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Abstract  

When measuring revolving objects, it is often desired to obtain not only the geometrical form of the 
workpiece, but also the topography of the surface, as they both affect the performance of the part. However, holistic 
measurement of the entire three-dimensional surface of a revolving part is challenging since most surface measurement 
instruments only have limited measurement ability, where the bottom and the side surfaces cannot be measured. One 
solution to obtain geometrical form and surface topography information simultaneously is to add a precision axis to 
rotate the object while performing surface topography measurement. However, this solution requires a high-cost 
precision rotation stage and adjustable mounting and alignment aids. Moreover, errors in the rotation will be added to 
the measurement result, which can be difficult to compensate. Stitching is a method often used for measuring revolving 
surfaces without the need for precision motion axes, as the method is applied at the software level, and errors in the 
rotation can be compensated by the stitching algorithm. Nevertheless, the overall accuracy of stitching is limited when 
the number of sub-surfaces is large, since the measurement and stitching error accumulate along the stitching chain. 
In this paper, a self-calibration rotational stitching method is presented which can compensate for the accumulated 
error. The self-calibration method utilises the inherent nature of a revolving surface and compensates for the 
registration error by aligning the last dataset with the first dataset. The proposed method is demonstrated by measuring 
grinding wheels with a coherence scanning interferometer and simultaneously rotating the grinding wheels with a low-
cost stepper-motor. It is demonstrated that the proposed stitching measurement method is effective in compensating 
for accumulated registration error. The proposed self-calibration rotational stitching method can be easily extended to 
a wide range of applications for measuring revolving surfaces using various measuring instruments.  

Keywords: Rotational stitching, revolving surfaces, precision measurement, self-calibration, ultra-precision 
machining 

1. Introduction  

Revolving surfaces, such as precision rollers [1], shafts [2] and grinding wheels [3], are widely used in 
precision engineering. They are usually produced by a machining process that involves the rotational motion of 
spindles or motors, such as turning and grinding. There is an increasing demand for precision not only in the 
geometrical form of the machined part, but also in the surface texture, in applications such as producing microlens 
arrays on a roller stamper in order to replicate them onto a continuous flexible substrate [4] and optimising the micro-
topography on a diamond grinding wheel for improved grinding performance [5]. To holistically obtain both 
geometrical form and surface texture requires measuring the revolving surface with a surface measuring instrument 
and extracting both large-scale and small-scale information from the measurement. Measuring a revolving surface 
with a surface measuring instrument is a challenging task as most surface measuring instruments, such as coherence 
scanning interferometers (CSIs) and focus variation microscopes (FVMs), only have 2.5-dimensional (2.5D) 
measurement capability, where the bottom surface or the surface with high slope angle cannot be measured. In order 
to achieve three-dimensional (3D) measurement of the revolving surface, an additional precision rotational axis can 
be used to rotate the object, so that the entire surface can be measured. However, this method requires a high-cost 
precision rotational axis, and sometimes additional devices for tilting and alignment adjustment, which are not 
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available to most surface measuring instruments, especially when large workpieces, such as precision roller drums in 
the roll-to-roll industry, are involved [6].  

Measurement accuracy is often affected by the motion error of the rotational axis such as runout, angle error, 
misalignment between the workpiece and the rotational axis, and misalignment between the measuring probe and the 
rotational axis. The measurement error caused by the misalignment between the workpiece and the rotational axis is 
also subject to human errors and, therefore, cannot be easily controlled. One promising method to minimise this error 
is stitching, which utilises the common features in the overlapping region between two neighbouring fields of view to 
minimise alignment error. The stitching method is applied at the software level, independent of the instrument 
hardware setup. Several studies have focused on planar stitching, such as sub-aperture stitching interferometry for 
relatively flat surfaces [7, 8], and spherical and aspherical surfaces [9, 10]. Some studies have explored the 
measurement of revolving surfaces - specifically cylindrical surfaces. For example, stitching measurement of a full 
cylindrical surface has been studied by Peng et al. [11, 12], with a method based on a Fizeau type interferometer and 
a computer generated hologram (CGH) null. The method achieves sub-micron accuracy, but it was only applicable to 
high precision cylindrical surfaces with a specific diameter, since different CGH nulls would be needed when the size 
of the cylinder changes. Weckenmann et al. [13] developed grazing incidence interferometry for high-precision 
measurement of cylindrical form deviations. The method utilised the incident laser beam to project to the measured 
cylindrical surface and the interferogram was recorded by the CCD camera. The interferogram could then be used to 
determine the cylindrical form deviations. Guo and Chen [14] developed a multi-view connection technique for 360º 
3D measurement using fringe projection, where the object was placed on a precision rotary stage and two sets of fringe 
patterns were projected onto the overlapped regions at different angles. The measured topographies were then stitched 
together using an iterative least-squares algorithm. However, the accuracy of the method was not determined. Vissiere 
et al. [15] developed a cylinder measuring machine with a dissociated metrology technique (DMT)-based architecture 
using a modified multi-step error separation method to eliminate the spindle errors. To achieve the ultimate 5 nm 
measurement uncertainty level, the machine was designed with sophisticated hardware. Neugebauer et al. [16] 
developed a comparator for the measurement of diameter and form of cylinders, spheres and cubes. With a two-
probing system adhering to the Abbe principle and a form reference ring, the measurement uncertainty was as low as 
20 nm. Most of the above mentioned revolving measurement instruments were specially designed machines dedicated 
for measuring specific types of revolving surfaces but not for generic revolving surfaces. Most of these instruments 
also involved sophisticated hardware and are not widely available in industry.  

This paper presents a self-calibration rotational stitching (SCRS) method for precision measurement of 
generic revolving surfaces that can be applied to any surface topography measuring instrument. The proposed SCRS 
method utilises a traditional 2.5D surface topography measurement instrument, such as CSI. Instead of using a high-
precision rotational axis, this method only requires a low-cost rotating motor, such as a stepper motor for rough 
positioning of the measured revolving surface. Measurement of the entire revolving surface is divided into multiple 
sub-surfaces with overlapped regions; the sub-surfaces are stitched together initially using the surface registration 
method. The accumulated measurement and registration error is minimised by the SCRS method which makes use of 
the first and the last sub-surface in the stitching loop. The proposed method is presented in detail, demonstrated by 
measuring precision diamond grinding wheels, and is shown to be effective. Due to its generality, the proposed method 
can be applied to measure various types of revolving surfaces such as cones, spheres and cylinders. The SCRS method 
can be easily implemented to existing 2.5D surface measuring instruments to enable true 3D measurement of revolving 
surfaces. In addition, a software user interface (UI) is developed to synchronise rotation of the object with 
measurement, without the need for an application program interface (API) to the instrument software, making the 
proposed method truly independent of measuring instruments.  

2. Self-calibration rotational stitching (SCRS) method  

The schematic diagram of the proposed SCRS method for measuring revolving surfaces is shown in Figure 1. 
The method is demonstrated on a CSI with a rotational axis driven by a stepper motor. The SCRS method is divided 
into two steps. The first step is data acquisition of the revolving surface topography by synchronised measurement 
while the sample is being rotated. For every measurement, only a small part on the top of the revolving surface is 
measured because of the limited field of view (FoV). The number of required sub-surfaces is determined by the FoV 



of the measuring instrument, the dimension of the revolving surface and the percentage of overlapped region. After 
each measurement, the stepper motor rotates by a specific angle so that the sub-surfaces are overlapped by the required 
percentage of region for registration purposes. Automatic measurement is implemented using purposely designed 
software running on the personal computer (PC) that controls the CSI. Since the topographical accuracy of the 
measurement is ensured by the CSI and the registration process, the motion error of the rotational axis and the 
misalignment between the revolving surface and the rotational axis are minimised using the proposed SCRS method, 
which is described in the following section.  

  

Figure 1 Schematic diagram of rotational stitching measurement of revolving surfaces.  

The second step is the stitching of acquired individual topographies. A flow chart of the stitching algorithm 
is shown in Figure 2. After pre-processing of the original dataset, such as removing null data and outliers, the 
registration process is performed on every pair of neighbouring datasets. The subsequent dataset is registered onto the 
previous dataset, and the transformation matrix of the subsequent dataset is computed. With a priori knowledge of the 
radius of the revolving surface and the rotating angle for every individual measurement, the overlapped regions 
between neighbouring datasets can be roughly determined, and an initial alignment can be performed. The initial 
transformation serves as rough registration to address the local minima issue, where the registration process is trapped 
in a local, albeit incorrect, zone with minimum root mean square error. The roughly registered datasets are then fine 
registered using the iterative closest point (ICP) algorithm [17]. The ICP algorithm is a numerical method which 
iteratively calculates the transformation matrix (4×4) for the measured surface with the aim that the transformed 
surface (points) is closest to the reference surface (points). Due to the fact that the measurement uncertainty of the 
CSI is affected by the local surface slope [18, 19], an adaptive registration approach is proposed to improve the 
accuracy of the fine registration process, which automatically and adaptively selects points with low measurement 
uncertainty for registration. The adaptive registration approach generates an error map of each registration, and points 
with large registration errors due to large local surface slopes are removed. Registration is further iterated until the 
registration error is smaller than a pre-defined threshold. With the adaptive registration approach, points with high 
measurement uncertainty are excluded automatically, which is essential when dealing with a large number of datasets 
(e.g. 200 datasets required for the grinding wheel).  

After fine registration of all the neighbouring datasets, the transformation matrices of every dataset are 
determined, and the entire revolving surface can be reconstructed. It is interesting to note that, the final stitching error 
can often be large when dealing with a large number of sub-surfaces since measurement errors and registration errors 
are accumulated along the stitching process. As a result, the last dataset is expected to have the largest accumulated 
misalignment error, while in the ideal situation (without measurement error and registration error), the error should be 
zero. Therefore, we propose a self-calibration method to minimise the accumulated error by using the first dataset as 
the wrap-around sub-surface. A fine-tuned transformation matrix is applied to every dataset (except for the first one) 
so as to implement the self-calibration process. The optimum transformation matrix is found where the last dataset 
aligns well to the first dataset to form a close loop of the revolving surface. As a result, all the datasets are well 



registered to neighbouring datasets in the whole loop. After the initial transformation, the matrices for registration and 
the fine-tuned transformation matrices are combined to transform all the original datasets into a stitched topography 
of the revolving surface.  

 

 

Figure 2 Flow chart of the rotational stitching measurement with adaptive registration and self-calibration method. 

2.1 Hardware and software setup for data acquisition  

Although the proposed method is implemented at the software level, special attention should also be paid to 
the hardware setup to avoid unnecessarily large errors during data acquisition. Since the vertical scanning range of the 
measuring instrument is often limited (e.g. 150 µm for the CSI used in the experiment), the runout of the revolving 
surface should be minimised to have large and evenly distributed measurable area of every dataset, thus avoiding large 
unmeasurable areas. This is implemented by improving the coaxiality between the workpiece and the motor shaft as 
shown in Figure 1. The magnification of the objective lens is selected according to the required lateral resolution. The 
minimum number of required sub-surfaces can then be determined and the incremental angle of object rotation for 
each measurement is calculated, which aims to ensure an optimum 20% overlapped region between sub-surfaces [20]. 
Hence, the number of sub-surfaces SN and the rotation angle RA  can be determined by  
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where r  is the overlap ratio with an optimum value of 20%, P is the estimated perimeter of the revolving object, and 
L is the measurement range of the sub-surface in the perimeter direction, which is mainly determined by the FoV. It 

should be noted that a larger overlapped region can improve stitching accuracy, but will result in longer measurement 
duration.  

After the objective magnification and the incremental rotation angle are determined, the measurement process 
can be started. It is necessary to automate the measurement process as often a large number of measurements (e.g. 200 
measurements for the grinding wheel involved in this study) are required. Since there is no API for the CSI to 
communicate with the stepper motor, which is the case with most commercial measuring instruments, an interface 
was developed to synchronise the rotation of the object while the CSI is set to repeatedly measure for Ns times. The 
interface software monitors a folder where CSI measurement data is stored. Once a new data file is detected, indicating 



completion of a measurement, a command is sent to drive the stepper motor by a pre-set angle. The command is sent 
through USB cable to the control board of the stepper motors. With this method, the data acquisition process is 
completed automatically without the need to interface with the software of the CSI.  

2.2 Pre-processing original datasets and initial registration  

The original datasets obtained by the CSI contain a significant number of non-measurable null data, which is 
likely caused by the large local slope of the rough surface or optical noise [21]. These null data points need to be 
removed first. After that, in each pair of neighbouring datasets, the latter one is roughly aligned to the former, with 
the initial transformation derived by the a priori information of the measurement setup. The homogeneous 
transformation matrix [22] of the initial transformation is determined by translations along x, y, z axes and rotations 
about x, y, z axes. The translations can be determined by  
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where xv , yv , zv are the translation distances along x, y, z axes, respectively. Rotations about x, y, z axes can be 
determined by  
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where α , β , and γ  are the rotation angles about x, y, z axes, respectively.  

The initial transformation IT  in rough alignment is determined by the a priori knowledge of the 
radius of the grinding wheel and the rotation angle RA  for each step. The initial registration is a rough 
registration process which aims to improve the stability of the subsequent fine registration process, which 
is susceptible to local minima issues when the ICP algorithm [17] is used.  

2.3 Adaptive fine registration with ICP algorithm 

Ideally, the results of two measurements at the same area are identical. However, due to the fact that the 
surface topography of every single measurement of the revolving surface may contain areas of high surface slope, 
registration error will be introduced due to higher measurement uncertainty in those areas [18, 19]. To address this 
issue and improve the registration accuracy, we propose an adaptive fine registration process based on the ICP method 
[17], which is undertaken as follows:  



Step (a): The ICP registration is implemented. Transformation matrix ICPT  is used to transform the dataset 
and the error map is obtained.  

Step (b): Points with large registration errors in the transformed dataset are identified and removed to form a 
new dataset. 

Step (c) goes to step (a) and continues the registration process with the new dataset until the registration error 
is less than the predefined threshold.  

After the adaptive fine registration is completed, a series of transformation matrices are determined for each 
pair of datasets and are denoted as 1ICPT , 2ICPT ,…, ICPmT , where m is the number of iterations in the ICP registration 
process. Subsequently, the final transformation matrix ICPFT can be determined as  

( 1) 2 1ICPF ICPm ICP m ICP ICPT T T T T−=       (7) 

where all the transformation matrixes are 4×4 homogeneous matrices. The adaptive registration process automatically 
excludes outliers and noisy data (e.g. due to large surface roughness and high surface slope angle) in the topographies 
during the registration process, hence improving registration accuracy. The process is iterated until registration error 
is below a predefined threshold.  

2.4 Calculation of accumulated transformation matrix and pre-stitching datasets 

After the initial and fine transformations for neighbouring datasets are determined, the accumulated 
transformation matrix for each dataset can be determined. In this study, the coordinates of the first measurement 
dataset remain unchanged during the process, while the other datasets are transformed into the same coordinate system. 
The accumulated transformation matrix for the 2nd to the nth dataset, AiT , is determined as  
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where 2i n= L , ICPFjT is the jth fine transformation matrix ICPFT for the jth dataset to the (j-1)th dataset, where 

2j i= L . IT  is the initial rough transformation matrix for the jth dataset to the (j-1)th dataset and it has the same 
value for each pair of dataset.  

After the accumulated transformation matrices for each dataset are determined, all the original datasets can 
be stitched together to form a holistic dataset.  

2.5 Self-calibration method using the wrap-around dataset 

The accumulated stitching error is determined by calculating the misalignment between the first dataset and 
the last dataset, and the misalignment error is determined as follows. The first dataset is duplicated and added to the 
end of the loop as the (n+1)th dataset, using the same rough and fine registration method. In the ideal situation without 
measurement and registration error, the transformed (n+1)th dataset should be identical to the first dataset. In practice, 
misalignment between the (n+1)th dataset and the first dataset will always be present. It is reasonable to assume that 
with the same measurement setup and registration method, the incremental misalignment error for each pair of datasets 
are approximately the same. With that assumption, the constant misalignment error can be determined and 
compensated for by introducing an associated transformation matrix CT  to minimise the misalignment between the 
first dataset and the (n+1)th dataset. The associated transformation matrix CT  is applied to each pair of datasets. The 
misalignment error should have 6 degrees-of-freedoms (DOFs) and the associated transformation matrix CT to 
compensate for this error is determined by  
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where ( 1)ICPF nT + is the transform matrix for the fine registration for the first dataset to the last dataset (the nth one) and  

I is the identity matrix which denotes all the translation components and the rotation components in the transformation 
matrix are zero. Since ICPFjT and IT are known, CT can be determined. It should be noted that ICPFjT , IT  and CT  are 
all 4×4 homogeneous transformation matrices. Solving CT  is a classical non-linear problem and is determined by 
using the Levenberg-Marquardt algorithm (LMA) [23]. The calculation of the misalignment error is determined by 
using the dataset itself, and hence, it is a self-calibration method.  

2.6 Finalisation of the transformation matrix for each dataset  

After the self-calibration calculation, the final transformation matrix for each dataset can be determined by  
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where  2i n= L , CT is the compensation transformation matrix calculated by using the self-calibration method, ICPFjT

is the jth fine transformation matrix ICPFT for the jth dataset to the (j-1)th dataset, where 2j i= L . IT  is the initial 
transformation matrix for the jth dataset to the (j-1)th dataset, and has the same value for each pair of dataset. After 
the transformation matrices are finalised, the complete revolving surface can be reconstructed.  

3. Experiments and discussions  

To demonstrate the effectiveness of the proposed method, an experiment was conducted on the revolving 
surface of a grinding wheel. The measuring instrument used in the experiment was ZYGO Nexview CSI with 20× 
objective lens and 1× zoom lens, resulting in a lateral resolution of 0.4 µm (pixel spacing). A diamond grinding wheel 
from DIAGRIND INC with a nominal diameter of 14 mm was used. The surface roughness (Sa) of the grinding wheel 
is approximately 1.8 µm. A SANYO DENKI 35 mm stepper motor with 1.8º/step was used while the controller was 
an Arduino UNO and the micro-stepping driver was M415B from Leadshine Technology Co. Ltd. The static angle 
error of the motor is ±0.09º and the shaft runout is 0.025 mm. Larger angle error is acceptable as it mainly causes 
lateral misalignment, which can be corrected by stitching. Shaft runout causes the height of the measured regions to 
vary during rotation. Larger runout will require the measuring instrument to increase the vertical scanning range, thus 
increasing measurement period significantly. For the grinding wheel measured in this experiment, 50% is the smallest 
overlapped area achievable with a single step motion (1.8°) by the stepper motor. Given the 14 mm diameter of the 
grinding wheel, 3.6° rotation angle would have resulted in 0% overlapped region, making it impossible to perform 
stitching. Hence, 200 (360º/1.8º) datasets were required to cover the entire surface. The vertical scanning range of the 
CSI was set to be 150 µm (maximum) so as to obtain as much data as possible given the runout of the shaft. Figure 3 
shows the experimental setup of the measurement process. Figure 4 shows the UI of the CSI software, the UI of the 
self-developed control software and the folder containing measured data files. The 200 measurements performed to 
measure the entire revolving surface lasted for 2 hours.  

 

Figure 3 Measurement experiment setup, (a) the setup showing the CSI, the UI of the CSI and the grinding wheel, 
(b) zoom-in view for the grinding wheel. 



 

Figure 4 Captured screen showing the UI of the CSI software, UI of the control software and the measured data 
files. 

Some of the original datasets are shown in Figure 5. They show that there is a large overlapped region (about 
50%) between neighbouring datasets which is used to ensure registration accuracy. The presence of unique non-
repetitive micro-topography patterns on the grinding wheel is observed, which benefit the registration process.  

 

Figure 5 Original datasets, (a) data 1 with marked area overlapped with data 2 and data 200, (b) data 2 with marked 
area overlapped with data 1, (c) data 200 with marked area overlapped with data 1. 

During rough registration, it was found that translation along the perimeter direction alone was sufficient to 
successfully avoid the local minima issue. The initial transformation matrix IT  was, therefore, determined to be: 
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where Ty = 0.22 mm and it is determined by  

yT Rβ=      (12) 

where R = 7 mm is the nominal radius of the wheel, and β = 1.8π/180 ≈ 0.0314 is the incremental rotation angle of the 
stepper motor in radians.  



An example of adaptive registration between the first dataset and the second dataset is shown in Figure 6. 
The adaptive registration was implemented in 4 iterations of ICP registration; after each iteration data points outside 
0.2 times the root-mean-squared (RMS) registration error was removed from the second dataset. Within each iteration 
of ICP registration, the ICP algorithm was set to iterate 100 times. As points with large errors were iteratively excluded 
from the calculation, the RMS errors after every registration are 2.0139×10-4 mm, 2.2875×10-5 mm, 3.6144×10-6 mm 
and 2.8813×10-6 mm, respectively, showing a gradual decrease. The number of points in the second dataset included 
in the registration process after each iteration are 3.5×105, 3.2×105, 5.6×104 and 6.6×103, respectively.  

 

Figure 6 Adaptive registration between the first and second dataset, (a) after first iteration, (b) after second iteration, 
(c) after third iteration, and (d) after fourth iteration. 

The RMS of the registration errors for all 200 datasets during adaptive registration are shown in Figure 7. It 
can be observed that a few spikes are present during the first three iterations, indicating large registration errors 
between specific pairs of datasets. These large errors are due to the inclusion of data points with large local surface 
gradient, which were successfully removed after the fourth iteration. Figure 8 shows the pair of datasets 133 and 134 
that correspond to the highest spike in Figure 7. After removing the data points causing the large registration error 
iteratively, the registration error in the last iteration is much smaller and evenly distributed along all the datasets.  

 



 

Figure 7 RMS values of the registration error, (a) after first iteration, (b) after second iteration, (c) after third 
iteration, and (d) after forth iteration. 

 

Figure 8 Registration between dataset 133 and 134 showing the outlier data point causing the large registration error. 

After the adaptive registration process, the associated transformation matrices for all the original datasets 
were determined. The initial stitching was then completed, as shown in Figure 9. It was found that although the 
measurement error and registration error were very small (see Figure 7), the accumulated error along a chain of 200 
datasets has resulted in a misalignment of approximately 0.5 mm in the perimeter direction between the 200th and 
first dataset, as shown in Figure 9(b). After self-calibration, the error was successfully compensated for, as shown in 
Figure 10. As a result, holistic measurement of both the geometrical form and surface topography of the grinding 
wheel is achieved.  



 

Figure 9 Initial stitching result, (a) with 200 datasets, (b) zoom-in view showing the accumulated error. 

 

Figure 10 Stitching result after self-calibration, (a) with 200 datasets, (b) zoom-in view showing the accumulated 
error was corrected. 

After the stitched datasets were corrected, the axis of the wheel was fitted using a least-squares method. The 
stitched surface is shown in Figure 11 and the colour bar represents the deviations from the best-fit cylindrical surface. 
A zoom-in view in Figure 11(b) shows the detailed surface topography of the grinding wheel and the colour bar 
represents the height in the z direction. The advantage of the proposed stitching method is that it not only obtains the 
geometrical form of the entire grinding wheel but also maintains high lateral resolution along the periphery direction, 
which is essential for characterising the surface texture of the grinding wheel. Such holistic measurement of the 
grinding wheel can benefit the study of surface generation in precision grinding [24]. 

 

Figure 11 Stitching result, (a) holistic data with colour bar representing the deviation from fitted cylinder surface, (b) 
zoom-in view showing the surface topography of the grinding wheel with colour bar representing the z height value. 



The same grinding wheel was also measured using a commercial FVM (Alicona G5) with a precision 
rotational axis (Real3D rotation stage). The resulting measurement is used as a reference to compare with the stitched 
revolving surface obtained with and without the SCRS method, as shown in Figure 12. The diameter of the grinding 
wheel determined for each obtained revolving surface is 14.2498 mm, 14.2440 mm, and 13.9432 mm, respectively. 
Since the top surface of the grinding wheel is not a flat surface, the diameters were calculated using the data in the 
range of [ ]0.08,MAX MAXR R− mm, where MAXR is the maximum radius for the data determined with the outliers removed 
by a statistical outlier removal method [25]. The diameter of the grinding wheel was also measured using a Werth 
VideoCheck UA multisensor CMM with an optical probe and the result is 13.9795 mm, where the measurement 
uncertainty of the CMM was estimated to be 0.83 µm (k=1). The results show that the determined diameter after self-
calibration is closer to the reference result from the CMM. The determined diameters are also summarised in Table 1. 
The accuracy of the proposed SCRS method is approximately 2% (by comparing the diameters) while the error may 
come from the measurement uncertainty caused by the surface roughness and local surface gradient [18, 19, 26, 27]. 
As discussed elsewhere [18], the measurement uncertainty of a CSI increases with increasing surface roughness and 
local surface gradient due to the fact that the height difference within one pixel of the CCD of the CSI is not 
distinguished. The height difference is larger when the surface roughness and the local surface gradient is larger, and 
vice versa. To further improve the accuracy, a new method should be developed to compensate the error by 
systematically modifying the measurement topography data and this will be studied in the future. 

 

Figure 12 Stitching results, (a) initial stitching result, (b) with self-calibration, and (c) from FVM. 

Table 1 Grinding wheel diameter determined after initial stitching, with self-calibration, from FVM and from CMM 

 Initial stitching With self-calibration From FVM From CMM 
Determined diameter (mm) 14.2498  14.2440 13.9432 13.9795 

 

Another grinding wheel with a larger nominal diameter of 20 mm was measured with the proposed SCRS 
method. The surface roughness (Sa) of the grinding wheel is approximately 1.3 µm. The number of measurements 
were also set to be 200. With the larger grinding wheel, the overlapped region was reduced to approximately 30%, but 
it was still larger than the suggested 20% value to ensure the accuracy. The results are shown in Figure 13. The 
estimated diameters for initial stitching, after self-calibration, from FVM and from CMM are 20.2534 mm, 20.2490 
mm, 19.8438 mm and 19.9157 mm, respectively. The large gap in the data after initial stitching has been compensated 
using the self-calibration method. Diameter after self-calibration is closer to the reference data from the CMM, 
although there is still significant difference which may be caused by surface roughness and local surface gradient [18, 
19, 26, 27], which will be investigated in the future to further improve the accuracy. The determined diameters are 
also summarised in Table 2.    



 

Figure 13 Stitching results for a grinding wheel with a nominal diameter of 20 mm, (a) initial stitching result, (b) 
with self-calibration, and (c) from FVM. 

Table 2 Grinding wheel diameter determined after initial stitching, with self-calibration, from FVM and from CMM 

 Initial stitching With self-calibration From FVM From CMM 
Determined diameter (mm) 20.2534 20.2490 19.8438 19.9157 

 

4. Conclusion 

A self-calibration rotational stitching (SCRS) method for measuring revolving surfaces is proposed in this 
paper. The proposed method utilises a rotational axis to rotate the revolving surface under a 2.5D surface measuring 
instrument for measurement of the entire revolving surface; and the sub-surfaces are stitched together using an 
adaptive registration method and a self-calibration method. With these methods, the accumulated stitching error is 
minimised with the help of the data itself. The proposed SCRS method enables measurement of both geometrical form 
and the surface topography of the revolving surface in one measurement session. Measurement accuracy is ensured 
by the stitching algorithm, adaptive registration and self-calibration. This is a novel method which is suitable for full 
3D measurement of revolving surfaces. Future work is to further improve the accuracy by compensating the 
measurement error in the CSI caused by surface gradient and to implement this method to other 2.5D surface 
measuring instruments.  
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