Accelerating Kohn–Sham Response Theory using Density-fitting and the Auxiliary-Density-Matrix Method

Chandan Kumar,* Heike Fliegl, and Simen Reine[†] Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O.Box 1033, N-1315 Blindern, Norway

Frank Jensen

Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark

Andrew M. Teale

Department of Physical and Theoretical Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom and Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O.Box 1033, N-1315 Blindern, Norway

Thomas Kjærgaard[‡]

qLEAP Center for Theoretical Chemistry, Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark

^{*} chandan.kumar@kjemi.uio.no

 $^{^{\}dagger}\ simen.reine@kjemi.uio.no$

 $^{^{\}ddagger}$ tkjaergaard@chem.au.dk

Here we included a more detailed account on the results presented in the paper. We present statistics, mean errors, standard deviations and maximum absolute errors, compared to aug-pcseg-4 reference calculations for three types of calculations: *full*, *df-J* and admm. Here *full* referes to a calculation combining *J*-engine for Coulomb and LinK for exchange (i.e. without any approximation), *df-J* to the combination of density-fitting for Coulomb and LinK for exchange, and *admm* to the combination of density-fitting for Coulomb and admm for exchange.

A. Statistical error analysis

We here report mean errors, standard deviations and maximum absolute errors in electronic ground-state energies, excitation energies, isotropic polarizabilties, anisotropic polarizabilities and dipole hyperpolarizability for the pcseg-n and aug-pcseg-n basis sets, n = 1, 2, 3 compared with aug-pcseg-4 full calculations.

TABLE S1. Errors in CAMB3LYP($\alpha = 0.21$, $\beta = 0.79$, $\mu = 0.45$) electronic ground-state energies per electron for pcseg-*n* and aug-pcseg-*n* calculations, with n = 1, 2, 3. Mean errors, standard deviations (in paranthesis) and maximum absolute errors (in square brackets) compared to aug-pcseg-4 reference calculations are given in μE_H /electron for the M11 benchmark (see article).

Calculation	1	pcseg-n	
type	1	2	3
full	4055(541)[4927]	458(58)[549]	17(2)[20]
$\mathrm{df} ext{-}J$	4052(541)[4924]	456(58)[547]	14(2)[17]
admm	6055(740)[7445]	232(69)[323]	21(6)[31]
	au	g-pcseg- n	
	au_{i}	g-pcseg-n 2	3
full	aug 1 3759(408)[4440]	g-pcseg- n 2 426(50)[506]	$\frac{3}{15(1)[17]}$
full df-J	$\begin{array}{c} \text{au}_{3}\\ \hline \\ 3759(408)[4440]\\ 3756(408)[4436] \end{array}$	g-pcseg-n 2 426(50)[506] 423(50)[504]	$\frac{3}{15(1)[17]}$ $11(2)[14]$

TABLE S2. Errors in CAMB3LYP($\alpha = 0.21$, $\beta = 0.79$, $\mu = 0.45$) excitation energies for pcseg-*n* and aug-pcseg-*n* calculations, with n = 1, 2, 3. Mean errors, standard deviations (in paranthesis) and maximum absolute errors (in square brackets) compared to aug-pcseg-4 reference calculations are given in μE_H for the M11 benchmark (see article).

Calculation		pcseg-n	
type	1	2	3
full	33042(17985)[77614]	16615(10872)[45147]	7830(6371)[25445]
$\mathrm{df} ext{-}J$	33040(17985)[77608]	16614(10874)[45155]	7828(6370)[25433]
admm	35514(20382)[84003]	22813(13721)[54626]	10367(7884)[30670]
		aug-pcseg- n	
	1	2	3
full	1807(3347)[14138]	940(2277)[12124]	57(129)[720]
$\mathrm{df} ext{-}J$	1798(3348)[14133]	931(2276)[12107]	48(130)[688]
admm	1254(4549)[16555]	1065(2403)[12081]	200(255)[1376]

TABLE S3. Errors in CAMB3LYP($\alpha = 0.21, \beta = 0.79, \mu = 0.45$) isotropic polarizabilities for for pcseg-*n* and aug-pcseg-*n* calculations, with n = 1, 2, 3. Mean errors, standard deviations (in paranthesis) and maximum absolute errors (in square brackets) compared to aug-pcseg-4 reference calculations are given in *m*a.u. (1 a.u. = 0.148 Å³) for the M11 benchmark (see article).

Calculation		pcseg- n	
type	1	2	3
full	-6958(2697)[10209]	-2449(905)[3574]	-503(199)[730]
$\mathrm{df} ext{-}J$	-6958(2697)[10208]	-2445(903)[3566]	-499(197)[722]
admm	-7323(2882)[10956]	-2983(1125)[4357]	-839(329)[1326]
		aug-pcseg- n	
	1	2	3
full	-314(118)[476]	-66(21)[86]	-3(1)[5]
$\mathrm{df} ext{-}J$	-311(117)[472]	-62(20)[79]	1(3)[5]
admm	-1028(446)[1824]	-116(45)[196]	-12(5)[19]

TABLE S4. Errors in CAMB3LYP($\alpha = 0.21$, $\beta = 0.79$, $\mu = 0.45$)/aug-pcseg-*n* anisotropic polarizabilties calculations, with n = 1, 2, 3. Mean errors, standard deviations (in paranthesis) and maximum absolute errors (in square brackets) compared to aug-pcseg-4 reference calculations are given in *m*a.u. for the M11 benchmark (see article).

Calculation		pcseg-n	
type	1	2	3
full	3558(3356)[9287]	1137(1408)[4130]	247(337)[917]
$\mathrm{df} ext{-}J$	3557(3355)[9285]	1131(1407)[4123]	242(338)[911]
admm	3932(3567)[10044]	1180(1517)[4332]	346(467)[1331]
		aug-pcseg- n	
	1	2	3
	-232(353)[829]	-4(31)[54]	-2(3)[7]
full	-239(361)[846]	-9(34)[57]	-8(9)[24]
$\mathrm{df} ext{-}J$	378(674)[1612]	-145(165)[429]	-21(25)[71]
admm			

TABLE S5. Errors in the dipole hyperpolarizability components along the permanent dipole moment for CAMB3LYP($\alpha = 0.21$, $\beta = 0.79$, $\mu = 0.45$)/aug-pcseg-*n* calculations, with n = 1, 2, 3. Mean errors, standard deviations (in paranthesis) and maximum absolute errors (in square brackets) compared to aug-pcseg-4 reference calculations are given in *m*a.u. for the M11 benchmark (see article).

Calculation		pcseg-n	
type	1	2	3
full	-7222(19298)[40271]	-4605(12298)[24362]	-55(4163)[9198]
$\mathrm{df} ext{-}J$	-7221(19299)[40275]	-4606(12298)[24372]	-57(4149)[9179]
admm	-5455(19408)[43173]	-5618(14669)[28304]	-1366(5665)[13059]
		aug-pcseg- n	
	1	2	3
full	-643(2224)[4359]	-130(420)[1086]	6(50)[105]
$\mathrm{df} ext{-}J$	-649(2225)[4326]	-137(424)[1101]	-1(72)[125]
admm	-1104(3908)[9279]	-426(1885)[4713]	-117(147)[427]

I. RESULTS

A. DFT Energy — CAM-B3LYP (α =0.21, β =0.79, μ =0.45)

acetamide	pcseg-1	pcseg-2	pcseg-3	aug-pcseg-1	aug-pcseg-2	aug-pcseg-3	aug-pcseg-4
full	-208.926086	-209.053119	-209.068556	-208.939834	-209.054443	-209.068644	-209.069145
df-J	-208.926181	-209.053216	-209.068669	-208.939933	-209.054541	-209.068757	
admm	-208.858863	-209.059756	-209.068350	-208.878307	-209.061809	-209.068580	

TABLE S7. acetamide —DFT energy

TABLE S8. acetone —DFT energy

acetone	pcseg-1	pcseg-2	pcseg-3	aug-pcseg-1	aug-pcseg-2	aug-pcseg-3	aug-pcseg-4
full	-192.867909	-192.982829	-192.997147	-192.878943	-192.983978	-192.997216	-192.997680
df-J	-192.868006	-192.982930	-192.997269	-192.879040	-192.984081	-192.997340	
admm	-192.799158	-192.989330	-192.997125	-192.815460	-192.992013	-192.997250	

TABLE S9. butadiene —DFT energy

butadiene	pcseg-1	pcseg-2	pcseg-3	aug-pcseg-1	aug-pcseg-2	aug-pcseg-3	aug-pcseg-4
full	-155.711977	-155.801185	-155.812402	-155.715510	-155.802067	-155.812492	-155.812871
df-J	-155.712056	-155.801267	-155.812500	-155.715591	-155.802150	-155.812591	
admm	-155.660347	-155.808565	-155.812398	-155.667754	-155.808830	-155.812590	

TABLE S10. cyclopropene —DFT energy

cycloprop	pcseg-1 ene	pcseg-2	pcseg-3	aug-pcseg-1	aug-pcseg-2	aug-pcseg-3	aug-pcseg-4
full	-116.410382	-116.477794	-116.485929	-116.413542	-116.478201	-116.485967	-116.486262
df-J	-116.410446	-116.477863	-116.486009	-116.413608	-116.478271	-116.486048	
admm	-116.364198	-116.483130	-116.486028	-116.368202	-116.483217	-116.486045	

6

formaldeh	pcseg-1 yde	pcseg-2	pcseg-3	aug-pcseg-1	aug-pcseg-2	aug-pcseg-3	aug-pcseg-4
full	-114.344759	-114.414802	-114.423282	-114.352558	-114.415489	-114.423326	-114.423591
df-J	-114.344806	-114.414846	-114.423333	-114.352607	-114.415534	-114.423377	
admm	-114.304464	-114.418545	-114.423139	-114.314540	-114.419547	-114.423245	

TABLE S11. formaldehyde $--\mathrm{DFT}$ energy

TABLE S12. for mamide — DFT energy $% \left({{{\rm{DFT}}}} \right) = {{\rm{DFT}}} \left({{{\rm{DFT}}}} \right)$

formamide	pcseg-1	pcseg-2	pcseg-3	aug-pcseg-1	aug-pcseg-2	aug-pcseg-3	aug-pcseg-4
full	-169.667817	-169.772484	-169.785010	-169.679894	-169.773567	-169.785088	-169.785491
df-J	-169.667889	-169.772554	-169.785087	-169.679970	-169.773637	-169.785165	
admm	-169.614519	-169.777744	-169.784751	-169.631217	-169.779006	-169.784970	

TABLE S13. furan —DFT energy

furan	pcseg-1	pcseg-2	pcseg-3	aug-pcseg-1	aug-pcseg-2	aug-pcseg-3	aug-pcseg-4
full	-229.666379	-229.799628	-229.815961	-229.675394	-229.800553	-229.816053	-229.816618
df-J	-229.666479	-229.799721	-229.816068	-229.675497	-229.800646	-229.816161	
admm	-229.598519	-229.807575	-229.815826	-229.611502	-229.808263	-229.815913	

TABLE S14. ethene —DFT energy

ethene	pcseg-1	pcseg-2	pcseg-3	aug-pcseg-1	aug-pcseg-2	aug-pcseg-3	aug-pcseg-4
full	-78.446218	-78.492829	-78.498442	-78.447724	-78.493127	-78.498482	-78.498683
df-J	-78.446265	-78.492880	-78.498504	-78.447772	-78.493180	-78.498544	
admm	-78.417726	-78.496802	-78.498533	-78.421146	-78.496745	-78.498595	

imidazole	pcseg-1	pcseg-2	pcseg-3	aug-pcseg-1	aug-pcseg-2	aug-pcseg-3	aug-pcseg-4
full	-225.863637	-225.992677	-226.008867	-225.874823	-225.993874	-226.008973	-226.009542
df-J	-225.863735	-225.992765	-226.008966	-225.874926	-225.993962	-226.009073	
admm	-225.796544	-226.000450	-226.008642	-225.811477	-226.001514	-226.008836	

TABLE S15. imidazole —DFT energy

TABLE S16. propanamide —DFT energy

propanar	pcseg-1 nide	pcseg-2	pcseg-3	aug-pcseg-1	aug-pcseg-2	aug-pcseg-3	aug-pcseg-4
full	-248.174980	-248.323419	-248.341646	-248.189631	-248.324882	-248.341745	-248.342347
df-J	-248.175100	-248.323538	-248.341786	-248.189755	-248.325002	-248.341886	
admm	-248.094601	-248.331897	-248.341502	-248.116117	-248.334305	-248.341713	

TABLE S17. pyrrole —DFT energy

pyrrole	pcseg-1	pcseg-2	pcseg-3	aug-pcseg-1	aug-pcseg-2	aug-pcseg-3	aug-pcseg-4				
full	-209.824221	-209.943548	-209.958508	-209.831543	-209.944591	-209.958620	-209.959143				
df-J	-209.824317	-209.943638	-209.958611	-209.831642	-209.944681	-209.958724					
admm	-209.764887	-209.952293	-209.958401	-209.775938	-209.952304	-209.958557					

B. Excitation energies — CAM-B3LYP (α =0.21, β =0.79, μ =0.45)

acetamide	Sta	ate pcseg-1 pcseg-2 pcseg-3 au	g-pcseg-1 au	g-pcseg-2 au	g-pcseg-3 au	g-pcseg-4
full	1	0.216452 0.214288 0.213046	0.213613	0.212750	0.212724	0.212726
	2	$0.296755 \ 0.278233 \ 0.270437$	0.266008	0.267172	0.267010	0.267013
	3	$0.306463 \ 0.293833 \ 0.283983$	0.279100	0.278970	0.278788	0.278795
	4	$0.332757 \ 0.303146 \ 0.291274$	0.287035	0.286172	0.285906	0.285898
	5	$0.341918 \ 0.324035 \ 0.313872$	0.308122	0.308790	0.308588	0.308587
df-J	1	0.216445 0.214281 0.213035	0.213602	0.212740	0.212713	
	2	$0.296752 \ 0.278245 \ 0.270452$	0.266004	0.267182	0.267021	
	3	$0.306457 \ 0.293833 \ 0.283989$	0.279094	0.278979	0.278797	

TABLE S18:	acetamide -	- Excitation-energy
------------	-------------	---------------------

acetamide	Sta	te pcseg-1 j	pcseg-2 p	g-pcseg-3 aug-pcseg-4			
	4	0.332755	0.303154	0.291278	0.287027	0.286172	0.285905
	5	0.341903	0.324050	0.313905	0.308098	0.308815	0.308615
admm	1	0.210793	0.215075	0.213172	0.208102	0.213084	0.212771
	2	0.305207	0.283892	0.271813	0.264596	0.266967	0.267154
	3	0.306166	0.298367	0.286906	0.276184	0.279036	0.278956
	4	0.341583	0.313918	0.294308	0.285180	0.286361	0.286029
	5	0.346947	0.330100	0.316248	0.307064	0.308758	0.308890

TABLE S18: acetamide — Excitation-energy

TABLE S19: acetone — Excitation-energy

acetone	Sta	te pcseg-1 pcseg-2 pcseg-3 au	g-pcseg-1 au	g-pcseg-2 au	g-pcseg-3 au	lg-pcseg-4
full	1	$0.166468 \ 0.166772 \ 0.166596$	0.167074	0.166524	0.166526	0.166537
	2	$0.325477 \ 0.293122 \ 0.280859$	0.273978	0.273929	0.273728	0.273735
	3	$0.344403 \ 0.333167 \ 0.325765$	0.312966	0.310895	0.309849	0.309657
	4	$0.349387 \ 0.343987 \ 0.330876$	0.314634	0.314018	0.313293	0.313111
	5	$0.391204 \ \ 0.356872 \ \ 0.334903$	0.315787	0.314209	0.313709	0.313590
df-J	1	$0.166465 \ 0.166767 \ 0.166589$	0.167070	0.166518	0.166520	
	2	0.325479 0.293129 0.280866	0.273969	0.273933	0.273733	
	3	$0.344403 \ 0.333168 \ 0.325773$	0.312948	0.310891	0.309846	
	4	$0.349388 \ 0.343986 \ 0.330894$	0.314613	0.314020	0.313309	
	5	$0.391197 \ 0.356887 \ 0.334924$	0.315777	0.314221	0.313711	
admm	1	$0.161279 \ 0.166254 \ 0.166612$	0.162036	0.166753	0.166575	
	2	$0.335756 \ 0.306279 \ 0.284395$	0.271077	0.274144	0.273873	
	3	$0.343562 \ 0.336850 \ 0.328228$	0.311626	0.311371	0.310109	
	4	$0.346991 \ 0.344936 \ 0.337806$	0.312253	0.314361	0.313731	
	5	0.397592 0.368216 0.342238	0.314548	0.315296	0.314046	

TABLE S20: butadiene — Excitation-energy

butadiene	Stat	e pcseg-1	pcseg-2 pcse	eg-3 au	g-pcseg-1 a	aug-pcseg-2	aug-pcseg-3 a	aug-pcseg-4
full	1	0.228177	0.221834 0.2	19216	0.220008	0.218762	0.218628	0.218626

butadiene	Sta	ate pcseg-1 pcseg-2 pcseg-3	aug-pcseg-1 a	ug-pcseg-2 au	ıg-pcseg-3 au	g-pcseg-4
	2	0.290876 0.267159 0.2547	29 0.242299	0.242295	0.242116	0.242091
	3	$0.296379 \ 0.272796 \ 0.2614$	0.253492	0.253762	0.253606	0.253590
	4	$0.300141 \ 0.284486 \ 0.2718$	0.261021	0.261259	0.261084	0.261017
	5	0.309020 0.287911 0.2870	038 0.288933	0.278681	0.275515	0.274795
df-J	1	0.228178 0.221828 0.2192	208 0.220009	0.218755	0.218620	
	2	$0.290876 \ 0.267149 \ 0.2547$	0.242311	0.242274	0.242094	
	3	$0.296385 \ 0.272792 \ 0.2614$	0.253496	0.253745	0.253585	
	4	$0.300140 \ 0.284474 \ 0.2718$	0.261026	0.261240	0.261063	
	5	0.309020 0.287906 0.2870	0.288928	0.278650	0.275483	
admm	1	0.228221 0.223464 0.2201	.84 0.220442	0.219103	0.218642	
	2	$0.287163 \ 0.280633 \ 0.2573$	3 10 0.242455	0.242545	0.242191	
	3	$0.304553 \ 0.281065 \ 0.2641$.22 0.254290	0.253758	0.253710	
	4	$0.311093 \ 0.288656 \ 0.2744$.0.261855	0.261358	0.261184	
	5	0.314705 0.295527 0.2874	0.286632	0.270609	0.276170	

TABLE S20: but adiene — Excitation-energy

TABLE S21: cyclopropene — Excitation-energy

-	cyclopropene	Sta	te pcseg-1	pcseg-2 p	pcseg-3 aug	g-pcseg-1 aug	g-pcseg-2 aug	g-pcseg-3 aug	g-pcseg-4
_	full	1	0.247516	0.237900	0.235187	0.236517	0.235031	0.234771	0.234759
		2	0.252395	0.247514	0.246489	0.248094	0.246549	0.246343	0.246334
		3	0.282157	0.278604	0.272523	0.260931	0.260812	0.260661	0.260652
		4	0.326965	0.288458	0.277738	0.274841	0.274616	0.274339	0.274311
		5	0.330123	0.298487	0.283499	0.276429	0.275905	0.275702	0.275680
	df-J	1	0.247531	0.237920	0.235208	0.236538	0.235051	0.234791	
		2	0.252396	0.247510	0.246483	0.248092	0.246541	0.246336	
		3	0.282172	0.278627	0.272515	0.260931	0.260798	0.260644	
		4	0.326957	0.288457	0.277763	0.274849	0.274594	0.274315	
		5	0.330120	0.298487	0.283491	0.276452	0.275910	0.275708	
	admm	1	0.247098	0.240731	0.236166	0.236268	0.235355	0.234856	
		2	0.252208	0.248972	0.246901	0.247884	0.247031	0.246387	
		3	0.280902	0.279939	0.276066	0.260124	0.260920	0.260780	

cyclopropene	Sta	State pcseg-1 pcseg-2 pcseg-3 aug-pcseg-1 aug-pcseg-2 aug-pcseg-3 aug-pcseg-4								
	4	0.332121	0.304430	0.278221	0.274857	0.274957	0.274511			
	5	0.345030	0.312175	0.287655	0.276138	0.276175	0.275893			

=

=

TABLE S21: cyclopropene — Excitation-energy

TABLE S22: formaldehyde — Excitation-energy

	formaldehyde	Sta	te pcseg-1	pcseg-2 p	ocseg-3 aug	g-pcseg-1 a	ug-pcseg-2 au	g-pcseg-3 au	ıg-pcseg-4
-	full	1	0.144688	0.144550	0.144295	0.144760	0.144257	0.144223	0.144249
		2	0.331960	0.305329	0.292760	0.285139	0.285739	0.285637	0.285666
		3	0.336827	0.345332	0.325595	0.314557	0.313763	0.313248	0.313237
		4	0.354520	0.350531	0.337213	0.322335	0.321787	0.321195	0.321147
		5	0.387658	0.364781	0.342461	0.335267	0.330971	0.329445	0.329246
	df-J	1	0.144686	0.144539	0.144282	0.144757	0.144245	0.144210	
		2	0.331962	0.305329	0.292753	0.285121	0.285726	0.285620	
		3	0.336833	0.345329	0.325572	0.314543	0.313736	0.313215	
		4	0.354523	0.350523	0.337193	0.322260	0.321743	0.321143	
		5	0.387661	0.364786	0.342456	0.335223	0.330921	0.329391	
	admm	1	0.139412	0.144546	0.144317	0.139832	0.144559	0.144241	
		2	0.330257	0.316506	0.295693	0.282409	0.285651	0.285670	
		3	0.341192	0.347085	0.331791	0.312360	0.313724	0.313339	
		4	0.354032	0.366877	0.342427	0.322353	0.321727	0.321264	
		5	0.385464	0.378608	0.344582	0.336211	0.331435	0.329744	

TABLE S23: formamide — Excitation-energy

formamide	Sta	te pcseg-1	pcseg-2 p	pcseg-3 aug	g-pcseg-1 a	ug-pcseg-2 au	g-pcseg-3 au	lg-pcseg-4
full	1	0.211734	0.209560	0.208317	0.208965	0.208036	0.207970	0.207974
	2	0.300732	0.282937	0.275382	0.270809	0.271911	0.271771	0.271772
	3	0.302582	0.290403	0.283352	0.280506	0.279927	0.279659	0.279645
	4	0.334789	0.317914	0.302991	0.295526	0.294849	0.294586	0.294568
	5	0.347358	0.318862	0.308545	0.303383	0.304042	0.303906	0.303909

formamide	Sta	te pcseg-1 pcseg-2 pcseg-3 au	g-pcseg-1 aug	g-pcseg-2 aug	g-pcseg-3 aug-pcseg-4
df-J	1	$0.211724 \ 0.209547 \ 0.208298$	0.208949	0.208019	0.207950
	2	$0.300729 \ 0.282946 \ 0.275390$	0.270799	0.271916	0.271773
	3	$0.302576 \ 0.290396 \ 0.283345$	0.280496	0.279922	0.279650
	4	$0.334779 \ 0.317920 \ 0.302984$	0.295512	0.294840	0.294573
	5	$0.347354 \ 0.318863 \ 0.308552$	0.303357	0.304041	0.303900
admm	1	$0.205309 \ 0.210186 \ 0.208420$	0.203286	0.208421	0.207987
	2	$0.302285 \ 0.288110 \ 0.276502$	0.269156	0.271787	0.271888
	3	$0.308919 \ 0.293619 \ 0.285201$	0.278641	0.280148	0.279747
	4	$0.341094 \ 0.324366 \ 0.306852$	0.294071	0.295003	0.294688
	5	$0.354471 \ 0.329168 \ 0.310830$	0.302285	0.304069	0.304031

TABLE S23: formamide — Excitation-energy

TABLE S24: furan — Excitation-energy

furan	Sta	te pcseg-1	pcseg-2 p	ocseg-3 aug	g-pcseg-1 a	aug-pcseg-2 au	g-pcseg-3 au	ıg-pcseg-4
full	1	0.236388	0.228585	0.226101	0.227530	0.225830	0.225594	0.225568
	2	0.279748	0.264645	0.248417	0.238000	0.237214	0.236979	0.236964
	3	0.296444	0.284464	0.269618	0.258044	0.257521	0.257305	0.257234
	4	0.319313	0.300182	0.282317	0.268375	0.267122	0.266619	0.266448
	5	0.321701	0.312037	0.288169	0.278279	0.269692	0.267300	0.266890
df-J	1	0.236384	0.228577	0.226094	0.227528	0.225823	0.225587	
	2	0.279740	0.264648	0.248419	0.238013	0.237215	0.236984	
	3	0.296445	0.284466	0.269618	0.258044	0.257505	0.257289	
	4	0.319310	0.300193	0.282324	0.268377	0.267107	0.266610	
	5	0.321698	0.312044	0.288152	0.278268	0.269720	0.267325	
admm	1	0.238067	0.230637	0.226907	0.228825	0.226133	0.225601	
	2	0.279647	0.275301	0.252455	0.240131	0.237550	0.237117	
	3	0.308403	0.277859	0.272928	0.260544	0.257872	0.257438	
	4	0.320998	0.299981	0.286926	0.271719	0.267628	0.267014	
	5	0.336326	0.313669	0.295723	0.281295	0.270928	0.267549	

ethene	State p	cseg-1 pcseg-2	pcseg-3 aug	g-pcseg-1 au	g-pcseg-2 au	g-pcseg-3 au	g-pcseg-4
full	1 0.2	91706 0.28043	0 0.277153	0.274469	0.274876	0.274696	0.274703
	2 0.3	13712 0.29272	0 0.283153	0.278415	0.276844	0.276630	0.276628
	3 0.3	21128 0.30813	1 0.305391	0.298163	0.298327	0.298098	0.298082
	4 0.3	41524 0.32065	9 0.309546	0.304844	0.305013	0.304684	0.304634
	5 0.3	58274 0.33169	7 0.316347	0.309718	0.307582	0.307415	0.307415
df-J	1 0.2	91717 0.28042	4 0.277149	0.274407	0.274831	0.274652	
	2 0.3	13719 0.29268	3 0.283123	0.278430	0.276841	0.276625	
	3 0.3	21116 0.30811	6 0.305378	0.298064	0.298293	0.298062	
	4 0.3	41527 0.32065	7 0.309537	0.304811	0.304969	0.304642	
	5 0.3	58282 0.33169	0 0.316337	0.309721	0.307570	0.307403	
admm	1 0.2	93480 0.28392	8 0.278335	0.274974	0.275199	0.274734	
	2 0.3	10294 0.30393	6 0.284722	0.279704	0.277303	0.276615	
	3 0.3	35336 0.30967	7 0.306711	0.300135	0.299096	0.298158	
	4 0.3	50406 0.32866	6 0.311715	0.306032	0.305807	0.304584	
	5 0.3	55722 0.34280	0 0.319262	0.307729	0.308257	0.307518	

TABLE S25: ethene — Excitation-energy

TABLE S26: imidazole — Excitation-energy

imidazole	Sta	State pcseg-1 pcseg-2 pcseg-3 aug-pcseg-1 aug-pcseg-2 aug-pcseg-3 aug-pcseg-4								
full	1	0.253099 0.244905 0.23	32655 0.226512	0.226961	0.226810	0.226811				
	2	$0.265207 \ 0.245162 \ 0.245162$	41714 0.242108	0.240773	0.240549	0.240533				
	3	$0.272462 \ 0.262121 \ 0.26$	61208 0.254161	0.254251	0.254024	0.253971				
	4	$0.280655 \ 0.272034 \ 0.20$	65826 0.263391	0.261043	0.260958	0.260953				
	5	0.310388 0.280360 0.2	67920 0.265161	0.264496	0.264111	0.263997				
df-J	1	$0.253093 \ 0.244895 \ 0.23$	32655 0.226518	0.226955	0.226807					
	2	$0.265199 \ 0.245165 \ 0.245165$	41706 0.242109	0.240768	0.240543					
	3	$0.272463 \ 0.262111 \ 0.262111$	61197 0.254157	0.254235	0.254009					
	4	$0.280646 \ 0.272022 \ 0.20$	65828 0.263384	0.261033	0.260947					
	5	$0.310381 \ 0.280365 \ 0.20$	67907 0.265171	0.264490	0.264113					
admm	1	0.254880 0.247215 0.23	35810 0.228505	0.226920	0.226920					
	2	$0.259999 \ 0.254799 \ 0.24$	42907 0.243454	0.240877	0.240563					

imidazole	Sta	te pcseg-1 pcseg-2 pcseg-3 aug-pcseg-1 aug-pcseg-2 aug-pcseg-3 aug-pc	seg-4
	3	$0.282426 \ 0.262812 \ 0.261467 \ 0.256813 \ 0.254479 \ 0.254415$	
	4	$0.285725 \ 0.274462 \ 0.269145 \ \ 0.257896 \ \ 0.261664 \ \ 0.260981$	
	5	$0.306267 \ 0.294688 \ 0.269379 \ 0.268248 \ 0.264889 \ 0.264450$	

TABLE S26: imidazole — Excitation-energy

TABLE S27: propanamide — Excitation-energy

propanamide	Sta	ate pcseg-1 pcseg-2 pcseg-3 aug	g-pcseg-1 au	ig-pcseg-2 au	g-pcseg-3 au	ıg-pcseg-4
full	1	$0.218351 \ 0.215399 \ 0.214139$	0.214842	0.213894	0.213879	0.213882
	2	$0.297166 \ 0.277899 \ 0.269747$	0.265539	0.266727	0.266561	0.266565
	3	$0.305859 \ 0.293165 \ 0.283701$	0.279797	0.279519	0.279339	0.279345
	4	$0.334989 \ 0.303791 \ 0.291605$	0.287384	0.286630	0.286401	0.286398
	5	$0.341451 \ 0.322972 \ 0.312551$	0.306780	0.307464	0.307266	0.307266
df-J	1	$0.218344 \ 0.215392 \ 0.214129$	0.214832	0.213885	0.213869	
	2	$0.297163 \ 0.277908 \ 0.269758$	0.265535	0.266728	0.266564	
	3	$0.305853 \ 0.293163 \ 0.283701$	0.279791	0.279515	0.279336	
	4	$0.334989 \ 0.303795 \ 0.291603$	0.287378	0.286621	0.286392	
	5	$0.341436 \ \ 0.322980 \ \ 0.312574$	0.306757	0.307471	0.307278	
admm	1	$0.213106 \ 0.216419 \ 0.214331$	0.209810	0.214327	0.213936	
	2	$0.305497 \ 0.283709 \ 0.271317$	0.264110	0.266498	0.266691	
	3	0.305730 0.297800 0.286700	0.277209	0.279646	0.279474	
	4	$0.343537 \ 0.314725 \ 0.294816$	0.285538	0.286859	0.286518	
	5	$0.346500 \ 0.329086 \ 0.315039$	0.305724	0.307398	0.307538	

TABLE S28: pyrrole — Excitation-energy

pyrrole	Sta	te pcseg-1	pcseg-2 p	pcseg-3 aug	g-pcseg-1 a	ug-pcseg-2 au	ıg-pcseg-3 au	ıg-pcseg-4
full	1	0.245515	0.230068	0.217695	0.210802	0.210975	0.210843	0.210841
	2	0.256706	0.236542	0.249017	0.237502	0.237402	0.230621	0.230597
	3	0.288300	0.261686	0.253193	0.239857	0.239302	0.237261	0.237184
	4	0.307027	0.269808	0.258256	0.250451	0.251051	0.239022	0.238927
	5	0.308472	0.271287	0.273805	0.262042	0.258867	0.248835	0.248360

pyrrole	Sta	ate pcseg-1 pcseg-2 pcseg-3 aug	g-pcseg-1 au	g-pcseg-2 aug	g-pcseg-3 aug-pcseg-4
df-J	1	$0.245510 \ 0.230070 \ 0.217692$	0.210805	0.210963	0.210836
	2	$0.256709 \ 0.236532 \ 0.249016$	0.237495	0.237378	0.230618
	3	$0.288301 \ 0.261686 \ 0.253195$	0.239861	0.239286	0.237240
	4	$0.307028 \ 0.269811 \ 0.258251$	0.250450	0.251034	0.239009
	5	$0.308474 \ 0.271288 \ 0.273793$	0.262029	0.258871	0.248849
admm	1	0.247426 0.239270 0.220748	0.212206	0.211045	0.210894
	2	$0.268617 \ 0.239763 \ 0.251741$	0.239280	0.237532	0.230658
	3	$0.269711 \ 0.272100 \ 0.257524$	0.241991	0.239701	0.237317
	4	$0.300049 \ 0.284120 \ 0.261124$	0.252315	0.251007	0.239186
	5	$0.312354 \ 0.284653 \ 0.279030$	0.264915	0.259662	0.249391

TABLE S28: pyrrole — Excitation-energy

C. Isotropic polarizability — CAM-B3LYP (α =0.21, β =0.79, μ =0.45)

TABLE S29. acetamide — Isotropic Polarizability

				-	•		
acetamide	e pcseg-1	pcseg-2	pcseg-3	aug-pcseg-1	aug-pcseg-2	aug-pcseg-3	aug-pcseg-4
full	29.802693	34.859463	37.181450	37.453367	37.659947	37.725639	37.728816
df-J	29.803013	34.861625	37.183167	37.455265	37.662023	37.727656	
admm	29.465019	34.234052	36.815737	36.768085	37.629653	37.711756	

TABLE S30. acetone — Isotropic Polarizability

acetone	pcseg-1	pcseg-2	pcseg-3	aug-pcseg-1	aug-pcseg-2	aug-pcseg-3	aug-pcseg-4
full	34.462989	38.748795	40.378179	40.260839	40.622055	40.685357	40.688462
df-J	34.463201	38.750681	40.379306	40.261529	40.623627	40.686730	
admm	34.268200	38.212588	40.118523	39.935070	40.564059	40.669446	

butadiene	pcseg-1	pcseg-2	pcseg-3	aug-pcseg-1	aug-pcseg-2	aug-pcseg-3	aug-pcseg-4
full	46.405724	52.643320	55.132480	55.262647	55.662270	55.737100	55.739134
df-J	46.405326	52.649725	55.139236	55.267100	55.668514	55.743615	
admm	46.014852	51.866310	54.702070	54.446374	55.543550	55.726547	

TABLE S31. butadiene — Isotropic Polarizability

TABLE S32. cyclopropene — Isotropic Polarizability

су	clopropene	pcseg-1	pcseg-2	pcseg-3	aug-pcseg-1	aug-pcseg-2	aug-pcseg-3	aug-pcseg-4
	full	28.408885	32.141353	33.500044	33.491522	33.764208	33.836061	33.838580
	df-J	28.409074	32.143834	33.502866	33.494020	33.767230	33.839148	
	admm	28.060236	31.809425	33.244834	32.893599	33.726468	33.826624	

TABLE S33. formaldehyde — Isotropic Polarizability

	1112		- maraonj a		e i olaribaoli	,	
formaldehyde	pcseg-1	pcseg-2	pcseg-3	aug-pcseg-1	aug-pcseg-2	aug-pcseg-3	aug-pcseg-4
full	12.980648	15.380369	16.878770	17.081821	17.340241	17.401569	17.406570
df-J	12.980532	15.382000	16.880253	17.082767	17.341994	17.403373	
admm	12.839199	15.123231	16.675622	16.717464	17.305683	17.392128	

TABLE S34. formamide — Isotropic Polarizability

					,)	
formamide	pcseg-1	pcseg-2	pcseg-3	aug-pcseg-1	aug-pcseg-2	aug-pcseg-3	aug-pcseg-4
full	19.683294	23.806254	25.924228	26.456734	26.586850	26.644188	26.648753
df-J	19.683451	23.808507	25.926444	26.459542	26.589541	26.646933	
admm	19.363670	23.309076	25.613483	25.791152	26.558800	26.636055	

TABLE S35. furan — Isotropic Polarizability

	-		, raran	100010pie i e	iai illas illeg		
furan	pcseg-1	pcseg-2	pcseg-3	aug-pcseg-1	aug-pcseg-2	aug-pcseg-3	aug-pcseg-4
full	38.584391	44.475250	46.869637	47.088901	47.377612	47.460906	47.463931
df-J	38.584956	44.480907	46.876177	47.095408	47.384476	47.468003	
admm	37.966784	43.831396	46.406335	45.958802	47.319578	47.452685	

	_						
ethene	pcseg-1	pcseg-2	pcseg-3	aug-pcseg-1	aug-pcseg-2	aug-pcseg-3	aug-pcseg-4
full	21.334358	25.035257	26.916273	27.218190	27.446241	27.511194	27.511995
df-J	21.334052	25.039027	26.921174	27.221761	27.451258	27.516224	
 admm	21.125983	24.628594	26.635806	26.503874	27.386287	27.503594	

TABLE S36. ethene — Isotropic Polarizability

TABLE S37. imidazole — Isotropic Polarizability

imidazole	pcseg-1	pcseg-2	pcseg-3	aug-pcseg-1	aug-pcseg-2	aug-pcseg-3	aug-pcseg-4
full	38.197294	44.339926	46.786254	47.105762	47.361325	47.422604	47.424837
df-J	38.198249	44.345607	46.792171	47.112476	47.367742	47.429148	
admm	37.506095	43.543170	46.299023	45.982428	47.295130	47.415252	

TABLE S38. propanamide — Isotropic Polarizability

		1	1	1		v	
propanamide	pcseg-1	pcseg-2	pcseg-3	aug-pcseg-1	aug-pcseg-2	aug-pcseg-3	aug-pcseg-4
full	40.305875	46.209325	48.581237	48.655382	48.923047	48.995868	48.999084
df-J	40.306215	46.211696	48.582955	48.657101	48.925211	48.997877	
admm	39.923338	45.452739	48.199559	47.946398	48.886416	48.979793	

TABLE S39. pyrrole — Isotropic Polarizability

			1.0				
pyrrole	pcseg-1	pcseg-2	pcseg-3	aug-pcseg-1	aug-pcseg-2	aug-pcseg-3	aug-pcseg-4
full	42.767437	49.402845	52.246206	52.581051	52.896806	52.973324	52.976535
df-J	42.768067	49.410096	52.254191	52.589181	52.905131	52.981796	
admm	42.020032	48.619303	51.650051	51.152708	52.816570	52.965399	

D. Anisotropic polarizability — CAM-B3LYP (α =0.21, β =0.79, μ =0.45)

	IIIDEE 510. accountace				of an izabili	J	
acetamide	pcseg-1	pcseg-2	pcseg-3	aug-pcseg-1	aug-pcseg-2	aug-pcseg-3	aug-pcseg-4
full	13.419961	12.651303	12.713931	12.673582	12.666536	12.674291	12.675498
df-J	13.419588	12.647947	12.712177	12.671900	12.664420	12.672316	
admm	13.685889	12.573912	12.662813	12.967843	12.645385	12.661227	

TABLE S40. acetamide — Anisotropic Polarizability

TABLE S41. acetone — Anisotropic Polarizability

				1	•	/	
acetone	pcseg-1	pcseg-2	pcseg-3	aug-pcseg-1	aug-pcseg-2	aug-pcseg-3	aug-pcseg-4
full	10.693481	11.178961	11.243468	11.114783	11.107189	11.117860	11.118941
df-J	10.693043	11.178043	11.243042	11.114754	11.107231	11.117773	
admm	10.808465	11.021630	11.197167	11.394136	11.073078	11.115532	

TABLE S42. butadiene — Anisotropic Polarizability

						-5	
butadiene	pcseg-1	pcseg-2	pcseg-3	aug-pcseg-1	aug-pcseg-2	aug-pcseg-3	aug-pcseg-4
full	56.282301	51.125601	47.912697	46.588405	47.049789	46.994652	46.995531
df-J	56.280804	51.118037	47.906945	46.579159	47.042537	46.987175	
admm	57.039641	51.327319	48.326099	48.607239	46.809423	46.983496	

TABLE S43. cyclopropene — Anisotropic Polarizability

cyclopropene	pcseg-1	pcseg-2	pcseg-3	aug-pcseg-1	aug-pcseg-2	aug-pcseg-3	aug-pcseg-4	
full	13.265360	11.444577	9.924664	9.460482	9.582459	9.565589	9.567414	
df-J	13.265428	11.445158	9.924610	9.460351	9.582341	9.565025		
admm	13.577582	11.613056	10.150852	10.072391	9.499867	9.559119		

					-		
formaldehyde	pcseg-1	pcseg-2	pcseg-3	aug-pcseg-1	aug-pcseg-2	aug-pcseg-3	aug-pcseg-4
full	9.908739	9.731496	8.507488	8.259425	8.048617	8.012154	8.008569
df-J	9.908500	9.729681	8.507160	8.259203	8.048109	8.011680	
admm	10.118221	9.614578	8.637029	9.226318	8.060417	8.009027	

TABLE S44. formaldehyde — Anisotropic Polarizability

TABLE S45. formamide — Anisotropic Polarizability

formamide	pcseg-1	pcseg-2	pcseg-3	aug-pcseg-1	aug-pcseg-2	aug-pcseg-3	aug-pcseg-4
full	14.390150	13.409728	13.150210	12.964776	12.844560	12.843626	12.843126
df-J	14.389919	13.405701	13.148040	12.962328	12.841655	12.840867	
admm	14.685051	13.354852	13.161923	13.526632	12.842662	12.827256	

TABLE S46. furan — Anisotropic Polarizability

furan	pcseg-1	pcseg-2	pcseg-3	aug-pcseg-1	aug-pcseg-2	aug-pcseg-3	aug-pcseg-4
full	27.562130	21.866259	20.862780	20.226148	20.901208	20.935612	20.941325
df-J	27.559964	21.850863	20.848514	20.208680	20.887081	20.920900	
admm	28.180006	22.055110	21.003350	20.702413	20.548119	20.879999	

TABLE S47. ethene — Anisotropic Polarizability

ethene	pcseg-1	pcseg-2	pcseg-3	aug-pcseg-1	aug-pcseg-2	aug-pcseg-3	aug-pcseg-4
full	20.089015	16.241834	13.546400	12.549648	12.714159	12.689724	12.692741
df-J	20.088245	16.237328	13.541052	12.540999	12.706891	12.682393	
admm	20.499878	16.532797	13.849297	14.002798	12.526970	12.696430	

TABLE S48. imidazole — Anisotropic Polarizability

imidazole	pcseg-1	pcseg-2	pcseg-3	aug-pcseg-1	aug-pcseg-2	aug-pcseg-3	aug-pcseg-4
full	26.152756	22.254395	21.985358	21.059585	21.846402	21.883360	21.888413
df-J	26.149662	22.238985	21.972488	21.042506	21.833151	21.869839	
admm	26.771575	22.168899	22.023731	21.461074	21.483066	21.831181	

-3 aug-pcseg-4
3 15.815265
7
2

TABLE S49. propanamide — Anisotropic Polarizability

TABLE S50. pyrrole — Anisotropic Polarizability

pyrrole	pcseg-1	pcseg-2	pcseg-3	aug-pcseg-1	aug-pcseg-2	aug-pcseg-3	aug-pcseg-4
full	31.389085	24.577973	23.405825	22.606358	23.373792	23.406540	23.413282
df-J	31.386807	24.558718	23.387797	22.583957	23.356402	23.388965	
admm	32.076945	24.794861	23.542018	23.115646	22.984627	23.342168	

E. Beta parallel — CAM-B3LYP (α =0.21, β =0.79, μ =0.45)

TABLE S51. acetamide — Beta parallel

acetamide	pcseg-1	pcseg-2	pcseg-3	aug-pcseg-1	aug-pcseg-2	aug-pcseg-3	aug-pcseg-4
full	-36.672672	-32.041067	-24.010715	-24.443056	-22.486146	-22.120666	-22.092090
df-J	-36.670349	-32.041730	-24.004313	-24.441341	-22.494782	-22.126645	
admm	-33.677763	-34.900040	-26.040801	-24.378820	-23.089756	-22.447193	

TABLE S52. acetone — Beta parallel

acetone	pcseg-1	pcseg-2	pcseg-3	aug-pcseg-1	aug-pcseg-2	aug-pcseg-3	aug-pcseg-4
full	-57.054566	-53.488414	-38.324128	-29.569145	-29.308151	-29.129156	-29.126174
df-J	-57.058543	-53.498666	-38.304765	-29.524937	-29.284500	-29.104305	
admm	-54.448583	-57.055207	-42.185171	-29.396897	-29.407673	-29.383175	

butadiene	pcseg-1	pcseg-2	pcseg-3	aug-pcseg-1	aug-pcseg-2	aug-pcseg-3	aug-pcseg-4
full	-0.000130	-0.000056	0.000000	0.000000	0.000000	0.000000	0.000000
df-J	-0.000043	-0.000021	0.000000	0.000000	0.000000	0.000000	
admm	-0.000014	-0.000033	0.000000	0.000000	0.000000	0.000000	

TABLE S53. butadiene — Beta parallel

TABLE S54. cyclopropene — Beta parallel

_	cyclopropene	pcseg-1	pcseg-2	pcseg-3	aug-pcseg-1	aug-pcseg-2	aug-pcseg-3	aug-pcseg-4
	full	19.477633	1.934554	-13.225419	-23.126419	-21.099899	-20.788346	-20.793403
	df-J	19.481859	1.918175	-13.291327	-23.237285	-21.216705	-20.904860	
	admm	22.379399	7.510609	-11.016866	-19.795392	-23.455560	-20.888559	
-								

TABLE S55. formaldehyde — Beta parallel

formaldehyde	pcseg-1	pcseg-2	pcseg-3	aug-pcseg-1	aug-pcseg-2	aug-pcseg-3	aug-pcseg-4		
full	-65.092127	-59.418554	-47.625502	-45.937005	-42.131683	-41.510998	-41.577742		
df-J	-65.090282	-59.439021	-47.619942	-45.903612	-42.106402	-41.483403			
admm	-62.801904	-59.212776	-50.415002	-50.856500	-42.976118	-41.710016			

TABLE S56. formamide — Beta parallel

formamide	pcseg-1	pcseg-2	pcseg-3	aug-pcseg-1	aug-pcseg-2	aug-pcseg-3	aug-pcseg-4
full	-35.073130	-33.716813	-27.217841	-31.749130	-29.128264	-28.147018	-28.042218
df-J	-35.070002	-33.688500	-27.218286	-31.773751	-29.143277	-28.163025	
admm	-30.527289	-34.826394	-29.277902	-33.024583	-29.493302	-28.468869	

TABLE S57. furan — Beta parallel

				I I I			
furan	pcseg-1	pcseg-2	pcseg-3	aug-pcseg-1	aug-pcseg-2	aug-pcseg-3	aug-pcseg-4
full	-17.297419	-17.687269	-23.361587	-23.979076	-27.129249	-27.860574	-27.851834
df-J	-17.293895	-17.682614	-23.360406	-24.006291	-27.153883	-27.885337	
admm	-15.187312	-16.536204	-22.459311	-20.087019	-23.138613	-27.981172	

TABLE S58. ethene — Beta parallel

ethene	pcseg-1	pcseg-2	pcseg-3	aug-pcseg-1	aug-pcseg-2	aug-pcseg-3	aug-pcseg-4
full	-0.000005	0.000000	-0.000005	0.000000	0.000000	0.000000	0.000000
df-J	-0.000037	-0.000000	0.000000	0.000000	0.000000	0.000000	
admm	-0.000012	0.000042	0.000000	0.000000	0.000000	0.000000	

TABLE S59. imidazole — Beta parallel

imidazole	pcseg-1	pcseg-2	pcseg-3	aug-pcseg-1	aug-pcseg-2	aug-pcseg-3	aug-pcseg-4
full	-35.454719	-16.534850	2.125554	3.737302	1.702597	1.632315	1.562271
df-J	-35.451778	-16.532146	2.135928	3.740391	1.716556	1.644275	
admm	-33.607567	-21.992542	-2.559878	1.374820	2.108812	1.512979	

TABLE S60. propanamide — Beta parallel

_

propanamide	pcseg-1	pcseg-2	pcseg-3	aug-pcseg-1	aug-pcseg-2	aug-pcseg-3	aug-pcseg-4
full	-31.705695	-25.890451	-19.524724	-20.991407	-21.194861	-21.226517	-21.209861
df-J	-31.700404	-25.884689	-19.529172	-21.002276	-21.208285	-21.240083	
admm	-28.565217	-28.368504	-21.322300	-21.730513	-21.645606	-21.232088	

TABLE S61. pyrrole — Beta parallel

pyrrole	pcseg-1	pcseg-2	pcseg-3	aug-pcseg-1	aug-pcseg-2	aug-pcseg-3	aug-pcseg-4	
full	-1.622995	7.757819	16.673577	14.511045	15.386112	15.396816	15.303400	
df-J	-1.629149	7.748175	16.675586	14.534059	15.416108	15.428524		
admm	-2.856450	4.140626	15.057175	10.821016	12.161091	15.364307		

TABLE S6. Average component wall timings in seconds per SCF/response interation for the acetone molecule. Here reg-J refers to J-engine based Coulomb, df-J to density-fitted Coulomb, LinK to linear-scaling exchange, ADMM to ADMM exchange, XC to exchange-correction and solver to the matrix operations performed in either the SCF or response solver.

		aug-pcseg-2	aug-pcseg-3
SCF	$\operatorname{reg-}J$	6.1	100.2
	$\mathrm{df} ext{-}J$	0.2	0.9
	LinK	36.4	465.6
	ADMM	6.3	47.8
	\mathbf{XC}	3.7	10.7
	solver	3.1	13.6
Excitation energy	$\operatorname{reg-}J$	6.1	227.9
	$\mathrm{df} extsf{-}J$	0.8	3.2
	LinK	59.0	620.1
	$ADMM^{a}$	23.0	148.5
	XC	14.8	42.8
	solver	5.9	30.3
Polarizabilities	$\operatorname{reg-}J$	6.5	109.0
	$\mathrm{df} ext{-}J$	0.2	0.9
	LinK	33.7	492.3
	ADMM	6.5	42.3
	XC	5.5	16.0
	solver	2.2	10.9
Hyperpolarizabilities	$\operatorname{reg-}J$	6.6	109.0
	$\mathrm{df} ext{-}J$	0.2	0.9
	LinK	33.8	499.2
	ADMM	6.5	42.4
	XC	5.5	16.0
	solver	2.2	10.7

^a The ADMM excitation vectors have been calculated separately for each of the five excitation energies. Timings reported include the sum of all vectors