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Enantioselective nickel-catalyzed arylative intramolecular 1,4-
allylations†  

Thi Le Nhon Nguyen,‡ab Celia A. Incerti-Pradillos,‡ab William Lewisb and Hon Wai Lam*ab  

The enantioselective nickel-catalyzed desymmetrization of allenyl cyclohexa-2,5-dienones by reaction with arylboronic 

acids is described. Nickel-catalyzed arylation of the allene gives allylnickel species, which undergo cyclization by 1,4-

allylation to produce hexahydroindol-5-ones and hexahydrofuran-5-ones with three contiguous stereocenters in high 

diastereo- and enantioselectivities. 

 

Catalytic enantioselective 1,4-additions of organometallic 

reagents to electron-deficient alkenes are important reactions 

for the formation of new carbon–carbon bonds.1 Despite the 

tremendous diversity of known examples of such reactions,1 the 

catalytic enantioselective 1,4-addition of allylic nucleophiles 

remains considerably underdeveloped and only a handful of 

examples have been described.2 Therefore, new types of 

catalytic enantioselective 1,4-allylations are highly desired to 

increase the range of accessible products. 

In light of our discovery that chiral phosphinooxazoline–

nickel complexes are highly effective in promoting 

enantioselective anti-carbometallative cyclizations of alkynyl 

electrophiles with arylboronic acids,3 we questioned whether 

these complexes could promote a catalytic enantioselective 

intramolecular 1,4-allylation2g,i of substrates containing an 

allene tethered to an electron-deficient alkene. Specifically, 

nickel-catalyzed addition of an arylboronic acid to an allenyl 

cyclohexa-2,5-dienone could provide an allylnickel species A 

(which could interconvert with σ-allyl isomers, Scheme 1). An 

enantioselective intramolecular 1,4-allylation would then likely 

give nickel enolate B, which upon protonolysis would release 

the Ni(II) catalyst and a cis-fused hexahydroindol-5-one or 

hexahydrobenzo-furan-5-one,4,5,6,7 which are important 

structures that appear in several natural products such as 

runanine,8 acutumine,9 millingtonine,10 and cryptocaryone11 

(Figure 1). Furthermore, the enone in these structures serves as 

a versatile handle for further manipulations to give 

octahydroindole and octahydrobenzofuran derivatives, which 

are present in many other natural products.  

 

Scheme 1 Proposed arylative cyclization of allenyl cyclohexa-2,5-dienones  

 

 

Figure 1  Hexahydrobenzofuran-5-one and hexahydroindol-5-one 
natural products 

 

To our knowledge, however, there is only limited precedent  

for nickel-catalyzed 1,4-allylations, with only one reported 

study by Sieber and Morken.2b Also relevant is work by 

Montgomery and co-workers, who described diastereoselective 

nickel-catalyzed alkylative cyclizations of allenes tethered to 

α,β-unsaturated carbonyl compounds that give products of 

formal 1,4-allylation.12 Herein, we describe the successful 

implementation of the strategy shown in Scheme 1, which gives  
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Table 1  Evaluation of reaction conditionsa 

 

entry ligand yield of 2a (%)b yield of 3a (%)b dr of 2a ee of 2a (%)c 

1 – 35 11 2.0:1 – 

2 L1 82 9 3.6:1 – 

3 L2 89 10 >19:1 90 

4 L3 62 14 14:1 –91d 

5 L4 33 22 5.3:1 –87d 

6 L5 16 26 0.6:1e –68,d  69e 

a Reactions were conducted with 0.10 mmol of 1a at 0.1 M concentration. b 

Determined by 1H NMR analysis of the crude reactions using 1,3,5-
dimethoxybenzene as the internal standard. c Determined by chiral HPLC 
analysis. d The major product was the enantiomer of 2a. e The major product 
was the diastereomer of 2a, obtained in 69% ee.  

 

hexahydroindol-5-ones and hexahydrofuran-5-ones with three 

contiguous stereocenters in high diastereo- and 

enantioselectivities.    

This study began with the reaction of allenyl cyclohexa-2,5-

dienone 1a with PhB(OH)2 (2.0 equiv) and Ni(OAc)2·4H2O (10 

mol%) in MeCN/dioxane (3:2) at 80 °C for 18 h (Table 1, entry 1). 

We were pleased to observe that 6,5-bicycle 2a was obtained in 35% 
1H NMR yield as a 2.0:1 ratio of diastereomers.13 However, this 

reaction also gave cyclobutane 3a in 11% 1H NMR yield, resulting 

from a [2+2] cycloaddition.13 Heating 1a in MeCN/dioxane (3:2) at 

80 °C for 24 h in the absence of PhB(OH)2 and Ni(OAc)2·4H2O also 

gave 3a in 44% NMR yield, which demonstrates this [2+2] 

cycloaddition is a thermally promoted process rather than a nickel-

catalyzed reaction (see the Supplementary Information for details). 

The addition of 10 mol% of the P,N-ligand L1 increased the yield of 

2a to 82% (entry 2). Furthermore, chiral phosphinooxazoline 

(PHOX) ligands L2–L5 successfully gave enantioenriched products, 

though with varying levels of efficiency (entries 2–6). Of these, (R)-

Ph-PHOX (L2) provided 2a in the best balance between yield, 

diastereoselectivity, and enantioselectivity (entry 3), and this ligand 

was selected for further experiments. 

The scope of the process with respect to the allenyl substrate was 

examined in reactions with PhB(OH)2 (Table 2). Both N-sulfonyl- 

tethered and O-tethered substrates reacted successfully to give 6,5-

bicycles 2a–2b and 6a–6d, respectively, in good yields (77–87%) 

and high enantioselectivities (90–94% ee). In all cases, small 

quantities of cyclobutanes (either 3a or analogous to 3a) were also 

formed, but with the exception of the reactions forming 6a, 6b, and 

6d, these were separable by column chromatography. The 

substituent at the quaternary center of the substrates can be changed 

from methyl (2a and 6a) to ethyl (2b and 6b), isopropyl (6c), or 

phenyl groups (6d). By increasing the reaction concentration, the 

Table 2  Substrate evaluationa 

 
a Reactions were conducted with 0.30 mmol of 1, 4, or 5 at 0.1 M 
concentration. Yields are of isolated products. Enantiomeric excesses were 
determined by chiral HPLC analysis. b Products 6a, 6b, and 6d were isolated 
together with cyclobutane side products (see the Supplementary Information 
for details) as inseparable mixtures in ratios of between 11:1 and 20:1. Yields 
have been adjusted accordingly. cValues in parentheses are of a reaction 
conducted with 2.00 mmol of 4c at 0.4 M concentration for 42 h, using 5 
mol% each of Ni(OAc)2·4H2O and L2. d Conducted with 0.15 mmol of 4d.  

 
Table 3  Boronic acid evaluationa 

 
a Reactions were conducted with 0.30 mmol of 1a or 4a at 0.1 M 
concentration. Yields are of isolated products. Enantiomeric excesses were 
determined by chiral HPLC analysis. b Isolated together with cyclobutane 3b 
(see the Supplementary Information for the structure) in a 11:1 ratio. The 
yield of 6g has been adjusted accordingly.  
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catalyst loading can be reduced. For example, 6c was obtained in 

63% yield and 94% ee from a 2.00 mmol scale reaction conducted at 

0.4 M concentration, using a 5 mol% catalyst loading. Allenyl 

substrate 5, containing a longer tether between the allene and the 

cyclohexa-2,5-dienone, was largely unreactive and only a trace 

(<5%) of 6,6-bicycle 7 was observed, with the mass balance being 

mostly starting material.  

The scope of the boronic acid was then examined using substrates 

1a and 4a, which gave products 2c–2h and 6e–6i in 51–81% yield 

with generally high enantioselectivities (Table 3). The reaction is 

compatible with a variety of para- (2c, 6e, and 6f), meta- (6g), 

ortho- (6h), and  disubstituted (2d–2f) arylboronic acids, and the 

functional group tolerance is shown by examples with vinyl (2c), 

halide (2d, 2e, 6f and 6h), methoxy (2f), and acetoxy (6e) 

substituents. 2-Naphthylboronic acid (2g) and heteroarylboronic 

acids (2h and 6i) are also tolerated. 
 

Table 4 Reactions producing phenols 8a 

 

entry Ar 6,5-bicycle phenol 

1 4-AcC6H4 6j  51%, 89% ee 8j  16%, 92% ee 

2 4-Me3SiC6H4 6k  35%, 93% ee 8k  14%, 94% ee 

3 3-NCC6H4 6l   28%, 89% ee 8l   59%, 91% ee 

4 3-EtO2CC6H4 6m  64%, 91% ee 8m  22%, 91% ee 

a Reactions were conducted with 0.30 mmol of 4a. Yields are of isolated 
products. Enantiomeric excesses were determined by chiral HPLC analysis.  

 

Interestingly, the reaction of 4a with certain arylboronic acids 

gave 3,4-disubstituted phenols 8 in addition to the expected 6,5-

bicycles (Table 4). In each case, both products were formed with 

high enantioselectivities (89–94% ee). Most of these arylboronic 

acids contain strongly electron-withdrawing substituents such as 4-

acetyl (entry 1), 3-cyano (entry 3), or 3-carboethoxy groups (entry 

4), but 4-trimethylsilylphenylboronic acid also resulted in phenol 

formation (entry 2). Phenols 8 might be formed by enolization of the 

ketone of 6 to give 9, followed by ring-opening of the furan ring, 

which presumably is promoted by a Brønsted acid or hydrogen bond 

donor (Scheme 2). Proton loss from 10 then gives 8.14 The fact that 

phenols 8 are observed in appreciable quantities only when certain 

arylboronic acids are used may indicate that the boronic acid serves 

as a hydrogen bond donor to promote ring-opening.15 Confirmation 

of the ability of acid to promote the formation of phenols 8 was 

provided by heating 6l with TsOH·H2O (0.5 equiv) at 80 °C, which 

gave 8l in 65% yield (eqn (1)). 

 

Scheme 2 Rationale for the formation of phenols 8 

 
 

To demonstrate the synthetic utility of the products, further 

transformations were conducted (eqn (2) and (3)). Reaction of 

racemic 2a with Me3Al in the presence of Ni(acac)2 (10 mol%) gave 

11 in 76% yield as a single observable diastereomer (>19:1 d.r.), 

resulting from 1,4-addition to the less hindered convex face [Eq. 

(2)]. Furthermore, a Luche reduction of 2e gave allylic alcohol 12 in 

>99% yield, also as a single observable diastereomer (eqn (3)). 

 

 
 

In summary, we have reported the enantioselective nickel-

catalyzed desymmetrization of allenyl cyclohexa-2,5-dienones by 

reaction with arylboronic acids. These domino addition–cyclizations 

add to the currently limited body of work in catalytic 

enantioselective intramolecular 1,4-allylations,2g,i and provide 

hexahydroindol-5-ones and hexahydrofuran-5-ones with three 

contiguous stereocenters in high diastereo- and enantioselectivities. 

Further enantioselective nucleophilic allylations triggered by nickel-

catalyzed migratory insertions of allenes are under investigation in 

our group. 
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