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Abstract

In this work, we present the ensemble-marginalized Kalman filter (EnMKF), a sequential algorithm analo-
gous to our previously proposed approach [1, 2], for estimating the state and parameters of linear parabolic
partial differential equations in initial-boundary value problems when the boundary data are noisy. We
apply EnMKF to infer the thermal properties of building walls and to estimate the corresponding heat
flux from real and synthetic data. Compared with a modified Ensemble Kalman Filter (EnKF) that is not
marginalized, EnMKF reduces the bias error, avoids the collapse of the ensemble without needing to add in-
flation, and converges to the mean field posterior using 50% or less of the ensemble size required by EnKF.
According to our results, the marginalization technique in EnMKF is key to performance improvement
with smaller ensembles at any fixed time.
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1. Introduction

Uncertainty in the thermophysical properties of building envelopes has been recognized as one of the
main sources of uncertainty when simulating the thermal performance of buildings [3, 4, 5, 6, 7]. Simulations
of this kind are essential to the development of cost-effective retrofitting measures aimed at improving the
energy efficiency of existing buildings. Moreover, accurate uncertainty analyses of the energy performance
of the housing stock are vital for drafting policies to reduce global carbon emissions [8, 3]. Most existing
approaches use simplified heat diffusion models to quantify uncertainty in the thermophysical properties
of walls [8, 9]. However, recent works have suggested that a PDE-constrained data-assimilation approach
is required to accurately estimate the thermophysical properties of walls [10, 2].

Most existing statistical approaches that infer thermophysical properties of walls [8, 9, 10] assume that
the boundary temperatures, Tint(t) and Text(t), can be approximated by their corresponding measurements
recorded on the internal and external surfaces of a wall by temperature sensors. Although these approaches

∗Corresponding author
Email addresses: marco.iglesias@nottingham.ac.uk (Marco Iglesias), zaid.sawlan@kaust.edu.sa (Zaid Sawlan ),

marco.scavino@kaust.edu.sa (Marco Scavino), raul.tempone@kaust.edu.sa (Raúl Tempone),
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Table 1: List of notation

θ
p×1

parameter vector

Aθ
n×n

forward model matrix operator

Tk
n×1

state vector at time tk

Bθ
n×`

control matrix operator

uk
`×1

control vector at time tk

F
`×`

control evolution matrix operator

H
m×n

observation matrix operator

yk
m×1

observation vector at time tk

y1:k = (y1, . . . , yk) observation vectors from time t1 to tk
zk
`×1

observed control vector at time tk

z1:k = (z1, . . . , zk) observed control vectors from time t1 to tk
Xk

(n+p)×1
augmented state-parameter vector at time tk

wk centered Gaussian noise of the state vector Tk with covariance matrix Wk

vk centered Gaussian noise of the observation vector yk with covariance matrix Vk
qk centered Gaussian noise of the control vector uk with covariance matrix Qk
ck centered Gaussian noise of the observed control vector zk with covariance matrix Ck

Tk|k E[Tk|θ, z1:k, y1:k]

Tk|k−1 E[Tk|θ, z1:k, y1:k−1]

Pk|k Cov(Tk|θ, z1:k, y1:k)

Pk|k−1 Cov(Tk|θ, z1:k, y1:k−1)

uk|k E[uk|z1:k]

P uk|k Cov(uk|z1:k)

Pk|k−1 Cov(Xk|z1:k, y1:k−1)
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ignore the uncertainty in those measurements, they enable the construction of a well-defined parameter-
to-measurements map that can be inverted via existing frameworks [11]. However, we recently showed
that ignoring the uncertainty in boundary temperatures can lead to biased estimates of the thermophysical
properties and, thus, reduce the accuracy of uncertainty analyses in energy-performance evaluations of
buildings [2]. In order to account for the uncertainty of boundary measurements within a PDE-constrained
Bayesian framework, we developed a marginalization technique that assimilates the available data all at
once. This approach was both (i) accurate in identifying thermophysical properties of walls, and (ii) useful
for developing off-line experimental design strategies to reduce the measurement campaigns.

Following these recent advances, practitioners would substantially benefit from a data assimilation
framework capable of updating the probabilistic knowledge of thermophysical properties as new measure-
ments become available. Such a framework could be used to assess in real time whether a specific level
of accuracy or uncertainty has been achieved, in order to reduce the long measurement campaigns that
often involve several weeks [5]. The objective of this work is to develop a sequential Bayesian approach to
infer the thermal properties of walls and estimate the corresponding heat flux within a computationally
tractable framework that accounts for the uncertainty in the measurements of the boundary temperatures.

Bayesian filtering [12, 13] can be used to compute the desired distribution for a joint state-parameter
assimilation problem. However, sampling is required to approximate the desired distribution when the
Bayesian posterior cannot be expressed in a closed form. For example, particle filters use importance sam-
pling to represent the posterior distribution. Unfortunately, particle filters may become computationally
prohibitive [14] and, thus, unsuitable for practical implementation in real-time data assimilation. As an
alternative to fully Bayesian samplers, the ensemble Kalman filter (EnKF) is the preferred method for
data assimilation in partially observed systems where the underlying dynamics are nonlinear and the state
space is high-dimensional [15]. Initially proposed for state estimation [16], modified versions of EnKF have
been proposed to address joint state-parameter estimation [17]. The EnKF methodology uses a Gaussian
approximation for the predictive step in the Bayesian filtering framework; this enables the characterization
of the Bayesian posterior within the analysis step as a Gaussian distribution with mean and covariance
computed via standard Kalman-like formulas. Different approaches to characterize this Gaussian distri-
bution have led to several EnKF algorithms including the stochastic EnKF and the ensemble square-root
Kalman filter that are reviewed elsewhere [18, 15].

The Gaussian approximations within the EnKF framework do not lead to algorithms with asymp-
totic convergence to the desired posterior when the underlying dynamics of the state-parameter system
are nonlinear [19]. Nevertheless, EnKF has been successfully used in numerous applications, including
oceanography, meteorology, subsurface flow and engineering [20, 21]. In most of these studies, the success
of EnKF was reliant on ad-hoc fixes such as covariance inflation and localization [22, 23, 20]. More recently,
regularized versions of EnKF were proposed that merged ideas from particle filters with iterative regular-
ization techniques [24, 25, 10]. For example, a regularizing EnKF was applied for parameter estimation
of thermal properties of walls [10]. This approach, however, focused entirely on the Bayesian parameter
estimation of the thermophysical properties and did not consider joint state-parameter estimation. Conse-
quently, the resulting algorithm required that the heat transfer model was run from the initial start time
until the current assimilation time to update the state of the system (i.e., the wall-temperature profile).
A joint state-parameter estimation approach for the real-time assimilation of in-situ measurements that
enabled sequential updating of both the parameters and the state would be much more efficient.

In this paper, we study the joint state-parameter estimation problem within a setting of linear PDEs
with noisy boundary conditions motivated by the aforementioned application which involves the math-
ematical modeling of heat transfer through walls. More specifically, we are interested in the real-time
uncertainty quantification of thermophysical properties of walls via the sequential assimilation of in-situ
measurements of the wall’s surface temperature and heat flux. We propose an ensemble-marginalized
Kalman filter (EnMKF) to approximate the joint state-parameter Bayesian estimation problem for a par-
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tially observed linear system that is obtained from the discretization of linear time-dependent PDEs. In
this general setting, we obtain a linear forward operator that depends nonlinearly on a vector of parameters
while the observation operator is linear and independent of all parameters. In our specific application, we
also adapt EnMKF and EnKF to handle an observation operator that depends linearly on the thermal
resistance parameter.

The remainder of the paper is organized as follows. In Section 2, we introduce the state-space for-
mulation that can be used to analyze a class of linear PDE problems. We present the filtering approach
for estimating the unknown state-parameter vectors in Section 3. In particular, subsection 3.3 provides a
Bayesian formulation for the proposed marginalized filtering algorithms. Subsection 3.4 contains our novel
ensemble-marginalized Kalman filter (EnMKF). In subsection 3.5, we consider a slightly modified EnKF
where the boundary conditions are sampled from their filtered distribution, and we describe the primary
differences between EnMKF and the modified EnKF. The performances of the EnMKF and the modified
EnKF algorithms are compared using real and synthetic data in Section 4. Conclusions are summarized
in Section 5.

2. General formulation

Consider the linear time-dependent parabolic initial-boundary value problem on the domain D ×
[0, tN ] ⊂ Rd+1: 

∂T
∂t + LθT = 0, x ∈ D, t ∈ [0, tN ]

T (x, t) = u(x, t), x ∈ ∂D, t ∈ [0, tN ]

T (x, 0) = T0(x), x ∈ D,
(1)

where LθT = −
∑d

i,j=1 aij(x) ∂2T
∂xi∂xj

+
∑d

i=1 bi(x) ∂T∂xi +c(x)T and θ = (a11, . . . , add, b1, . . . , bd, c). Our goal is

to estimate θ and T sequentially in time given partial observations of T (x, t) and measurements of u(x, t).
As a special case, we consider in Section 4 the heat equation to model the heat transfer process through
building walls and, given real measurements, we estimate the thermal properties of a brick wall.

By discretizing (1) using finite differences or finite elements [1], we can derive the discrete state-space
model {

Tk = AθTk−1 +Bθuk + wk,

yk = HTk + vk,
(2)

where Tk
n×1

is the state vector at time tk, yk
m×1

corresponds to measurements of Tk, Aθ is the forward model

operator that depends on the parameter vector θ
p×1

, H is a linear observational map, Bθ is the control

matrix operator, and we assume that the control vector uk
`×1

follows another state observation system:{
uk = Fuk−1 + qk,

zk = uk + ck,
(3)

where F is a user-defined linear evolution operator (see subsection 3.1) and zk
`×1

is the observed control

vector at time tk. We further assume that wk, vk, qk, ck are independent centered Gaussian random vectors
with covariances Wk, Vk, Qk, Ck, respectively.

The joint Bayesian estimation of θ and Tk, in a sequential filtering approach, as the observations
{z1:k, y1:k} become available can be now posed in terms of the computation of the conditional density
p(Tk, θ|z1:k, y1:k). Following the marginalization technique [1, 2] and ideas from marginalized particle
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filters [26, 27, 28], we exploit the linear structure of (2) and propose an ensemble-marginalized Kalman
filter (EnMKF) that provides an approximation of p(Tk, θ|z1:k, y1:k). From (2), it is easy to approximate
the conditional distribution p(Tk, θ|uk, y1:k). In order to incorporate the error of the boundary conditions,
we use the tractability of the distribution p(uk|z1:k). In other words, by noticing from (3) that uk follows a
linear dynamic system independent of (2), and under further Gaussian assumptions on u0, it follows that
the distribution p(uk|z1:k) can be expressed in closed form by using the Kalman filter [29]. The desired joint
distribution p(Tk, θ|z1:k, y1:k) is then approximated by integrating out uk from the fully joint distribution
p(Tk, θ, uk|z1:k, y1:k) = p(Tk, θ|uk, y1:k)p(uk|z1:k).

3. Methodology

In this section, we introduce the ensemble-marginalized Kalman filter (EnMKF) as a state-parameter
estimation algorithm for the partially observed linear system (2). The boundary conditions uk are estimated
first by applying the classical Kalman filter to (3). Next, we derive a marginalized Kalman filter for the
state Tk, assuming that θ is known. Then, this intermediate result is generalized to develop a joint filter for
the state Tk and parameter θ based on the EnKF framework. EnMKF differs from EnKF in the prediction
step; in EnMKF, the prediction covariance of Tk is inflated by the expectation of the analysis covariance
matrix of uk with respect to θ.

3.1. Kalman filtering for uk

The state-space model for uk in (3) is linear and independent from Tk. Therefore, we can implement
Kalman filter given the observation zk as follows:

1. Prediction step: {
uk|k−1 = Fuk−1|k−1,

P uk|k−1 = FP uk−1|k−1F
′ +Qk,

(4)

2. Analysis step: 
Ku
k = P uk|k−1

(
P uk|k−1 + Ck

)−1
,

uk|k = uk|k−1 +Kk

(
zk − uk|k−1

)
,

P uk|k = (I −Kk)P
u
k|k−1,

(5)

where Ku
k is the Kalman gain matrix of the state-space model for the control vector uk.

Assuming u0 is Gaussian, the Kalman filter provides the exact filtering distribution as N(uk|k, P
u
k|k).

In many applications, the forward operator F is unknown and autoregressive models must be considered
[30]. Some proposals for the autoregressive forward models are:

• Random walk model AR(1)
uk = uk−1 + qk,

• Random increment model AR(2)
uk = 2uk−1 − uk−2 + qk,

with qk ∼ N(0, Qk) .
In subsection 4.2, we impose AR(1) and AR(2) on the boundary temperatures, Tint(t) and Text(t), and

compare the filtered results with the real data.

Remark. Although the state-space model for uk is independent from Tk, we apply the Kalman filter within
the time propagation of either EnMKF or EnKF.
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3.2. Marginalized Kalman filter for Tk|θ
Before deriving the filtering algorithm for the joint state-parameter vector, we derive the marginalized

Kalman filter for the conditional state Tk|θ given the observations (z1:k, y1:k). Assuming T0 is Gaussian,
the Kalman filter is sufficient to estimate the filtering distribution of Tk given θ. We derive the conditional
mean and the conditional covariance for Tk|θ given the observations (z1:k, y1:k−1):

Tk|k−1 = E[Tk|θ, z1:k, y1:k−1] = E[AθTk−1 +Bθuk + wk|θ, z1:k, y1:k−1]

= AθE[Tk−1|θ, z1:k−1, y1:k−1] +BθE[uk|z1:k]

= AθTk−1|k−1 +Bθuk|k . (6)

Pk|k−1 = Cov[Tk|θ, z1:k, y1:k−1]

= Cov[AθTk−1 +Bθuk + wk|θ, z1:k, y1:k−1]

(using the mutual independence of Tk−1, uk and wk)

= Cov[AθTk−1|θ, z1:k−1, y1:k−1] + Cov[Bθuk|θ, z1:k] + Cov[wk]

= AθPk−1|k−1A
′
θ +BθP

u
k|kB

′
θ +Wk. (7)

From (6) and (7), the marginalized Kalman filter for Tk|θ is summarized by

1. Prediction step:

Tk|k−1 = AθTk−1|k−1 +Bθuk|k,

Pk|k−1 = AθPk−1|k−1A
′
θ +BθP

u
k|kB

′
θ +Wk,

where Tk|k−1 is the state prediction at time k, given θ and the observations (z1:k, y1:k−1), and Pk|k−1

is the corresponding covariance matrix.

2. Analysis step:

Kk = Pk|k−1H
′ (HPk|k−1H

′ + Vk
)−1

,

Tk|k = Tk|k−1 +Kk

(
yk −HTk|k−1

)
,

Pk|k = (I −KkH)Pk|k−1,

where Tk|k is the state estimation at time k, given θ and the observations (z1:k, y1:k), and Kk is the
Kalman gain.

Remark. The prediction step can be generalized under the Bayesian approach and corresponds to the
following equation:

p(Tk|θ, z1:k, y1:k−1) =

∫
p(Tk|θ, z1:k, Tk−1)p(Tk−1|θ, z1:k−1, y1:k−1) dTk−1

=

∫ (∫
p(Tk|θ, uk, Tk−1)p(uk|z1:k) duk

)
p(Tk−1|θ, z1:k−1, y1:k−1) dTk−1 ,

where the marginalization of uk appears explicitly. The analysis step is generalized under the Bayesian
approach as

p(Tk|θ, z1:k, y1:k) =
p(yk|Tk)p(Tk|θ, z1:k, y1:k−1)∫
p(yk|Tk)p(Tk|θ, z1:k, y1:k−1)dTk

∝ p(yk|Tk)p(Tk|θ, z1:k, y1:k−1) .
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3.3. Marginalized Bayesian filtering for Tk and θ

We now derive filtering algorithms to estimate the joint state-parameter vector, Xk = [ θ Tk ]′, given
the observations (z1:k, y1:k) up to time k. In this case, the evolution of the joint vector, Xk, is nonlinear and
approximate filtering algorithms are needed. We derive first the underlying Bayesian formulation for the
filtering algorithms. The static parameters, θ, have a trivial evolution in the prediction step and therefore
we neglect their time subscript.

1. Initialization:

θ ∼ ρΘ(θ),

T0 ∼ ρT0(T0),

where ρΘ(·) and ρT0(·) are the prior distributions of θ and T0, respectively.

2. Prediction step:

p(Xk|z1:k, y1:k−1) = p(Tk, θ|z1:k, y1:k−1)

= p(Tk|θ, z1:k, y1:k−1)p(θ|z1:k, y1:k−1)

=

(∫
p(Tk|θ, z1:k, Tk−1)p(Tk−1|θ, z1:k−1, y1:k−1) dTk−1

)
p(θ|z1:k−1, y1:k−1)

=

∫
p(Tk|θ, z1:k, Tk−1)p(Tk−1, θ|z1:k−1, y1:k−1) dTk−1

=

∫
p(Tk|θ, z1:k, Tk−1)p(Xk−1|z1:k−1, y1:k−1) dTk−1

=

∫ (∫
p(Tk|θ, uk, Tk−1)p(uk|z1:k) duk

)
p(Xk−1|z1:k−1, y1:k−1) dTk−1.

3. Analysis step:

p(Xk|z1:k, y1:k) ∝ p(yk|Xk)p(Xk|z1:k, y1:k−1)

= p(yk|Tk)p(Xk|z1:k, y1:k−1) .

3.4. EnMKF for θ and Tk

Here, the main idea is to consider an ensemble version of the marginalized Kalman filter introduced
in 3.2 to approximate the Bayesian filter 3.3. We initialize the algorithm by drawing independently M
samples from the prior distributions of the parameters and the initial state, {θi}Mi=1 and {T i0}Mi=1. Then,
in the prediction step, we evolve each state vector T i0 in time given the parameters θi to obtain the state
vectors at time t1. The measurements at time t1 are then utilized in the analysis step to update both states
and parameters. We iterate the prediction and analysis steps until we use all measurements and reach the
final time point tN .

The evolution of the joint vector, Xk, is nonlinear because Tk depends on θ nonlinearly. Therefore,
we can not use Kalman filter directly. The ensemble Kalman framework is introduced to handle the
nonlinear dependence on θ, and it uses a Gaussian approximation to update the ensemble members in the
analysis step. In our EnMKF algorithm, we exploit the conditional linearity of the joint vector to derive
its prediction mean and covariance.

Following the stochastic EnKF scheme [20, 17], we assume a trivial evolution of the static parameters
and denote the samples from p(θ|y1:k−1) by θi|k−1. Given the ensemble size M , we compute the predicted
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state T ik|k−1 = E[T ik|θi|k−1, z1:k, y1:k−1] for each i = 1, . . . ,M as

T ik|k−1 = Aθi|k−1
T ik−1|k−1 +Bθi|k−1

uk|k. (8)

The prediction covariance matrix, Pk|k−1, is usually approximated by the sample covariance matrix of
Xk|k−1,

1

M − 1

M∑
i=1

(Xi
k|k−1 − X̄k|k−1)(Xi

k|k−1 − X̄k|k−1)′, (9)

where X̄k|k−1 = 1
M

∑M
i=1X

i
k|k−1. This approximation is needed due to the nonlinearity. Instead, we derive

the covariance matrix of Xk|k−1 using the law of total covariance by conditioning on θ|k−1:

Pk|k−1 = Cov(Xk|z1:k, y1:k−1)

= CovΘ(E[Xk|θ|k−1, z1:k, y1:k−1]) + EΘ[Cov(Xk|θ|k−1, z1:k, y1:k−1)]

= CovΘ

(
E

[
θ
Tk

∣∣∣θ|k−1, z1:k, y1:k−1

])
+ EΘ

[
Cov

(
θ
Tk

∣∣∣θ|k−1, z1:k, y1:k−1

)]
= CovΘ

(
θ|k−1

E[Tk|θ|k−1, z1:k, y1:k−1]

)
+ EΘ

[
0 0
0 Cov(Tk|θ|k−1, z1:k, y1:k−1)

]
≈ 1

M − 1

M∑
i=1

[
(θi|k−1 − θ|k−1)(θi|k−1 − θ|k−1)′ (θi|k−1 − θ|k−1)(T ik|k−1 − T k|k−1)′

(T ik|k−1 − T k|k−1)(θi|k−1 − θ|k−1)′ (T ik|k−1 − T k|k−1)(T ik|k−1 − T k|k−1)′

]

+
1

M

M∑
i=1

[
0 0
0 Aθi|k−1

P ik−1|k−1A
′
θi|k−1

+Bθi|k−1
P uk|kB

′
θi|k−1

+Wk

]
, (10)

where θ|k−1 = 1
M

∑M
i=1 θ

i
|k−1, and P ik−1|k−1 must be computed using the Kalman update equations:

P ik|k = (I − P ik|k−1H
′(HP ik|k−1H + Vk)

−1H)P ik|k−1,

P ik|k−1 = Aθi|k−1
P ik−1|k−1A

′
θi|k−1

.

Computing and storing these covariance matrices P ik|k and P ik|k−1 for each i = 1, . . . ,M may be bur-

densome, especially when dim(Tk) is large. Therefore, we consider the following approximation of the
prediction covariance matrix:

Pk|k−1 ≈
1

M − 1

M∑
i=1

(Xi
k|k−1 − X̄k|k−1)(Xi

k|k−1 − X̄k|k−1)′ +
1

M

M∑
i=1

[
0 0
0 Bθi|k−1

P uk|kB
′
θi|k−1

+Wk

]
, (11)

which requires the computation of Bθi|k−1
P uk|kB

′
θi|k−1

for each i = 1, . . . ,M in addition to the standard

prediction covariance of EnKF (9). The additional term in (11) can be interpreted as inflation with respect
to uk and wk. The full prediction covariance (10) provides an extra inflation with respect to Tk−1. However,
it is computationally intractable except in very simple cases. The standard practice in EnKF is to consider
the sample covariance (9) only. Our implementation (11) inflates the covariance in a tractable way. In the
next section, we introduce another algorithm where we sample uk; therefore, the inflation is not needed.
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After applying the prediction step in (8) and (11), the analysis step for Xk is computed by

Kk = Pk|k−1H′
(
HPk|k−1H′ + Vk

)−1
, (12)

Xi
k|k = Xi

k|k−1 +Kk

(
yk + vik −HXi

k|k−1

)
, (13)

where H
m×(p+n)

= [ 0
m×p

H
m×n

] is the observation operator that maps the augmented vector Xk to the

corresponding observation space and vik ∼ N(0, Vk) is used to perturb the observations.
A clear advantage of EnMKF is that it runs sequentially on time without the need to restart from the

initial state. At a given time tk, the static parameters are updated in the analysis step using measurements
at time tk. We summarize the complete algorithm of EnMKF in Algorithm 1.

Algorithm 1 Ensemble-marginalized Kalman filter (EnMKF)

1: draw an initial ensemble θi , i = 1, . . . ,M from the prior distribution ρΘ(θ)
2: draw independently an initial ensemble T i0 , i = 1, . . . ,M from a normal prior distribution N(T0, P0)
3: for k = 1 to number of time observation N do
4: run the Kalman filter for uk (equations (4) and (5)) to obtain uk|k and P uk|k
5: run the prediction step for i = 1, . . . ,M

T ik|k−1 = Aθi|k−1
T ik−1|k−1 +Bθi|k−1

uk|k

6: compute the prediction covariance matrix Pk|k−1 using (11)
7: run the analysis step for each Xi, i = 1, . . . ,M

Kk = Pk|k−1H′
(
HPk|k−1H′ + Vk

)−1
,

Xi
k|k = Xi

k|k−1 +Kk

(
yk + vik −HXi

k|k−1

)
, vik ∼ N(0, Vk)

8: end for

In general, ensemble Kalman filters suffer from bias errors, especially with nonlinear systems. A common
bias error is due to the Kalman formula that assumes Gaussianity. Nevertheless, the incorporation of the
boundary temperature uncertainties will reduce the total bias error in the estimated parameters [2]. We
show in subsection 4.7 that EnMKF admits smaller bias errors than the following EnKF algorithm.

3.5. Ensemble Kalman filter for θ and Tk

An alternative approach to solve our problem (2)–(3), is to apply an adequately modified EnKF to the
joint vector Xk = [ θ Tk ]′. In this modified EnKF, the control vector uk is sampled from its distribution,
which was determined during the prediction step. Thus, we sample uik from N(uk|k, P

u
k|k) for each i =

1, . . . ,M . Then, the prediction step differs from (8) and is given by

T ik|k−1 = Aθi|k−1
T ik−1|k−1 +Bθi|k−1

uik .

In this case, the prediction covariance matrix is approximated by

1

M − 1

M∑
i=1

(Xi
k|k−1 − X̄k|k−1)(Xi

k|k−1 − X̄k|k−1)′ +

[
0 0
0 Wk

]
. (14)
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The analysis step is the same as the one that we developed for EnMKF, which is summarized by equations
(12) and (13).

Both EnMKF and EnKF are Monte Carlo implementations of Bayesian filtering. The main difference
appears in the prediction step, especially in the integration with respect to uk. In EnMKF, we use the
fact that uk|z1:k and Tk|θ, uk, Tk−1 have Gaussian distributions and, therefore, the resulting distribution
is Gaussian with mean (6) and covariance (7). In EnKF 3.5, the same integral is approximated with the
Monte Carlo method by sampling from p(uk|z1:k).

The modified EnKF approach avoids the computation of the matrices Bθi|k−1
P uk|kB

′
θi|k−1

that are needed

in formula (11) of EnMKF. However, the additional term in EnMKF can be considered inflation induced
from the law of total covariance by conditioning on the unknown parameters θ. Similarly, the joint
distribution of the state and parameters can be split into the distribution of the conditional state and
the marginal distribution of the parameters [31]. In our case, the linear evolution of the state and control
vectors simplifies the conditional distribution to the conditional mean (6) and the conditional covariance
(7).

4. Real-world application: Heat transfer across a solid brick wall

In this section, we show how to formulate and implement the EnMKF method to deal with the state and
parameter estimation problem in a real-world heat-transfer application, which is summarized in subsection
4.1. Next, we compare the results obtained with the EnMKF Algorithm 1 to those obtained with the
modified EnKF method from Section 3.5 using experimental and synthetic data. We also propose stopping
criteria that indicate when the ensemble parameters are stationary with adequate non-zero variance.

We consider the problem of describing the thermal performance of a solid wall given in-situ measure-
ments. This can be posed as a state and parameter estimation problem constrained by the heat equation.
For simplicity, we consider the case of a single-layer wall with homogeneous density, thermal conductivity,
and specific heat capacitance. Therefore, we characterize the thermophysical properties of the wall in terms
of its heat capacity per unit area (J/m2K) and thermal resistance (m2K/W ). These are denoted by ρC
and R, respectively. Under the standard assumption of uni-directional heat flux across the wall’s thickness,
the forward model is described by the internal temperature profile of the wall, denoted by T (x, t). This
profile is the solution to the 1D heat equation [32]:

ρC
L
∂T
∂t = ∂

∂x

(
L
R
∂T
∂x

)
, x ∈ (0, L), t ∈ [0, tN ]

T (0, t) = Tint(t), t ∈ [0, tN ]

T (L, t) = Text(t), t ∈ [0, tN ]

T (x, 0) = T0(x), x ∈ (0, L),

(15)

where L is the wall thickness, Tint and Text are the internal and external wall surface temperatures,
respectively, and T0(x), is the initial temperature of the wall. The goal is to estimate the thermophysical
properties θ = (R, ρC) given boundary temperature measurements Tint and Text as well as measurements
of the internal and external boundary heat flux defined via:{

Fint(t) = −L
R
∂T
∂x |x=0,

Fext(t) = −L
R
∂T
∂x |x=L.

(16)

An experimental setting consistent with (15)-(16) can be designed by placing temperature sensors and heat
flux meters on the internal and external surfaces of the wall [2, 10]. These quantities are then monitored
for a period of time which often consist of at least two weeks. In order to reduce the effect of solar radiation
(not considered in (15)), measurement campaigns are usually conducted on north-facing walls during the
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winter [33]. For simplicity, we also assume that the initial condition, T0(x), is well-approximated by the
piecewise linear function {

Tint(0) + 2 τ0−Tint(0)
L x if 0 < x ≤ L

2

τ0 + 2Text(0)−τ0
L (x− L

2 ) if L
2 < x < L ,

(17)

where we assume τ0 = 16.1◦C, according to the estimate we obtained in our previous study [2].
To formulate the discrete state observation system, we consider the following uniform space-time dis-

cretization:

x0 = 0, x1 = ∆x, . . . , xi = i∆x, . . . , xn = n∆x = L ,

t0 = 0, t1 = ∆t, . . . , tj = j∆t, . . . , tN = N∆t ,

and denote by T̂k = (T (∆x, k∆t), . . . , T ((n− 1)∆x, k∆t)) , Tint,k = Tint(k∆t) and Text,k = Text(k∆t) the
inner, internal and external surface temperatures at time tk, respectively. The inner temperature vector
T̂k can be written as a linear function of Tint,k and Text,k as follows [2]:

T̂k = ÃθT̂k−1 + B̃θ,intTint,k + B̃θ,extText,k,

where the matrices Ãθ, B̃θ,int, and B̃θ,ext are specified exactly (see [2]).
We let Tk = [ Tint,k T̂ ′k Text,k ]′ be the temperature vector on the closed interval [0, L] and

Aθ =

 0

Ãθ
0

 , Bθ,int =

 1

B̃θ,int
0

 , Bθ,ext =

 0

B̃θ,ext
1

 .
Then, the time evolution equation of the state vector Tk is given by

Tk = AθTk−1 +Bθ,intTint,k +Bθ,extText,k. (18)

The heat-flux vector Fk =
[
Fint,k Fext,k

]′
is approximated by the first difference

Fint,k =
1

R

1

2∆x
(3Tint,k − 4T1,k + T2,k)

Fext,k =
1

R

1

2∆x
(3Text,k − 4Tn−1,k + Tn−2,k).

Therefore, the observation matrix operator takes the form

H =
1

2∆x

[
3 −4 1 0 . . . 0
0 . . . 0 1 −4 3

]
and the observation equation is

yk =
1

R
HTk + vk, (19)

where vk ∼ N(0, Vk) is the measurements noise and H = [ 0 H ] is the observation operator that maps
the augmented vector Xk to the observation space.

We define the observation matrix operator without R to avoid dependence of the Kalman gain on this
unknown parameter. Instead, we keep the Kalman gain fixed in each iteration of the algorithm and modify
the so-called innovation to be Ryk −HTk. We tailor the EnMKF in Algorithm 1 to the state observation
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system (18)-(19) in Algorithm 2, by augmenting the state vector with log(R) and log(ρC) to ensure that
the physical parameters are positive.

The heat conduction problem described in (15) for a single-layer wall model is relevant for the ex-
perimental setting described in the following subsection. However, it is important to emphasize that the
EnMKF algorithm introduced in subsection 3.4 can be used to infer thermophysical properties of a much
wider class of walls. Multilayer walls, for example, can be described by suitable modifications to (15) that
incorporate the thermophysical properties on each layer. Each of these properties can then be included in
the unknown vector of parameters θ that is inferred within the EnMKF.

Algorithm 2 EnMKF algorithm to estimate R, ρC, Fint,k and Fext,k

1: draw an initial ensemble θi = (Ri, ρCi) , i = 1, . . . ,M from a prior distribution ρΘ(θ)
2: approximate the initial condition T0 using (17)
3: draw an initial ensemble T i0 , i = 1, . . . ,M from the normal prior distribution N(T0, P0)

4: define the augmented ensemble Xi =
[

log(Ri) log(ρCi) T i
′
]′
, i = 1, . . . ,M

5: for k = 1 to number of time observation N do
6: run the Kalman filter for Tint,k and Text,k to obtain Tint,k|k, Text,k|k, Pint,k|k and Pext,k|k
7: run the prediction step for i = 1, . . . ,M

T ik|k−1 = Aθi|k−1
T ik−1|k−1 +Bθi|k−1

,intTint,k|k +Bθi|k−1
,extText,k|k

8: compute the prediction covariance matrix

Pk|k−1 ≈
1

M − 1

M∑
i=1

(Xi
k|k−1 − X̄k|k−1)(Xi

k|k−1 − X̄k|k−1)′

+
1

M

M∑
i=1

[
0 0
0 Bθi|k−1

,intPint,k|kB
′
θi|k−1

,int
+Bθi|k−1

,extPext,k|kB
′
θi|k−1

,ext

]
9: run the analysis step for each Xi, i = 1, . . . ,M

Kk = Pk|k−1H′
(
HPk|k−1H′ + Vk

)−1

Xi
k|k = Xi

k|k−1 +Kk

(
Ri(yk + vik)−HXi

k|k−1

)
, vik ∼ N(0, Vk)

10: estimate the heat flux and its sample mean and sample covariance

F ik =
1

Ri|k
HT ik|k

F̂k =
1

M

M∑
i=1

F ik

Σ̂(Fk) =
1

M − 1

M∑
i=1

(F ik − F̂k)′(F ik − F̂k)

11: end for
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4.1. Experimental data set

We use real data from an experiment conducted inside an environmental chamber in the Energy Tech-
nologies Building at Nottingham University Innovation Park. The chamber was divided into two rooms
by a 215−mm thick partition wall. The aim of the experiment was to estimate the thermal properties of
a brick section of the partition wall. The temperature in both rooms was controlled to resemble internal
conditions in Room 1 and external conditions in Room 2. The wall boundary temperature and heat-flux
measurements were recorded every minute by sensors placed on the surface of the brick wall [2].

Figure 1 shows the time series of the temperature and heat flux measurements corresponding to the two
sides of the brick wall, identified by internal and external measurements. The measurements contain noise
that we can analyze, in a non-sequential framework, by using a smoothing spline method to fit a curve
to each time series. Then, we approximate the noise by the difference between the measurements and the
smooth curve values. The noise variance is estimated to be around 0.01 for the temperature measurements.
The noise variances for the internal and external heat flux measurements are estimated to be 20 and 5,
respectively. Therefore, the covariance matrix Vk is approximated by

Vk =

[
20 0
0 5

]
.

Alternatively, we can approximate Vk by using prior knowledge on the accuracy of the measuring
devices in different situations or by assuming a prior model with unknown hyper-parameters and estimate
them sequentially along with the quantities of interest. Further statistical analyses and details about these
experimental data are provided in [2].
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Figure 1: Raw temperature and heat-flux measurements. Temperature in Room 2 imitates outdoor weather conditions.

4.2. Kalman filtering for uk

The first step in implementing EnMKF is to run a Kalman filter for the control vector uk in (3), which
in this case, consists of the boundary conditions Tint,k and Text,k. The forward-evolution operator for the
boundary conditions is unknown but noisy measurements are available. We consider the two autoregressive
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models AR(1) and AR(2) from subsection 3.1 and use them with the measurements to apply the Kalman
filter. Figures 2 and 3 show the results from the Kalman filter with each model and the real temperature
measurements. In the experiments with EnMKF and EnKF presented below, we use only the results from
the Kalman filter with AR(1).
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Figure 2: Internal temperature measurements (red dots) and
Kalman filter mean with AR(1) and AR(2).
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Figure 3: External temperature measurements (red dots) and
Kalman filter mean with AR(1) and AR(2).

We also estimate the variance for the boundary conditions Tint,k and Text,k. For example, Figure 4 shows
the estimated mean and confidence bands for the internal temperature measurements using Kalman filter
with AR(1). The estimated variances capture the variability of the data and therefore we can marginalize
the uncertainty of the boundary conditions accurately.
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Figure 4: Internal temperature measurements (red dots) and Kalman filter mean and 90% confidence bands with AR(1).

4.3. EnMKF results

We run EnMKF Algorithm 2 with M = 100 and using the complete experimental data set, N = 6, 900.
We initially sample Ri and ρCi from the uniform priors, U(0.17, 0.36) and U(234000, 431000), and sample
T i0 from the normal prior distribution, N(T0, 0.01In).
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Figure 5: Convergence of the thermal resistance R (left) and heat capacity per unit area ρC (right) ensemble with respect to
time using EnMKF with ensemble size M = 100.

Figure 5 shows the convergence of the ensemble parameters R and ρC with respect to time as more
observations are incorporated. The thermal-resistance mean converges to 0.31m2K/W and the mean of
the heat capacity per unit area converges to 3.11 × 105 J/m2K. As we increase the ensemble size, we
obtain results that are more accurate and consistent with the MCMC results in [2]. We further analyze
the convergence of EnMKF with respect to the ensemble size M and compare it with the convergence of
the modified EnKF in subsection 4.5.

Figure 6: Estimated heat flux ensemble (solid lines) using
EnMKF with ensemble size M = 100 compared with real
raw measurements (red dots) in Room 1.

Figure 7: Estimated heat flux ensemble (solid lines) using
EnMKF with ensemble size M = 100 compared with real
raw measurements (red dots) in Room 2.

We also compute the heat flux from the estimated temperature and parameters by EnMKF. Figures
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6 and 7 show that the estimated heat fluxes match the real measurements suitably. The corresponding
variances for the estimated heat fluxes converge to be smaller than 1. We recall that the heat flux mea-
surements are very noisy and it would not be optimal to recover the measurements variance through the
variance of the estimates. Figures 6 and 7 indicate that our estimates are unbiased and therefore smaller
variances are preferable.

4.4. EnKF results

We apply the modified EnKF approach introduced in Section 3.5, with ensemble size M = 100, to
infer the parameters R and ρC as in the previous example. Figure 8 shows that the ensemble of R
and ρC collapse at time t = 1734 minutes. After this time, the parameters remain fixed at the biased
estimates R = 0.3m2K/W and ρC = 3.42 × 105 J/m2K. Thus, the estimated heat fluxes do not match
the measurements. In Figures 9 and 10, we show only the sample mean of the heat-flux ensemble because
the variances of the internal and external heat fluxes are approximately 390 and 130, respectively. These
values are much larger than the estimated variances produced by the EnMKF approach.

Figure 8: Propogation of the thermal resistance R (left) and heat capacity ρC (right) ensemble with respect to time using
EnKF with ensemble size M = 100.

We can gradually increase the ensemble size M to mitigate the ensemble collapse and reduce the bias
error in the estimated parameters. Figures 11, 12 and 13 show the estimated parameters and heat-flux
mean when M = 300. Although the bias error of the estimated parameters is reduced, the corresponding
variances still vanish as time increases, which is not a realistic feature. While the internal and external heat
fluxes variances are reduced to 375 and 124, respectively, they are still very large values when compared
with the estimated variances produced by EnMKF.

4.5. Comparing EnMKF and EnKF

Finally, we compare the EnMKF method and the modified EnKF method by analyzing the convergence
of the estimated parameters at a fixed time with respect to the ensemble size M . Figures 14, 15, and 16
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Figure 9: Estimated heat-flux mean using EnKF with ensem-
ble size M = 100 compared with real raw data measurements
in Room 1.
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Figure 10: Estimated heat-flux mean using EnKF with en-
semble size M = 100 compared with real raw data measure-
ments in Room 2.

Figure 11: Propagation of the thermal resistance R (left) and heat capacity ρC (right) ensemble with respect to time using
EnKF with ensemble size M = 300.

show the convergence of the parameters-ensemble mean and standard deviation with ensemble size M at
time t′ = 3000 minutes. The ensemble mean converges linearly for both methods but EnMKF has a better
error constant and, therefore, is more reliable for small ensemble sizes. Moreover, due to the collapse of
the ensemble, the convergence of the ensemble standard deviation for EnKF occurs only after M > 1000.

4.6. Stopping criteria

EnMKF solves the collapse problem that usually arises with EnKF algorithms for state-parameter esti-
mation. Ideally, we want the ensemble of each parameter to converge with time to become samples from the
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Figure 12: Estimated heat-flux mean using EnKF with en-
semble size M = 300 compared with real raw data measure-
ments in Room 1.
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Figure 13: Estimated heat-flux mean using EnKF with en-
semble size M = 300 compared with real raw data measure-
ments in Room 2.
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Figure 14: Convergence of the ensemble mean of the estimated parameters R (left) and ρC (right) at time t′ = 3000 with
respect to the ensemble size M .

posterior distribution. Assuming this posterior distribution is unimodal, the convergence of our algorithm
can be confirmed by computing the ensemble mean and standard deviation for each parameter. The time
convergence of these estimated values can be used to suggest stopping criteria for ongoing measurement
campaigns. For example, when the difference between two consecutive means and two consecutive standard
deviations are relatively small, then the measurement campaign should be stopped.

In Figures 17 and 18, we see that the ensemble mean and standard deviation for R and ρC stabilize
after 5000 minutes. This indicates that the measurements collected up to that time are sufficient and the
experiment can be stopped.

4.7. Bias error analysis

We treat the boundary conditions as random variables that are marginalized in EnMKF and sampled
in EnKF. In both EnKF and EnMKF, the bias error of the estimated parameters and the variability
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Figure 15: Convergence of the ensemble mean error of the estimated parameters R (left) and ρC (right) at time t′ = 3000
with respect to the ensemble size M .
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Figure 16: Convergence of the ensemble standard deviation of the estimated parameters R (left) and ρC (right) at time
t′ = 3000 with respect to the ensemble size M .

of the estimated state are reduced by increasing the ensemble size. However, in EnKF, the bias error
induced by the boundary conditions depends on the ensemble size, M ; with EnMKF, that bias error is
eliminated independently from M . Therefore, EnMKF reduces the total bias error in comparison with the
EnKF. To strengthen this conclusion, we use a synthetic data set similar to the experimental data set from
Nottingham University (Figure 1). The synthetic data are generated by assuming R = 0.3106m2K/W ,
ρC = 3.2× 105J/m2K, smooth boundary conditions, and the initial condition given in (17). We solve the
heat equation and compute the heat flux at the boundaries for each minute. The temperature and heat-
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Figure 17: Time convergence for the thermal resistance mean (left) and heat capacity mean (right) using EnMKF with
ensemble size M = 100.
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Figure 18: Time convergence for the thermal resistance standard deviation (left) and heat capacity standard deviation (right)
using EnMKF with ensemble size M = 100.

flux time series are then perturbed by Gaussian white noise. The resulting synthetic data are presented in
Figure 19.

We apply the Kalman filter to the perturbed temperature series and obtain the filtered mean temper-
atures and their corresponding variances. Then, we apply EnMKF and EnKF to estimate the parameters
R and ρC using the uniform priors:

R ∼ U(0.28, 0.36) , ρC ∼ U(301000, 376000) .
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Figure 19: Synthetic data measurements of temperature and heat flux generated using R = 0.3106 and ρC = 3.2 × 105.
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Figure 20: Convergence of the ensemble mean of the estimated parameters R (left) and ρC (right) at time t′ = 2000 with
respect to the ensemble size M .

Figure 20 shows the convergence of the sample mean of the estimated parameters using EnMKF and
EnKF at time 2000 with respect to the ensemble size. The total bias error obtained by EnMKF is smaller
and more stable than the error produced by the modified EnKF. For large ensemble sizes, both methods
provide similar results.

In this case, the synthetic data have Gaussian noise. In the previous sections, the real noise is not
Gaussian. Nevertheless, the results show that the influence of Gaussianity assumption is not very significant
when the sequential framework is applied to this heat-transfer problem.
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5. Summary and Conclusions

We studied the filtering problem for state observation system with random control vector and unknown
static parameters. The control vectors may represent the boundary conditions or the source function
of the underlying PDE model. By creating an artificial linear dynamic model for the control vector,
we applied Kalman filter to obtain a Gaussian distribution of the random control vectors at each time
step. The resulting distributions were then incorporated to generate a marginalized Kalman filter for
the conditional state. The ensemble-marginalized Kalman filter (EnMKF) was derived using conditional
probability, in particular, the law of total covariance. The main feature of EnMKF appeared in the
prediction covariance which is approximated by the sample covariance of the augmented vector inflated by
EΘ [Cov[Bθuk]]. Another sample-based EnKF algorithm was also proposed where the prediction covariance
is only approximated by the sample covariance.

To deal with high-dimensional joint state-parameter estimation problems, fully Bayesian techniques
such as particle filters are not computationally affordable. The two introduced algorithms are not fully
Bayesian; thus, they may handle nonlinear state-parameter systems and high-dimensional problems. EnKF
usually requires additional adjustments in order to provide better approximations to the desired posterior
distribution. EnMKF, on the other hand, completely avoids the ensemble-collapse phenomenon.

We applied both algorithms to estimate the thermal properties of a solid brick wall from experimental
data. We showed that EnMKF provides better results than the modified EnKF. Due to the marginalization
technique in EnMKF, we prevented the collapse of the parameters ensemble without artificial inflation.
EnMKF had other advantages as well, such as a reduced heat-flux variance and more accurate fit of
the measurements. We also considered a synthetic data example and compared the bias error from the
parameters estimated using EnMKF and EnKF. The results confirmed that EnMKF provides a smaller
bias error when the ensemble size is not very large. Finally, we proposed stopping criteria to reduce the
time and cost required for real experiments, based on the estimated parameters reaching a stationary
period.

While the numerical results are focused on the heat-transfer application, the EnMKF can be used
for a wider PDE-constrained data assimilation problems in which the boundary conditions are subject to
uncertainty; these include, for example, flood predictions via hydrological models [34].
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