dataset No reduction ~ENN  DROP3 ICPL IPADE SSMASFLSDE OCC-filter OCC-
wrapper-SVDD

Climate 81.73 81.73 72.84 82.38 84.51
Contraceptive 85.38 84.79 79.24 74.62 65.27 84.90 85.38
Credit 83.90 82.58 78.46 63.56 - - 83.72 84.43
Fertility 82.61 79.71 74.07 - - - 81.12 81.94
Haberman 72.98 71.66 69.31 59.36 - - 71.35 72.56
Hepatitis 70.14 67.48 62.98 63.51 - - 69.54 70.00
Hill-Valley 77.36 75.38 70.93 71.68 - - 76.30 77.04
Indian 93.62 92.54 86.08 82.90 - - 92.98 93.18
Mammographic 87.92 87.44 83.11 59.98 - - 87.44 89.03
Musk (V2) 71.21 70.03 64.82 67.82 48.29 58.58 70.52 71.06
Ozone 75.28 74.00 69.05 54.29 44.89 54.48 76.38 77.81
Parkinsons 74.02 71.33 66.43 62.74 - - 72.35 73.60
Pima 93.26 91.27 80.27 82.73 - 51.57 92.18 93.26
Sonar 79.53 78.18 67.98 71.04 - - 79.53 81.13
Statlog 69.32 69.90 - 56.68 - - 69.90 69.90
‘Wisconsin 94.65 94.65 - - - - 94.65 94.65
MiniBooNE 74.23 55.77 54.25 44.46 54.38 57.02 70.05 76.93
Twitter Buzz in Social Media 89.41 69.87 68.42 59.93 62.17 63.03 83.98 91.64
Skin Segmentation 93.72 68.91 70.01 54.81 64.27 67.72 90.02 95.03
Census-Income 76.48 42.20 41.81 39.97 38.55 39.06 69.94 79.11
KDD Cup 1999 73.87 53.99 51.95 46.63 48.63 51.89 72.16 75.86

Avg. rank 2.78 4.66 4.72 6.47 6.16 2.09 1.12
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Table 9: Shaffer test for comparison between the proposed filter and wrapper
instance reduction methods and reference approaches for Support Vector Data
Description classifier. Symbol =’ stands for classifiers without significant dif-
ferences, '>’ for situation in which the first analyzed method is superior and
"< for vice versa.

hypothesis p-value hypothesis p-value
OCC-filter vs no reduction = 0.162701  OCC-wrapper vs no reduction > 0.042915
OCC-filter vs ENN = 0.174658 OCC-wrapper vs ENN > 0.027993
OCC-filter vs DROP3 > 0.000000 OCC-wrapper vs DROP3 > 0.000000
OCC-filter vs ICPL > 0.000003 OCC-wrapper vs ICPL > 0.000001
OCC-filter vs IPADE > 0.000003 OCC-wrapper vs IPADE > 0.000000

OCC-filter vs SSMASFLSDE > 0.000989 OCC-wrapper vs SSMASFLSDE > 0.000000
OCC-filter vs OCC-wrapper < 0.028299

SVDD is characterized by the most atypical behavior from the three ex-
amined methods. Here, for some of datasets, the standard InR techniques
returned too small training set to build a one-class support vector classifier.
This is because they use the nearest neighbor approach which has no lower
bound on the size of the training set, while methods based on support vectors
require a certain amount of samples for processing. SVDD cannot estimate an
enclosing boundary with too few samples, as in cases when some InR methods
return less than five training samples. Our proposed method once again re-
turns the best performance, especially in the wrapper mode. This allows us to
embed the SVDD training procedure with robustness to internal outliers that
is of significant benefit to this classifier. SVDD displays the highest gain in
classification efficacy from all of examined classifiers when wrapper selection
is applied.

5.8 Impact on the Computational Complexity

The average runtime of examined InR methods are presented in Figure 2. Aver-
age classification times before and after reduction for examined classifiers with
respect to small datasets (< 10 000 instances) are depicted in Figures 3 — 5,
while for large-scale datasets (>= 100 000 instances) are depicted in Figure 6.
The red points stand for a baseline classification time, while remaining points
stand for reduced classification times after applying examined InR algorithms.
This allows us to examine the computational gains from using simplified one-
class learners.

In case of OCNN, we can see that our filter is a highly suitable method
for OCNN, increasing the classification speed while not decreasing its accu-
racy. In case of MST, we when comparing classification times we can see that
both filter and wrapper solutions achieve similar reduction rates and response
times of the trained classifier. As for SVDD, we can see a slightly bigger dif-
ferences in reduction rates and classification times between filter and wrapper
approaches. Using wrapper method results in slightly bigger training set with
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Fig. 2: Average reduction times of examined InR methods over all datasets.
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Fig. 3: Average classification times in seconds for One-Class Nearest Neighbor
classifier before and after reduction by examined instance reduction methods
over small datasets.

potentially higher number of support vectors (which explains the classification
time). Still SVDD is characterized by the lowest classification time from all
classifiers examined. These additional vectors have a clear positive influence on
the classification procedure, which allows us to conclude that wrapper offers



Instance Reduction for One-Class Classification 23

- &  MST.dd

=+= ENN

© - DROP3

== IPCL

=+= |IPADE

—+= SSMASFLSDE N

—4— OCC filter N 1.
© - |—*— OCC.wrapper N

Classification time [s.]

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Dataset

Fig. 4: Average classification times in seconds for Minimum Spanning Tree
classifier before and after reduction by examined instance reduction methods
over small datasets.

- @  SVDD

=+= ENN

© - DROP3

== IPCL

== IPADE

—+— SSMASFLSDE
—4— OCC filter
—4— OCC.wrapper

Classification time [s.]

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Dataset

Fig. 5: Average classification times in seconds for Support Vector Data De-
scription classifier before and after reduction by examined instance reduction
methods over small datasets. Time equal to 0 stands for a situation in which
the dataset after reduction was too small to train a classifier.
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Fig. 6: Average classification times in seconds for (left) One-Class Nearest
Neighbor, (center) Minimum Spanning Tree and (right) Support Vector Data
Description classifiers before and after reduction by examined instance reduc-
tion methods over large-scale datasets.

the best trade-off between reduction rates and classification performance for
one-class support vector classifiers.

6 Conclusions and Future Works

In this paper we have discussed the usability of instance reduction methods for
one-class classification. We showed, that a carefully conducted InR can lead to
a significant lowering of OCC complexity and often to improved classification
performance. We have proposed two approaches to applying InR for OCC.
Firstly, an universal framework was introduced that allowed to transform any
existing InR method to one-class version. It used uniform generation of artifi-
cial objects combined with data cleaning procedure to remove overlap between
classes. This way we obtained a binary dataset that can be supplied to any con-
ventional InR algorithm. After reduction artificial outliers were discarded and
one-class classifier was trained using a reduced set of target concept instances.

We have identified potential shortcoming of methods relying on artificial
data generation and proposed a second solution, native to OCC characteris-
tics. It used SFLSDE, method based on differential evolution, to select training
samples. We have augmented it with consistency measure in order to evalu-
ate set of instances without a need for counterexamples. Filter and wrapper
versions were proposed, varying in complexity and adaptability to selected
classification model. Thorough experimental study backed-up by a statistical
analysis proved the high usefulness of proposed solutions regardless of the
base classifier used. We showed that consistency-based InR significantly out-
performs methods that require artificial counterexamples.

Obtained results encourage us to continue work on instance reduction for
one-class classification. In future we plan to develop ensemble learning tech-
niques based on diverse subsets of selected examples [24].
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