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Abstract (200 words) 36 

Parental environmental factors including diet, body composition, metabolism and 37 

stress affect the health and chronic disease risk of people throughout their lives, as 38 

captured in the ‘Developmental Origins of Health and Disease’ (DOHaD) concept. 39 

Research across epidemiological, clinical and basic science fields has identified the 40 

period around conception as being critical in the processes mediating parental 41 

influences on the next generation’s health. During this time, from the maturation of 42 

gametes through to early embryonic development, parental lifestyle can adversely 43 

influence long-term risks of offspring cardiovascular, metabolic, immune and 44 

neurological morbidities, often termed ‘developmental programming’. We review 45 

‘periconceptional’ induction of disease risk from four broad exposures: maternal 46 

overnutrition and obesity; maternal undernutrition; related paternal factors; and from 47 

the use of assisted reproductive treatment. Human studies and animal models 48 

demonstrate the underlying biological mechanisms, including epigenetic, cellular, 49 

physiological and metabolic processes. A novel meta-analysis of mouse paternal and 50 

maternal protein undernutrition indicate distinct parental periconceptional 51 

contributions to postnatal outcomes. We propose that the evidence for 52 

periconceptional effects on lifetime health is now so compelling that it calls for new 53 

guidance on parental preparation for pregnancy, beginning before conception, to 54 

protect the health of offspring. 55 

 56 

  57 
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Introduction 58 

The notion that maternal physiology, body composition, diet and lifestyle during pregnancy 59 

have profound and enduring effects on offspring long-term health and disease risk into 60 

adulthood has received strong evidential support across epidemiological, medical and basic 61 

science fields1-3. Thus, the ‘Developmental Origins of Health and Disease’ (DOHaD) concept 62 

has emerged, proposing that poor developmental experience can provoke increased risk of 63 

non-communicable disease in later life, particularly cardiovascular and metabolic 64 

comorbidities such as hypertension, obesity and type-2 diabetes, atopic conditions and some 65 

forms of cancer, as well as neurological impairment. A recent focus in DOHaD research has 66 

been to probe when during pregnancy the conceptus is most vulnerable to such adverse 67 

influences, thereby informing targeted protection and possible intervention. Increasing 68 

evidence points to the importance of the time around conception (=periconceptional period).   69 

  70 

Periconceptional developmental conditioning 71 

The periconceptional period has been variously defined, but for DOHaD processes the key 72 

events broadly cover the completion of meiotic maturation of oocytes, differentiation of 73 

spermatozoa, fertilisation and resumption of mitotic cell cycles in the zygote, marking the 74 

Box 1: Key messages 

Whilst evidence for developmental origins of later disease can be found throughout 

gestation and beyond, there is a growing consensus from both human and animal 

studies that a critical period is around conception and hence merits particular attention.  

As we review, preconception maternal overnutrition and obesity, maternal 
undernutrition, related paternal factors, and assisted reproductive treatments all may 
change the phenotype and potential of gametes and early embryos, with enduring 
consequences across the lifespan. 

Our new data reveal that suboptimal maternal and paternal nutrition around conception 
have similar effects on offspring weight, but differing effects on offspring blood pressure.  

These critical influences on lifetime health occurring so early in development may reflect 
perturbations or adaptations in epigenetic, cellular, metabolic and/or physiological 
mechanisms. Defining these mechanisms and the exposures that drive them is critical 
to the characterisation of more specific recommendations for preconception health. 

This emerging knowledge has significant societal and medical implications.  In 
particular, it provides the basis for a new emphasis on preparation for pregnancy, 
before conception, to safeguard public health and as a means of disease 
prevention. 
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transition from parental to embryonic genomes4 and the onset of morphogenesis up to 75 

implantation5. This represents a period of a few weeks, dependent upon mammalian species, 76 

and is characterised by extensive change in morphology (emergence of distinct embryonic 77 

and placental cell lineages); genomic re-organisation (epigenetic modifications such as DNA 78 

methylation to regulate lineage-specific gene expression in the conceptus); and changes in 79 

metabolism (setting homeostatic regulators for growth and energy supply). See Figure 1 for 80 

a resumé of key events. It is however recognised that influences at every stage from earliest 81 

childhood can shape preconception health and thereby influence eventual pregnancy and birth 82 

outcomes.   83 

Adverse developmental processes around the time of conception have been demonstrated in 84 

human and animal models in response to diverse environmental situations. In vivo, the quality 85 

of a mother’s diet, both overnutrition and obesity6 or undernutrition7, and/or other aspects of 86 

her physiological status including hyperglycemia/lipidemia8, may affect embryo potential with 87 

consequences for offspring disease risk over the lifetime. Paternal lifestyle and phenotype can 88 

similarly influence long-term offspring health, mediated either through the sperm or seminal 89 

plasma9. Periconceptional parental influences may have particular and differing effects on 90 

male and female offspring10. In addition, more babies are being born as a result of assisted 91 

reproductive treatments (ART) some of which involve embryo culture and exposure to 92 

potentially inappropriate environmental factors, which may alter offspring phenotype10,12. 93 

Long-term outcomes are consistent with the DOHaD concept, including cardiometabolic, 94 

immunological and neurological non-communicable disorders.   95 

To some the concept of ‘periconceptional’ origins of lifetime health may not be intuitive. Why 96 

should this short window at the very start of development have such profound consequences 97 

for the rest of our lives? Critically, the essential steps in reproduction over this period occur 98 

when the few cells involved are fully exposed to environmental conditions, making them 99 

vulnerable to disturbance of epigenetic mechanisms and an altered profile of embryonic gene 100 

expression that persists through subsequent cell cycles and drives an altered developmental 101 

programme. Metabolic and cellular homeostatic characteristics of the embryo, including 102 

mitochondrial activity, can also change in response to nutrient availability. Conversely, 103 

periconceptional sensitivity to environmental cues also raises the possibility that this window 104 

is one of opportunity, providing the embryo with capacity to respond to prevailing conditions 105 

and to optimise development to best suit survival and fitness7. Thus, periconceptional 106 

developmental plasticity (induction of different phenotypes from a single genotype) may 107 

facilitate setting of suitable growth and metabolic parameters to match the perceived 108 
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environment but which, if environmental conditions change, may become maladaptive and 109 

lead to later disease3. 110 

This article focuses on four broad periconceptional environmental exposures shown to induce 111 

adverse effects in humans and animal models (Figure 2), and discusses mechanistic causes 112 

and consequences. We also report new data on the relative contributions of maternal and 113 

paternal influences to long-term periconceptional influences in an established low protein diet 114 

model of parental undernutrition.  115 

 116 

Periconceptional developmental conditioning through maternal overnutrition 117 

and obesity  118 

The global rise in maternal obesity is associated with reduced female fertility and heightened 119 

risk of obesity in the offspring2. Adverse effects of high maternal body mass index (BMI) on 120 

the offspring may reflect elevated maternal glucose and insulin concentrations driving fetal 121 

growth and adiposity, resulting in increased birth and childhood weight, but may also include 122 

shared lifestyle factors within families6. Impaired offspring metabolism may also be associated 123 

with increased risk of allergic and atopic conditions, revealing the complexity in phenotype2. 124 

Maternal obesity models in animals have confirmed the link with offspring cardiovascular and 125 

metabolic disease risk6,13.  126 

Why might the periconceptional period be causal for obesity-related conditioning? Obese 127 

women have higher circulating concentrations of inflammatory cytokines14, and of hormones 128 

and metabolites which accumulate within the ovarian follicular fluid and can affect oocyte 129 

maturation and potential adversely. Thus, maternal BMI is positively associated with increased 130 

follicular fluid insulin, lactate, triglycerides, leptin and other metabolic regulators15. This rich 131 

follicular fluid compromises the developmental competence of exposed animal oocytes in 132 

experimental models, reducing embryo quality16. Moreover, oocytes from obese women are 133 

smaller and produce blastocysts with increased triglycerides and reduced glucose 134 

consumption, markers of poorer potential17. 135 

In addition to metabolite overexposure, maternal obesity in mice induces defects in the 136 

mitochondrial phenotype of eggs, including abnormal morphology and cristae structure18, 137 

altered membrane potential and distribution18 and increased mitochondrial DNA content18,19, 138 

all markers of disturbed mitochondrial function and energy homeostasis. Oocytes from obese 139 
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dams also exhibit increased oxidative stress and spindle abnormalities suggesting increased 140 

risk of aneuploidy18,19.  141 

These mitochondrial defects in oocytes may derive from the elevated lipid content and inherent 142 

insulin resistance caused by high maternal adiposity. Oocyte hyperlipidaemia in turn leads to 143 

impaired metabolic regulation and endoplasmic reticulum stress in mice16, a condition where 144 

proteins misfold during biosynthesis and which contributes to metabolic and cardiovascular 145 

disease.  Bovine and murine in vitro oocyte maturation models demonstrate that elevated fatty 146 

acid concentrations perturb follicular physiology, reduce oocyte developmental competence, 147 

including altered transcriptome and epigenome profiles in blastocysts, and lead to early 148 

embryos with compromised metabolism and lower potential12.   149 

The combination of metabolic, mitochondrial and chromosomal alterations in oocytes and 150 

embryos from obese mothers has important implications for subsequent development. In 151 

mice, obese mothers have smaller fetuses and pups which develop overgrowth, adiposity and 152 

glucose intolerance after birth20. Transfer of mouse blastocysts from obese mothers to normal 153 

recipients produces similarly growth-restricted fetuses with associated malformations despite 154 

the absence of gestational maternal obesity18. Similarly, in sheep, female offspring from 155 

embryos of obese natural mothers transferred to non-obese mothers exhibit increased 156 

adiposity, with dysregulation in liver and muscle insulin signalling and hepatic fatty acid 157 

oxidation21 . These changes are associated with epigenetic perturbations in the liver, including 158 

upregulation of microRNAs regulating insulin signalling21. Similarly, mouse embryos 159 

transferred from diabetic mothers to control recipients exhibit fetal growth retardation and 160 

congenital anomalies resembling natural diabetic pregnancies8; such structural changes are 161 

in keeping with clinical practice, in which pre/periconceptional folic acid supplementation and 162 

improved diabetes control reduce the incidence of anomalies.  163 

The periconceptional effects of maternal obesity are also apparent in ART pregnancies. 164 

Fertility declines with increasing BMI in women receiving donor oocytes, as in non-donated 165 

pregnancies, suggesting reduced uterine receptivity22. However, in other studies, recipient 166 

BMI had no effect on donor oocyte pregnancy success, whilst donor BMI was negatively 167 

associated23, indicating that pre-conception oocyte quality is influenced by maternal adiposity.  168 

 169 

Periconceptional developmental conditioning through maternal undernutrition 170 

Human studies  171 
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Poor nutrition in utero and low birth weight remain highly prevalent in low and middle income 172 

countries and are associated with increased risks of chronic diseases in later life across 173 

diverse human populations, particularly if followed by accelerated weight gain during 174 

infancy1,3. Similar human cardiometabolic and neurological consequences arise from maternal 175 

exposure to famine, e.g. the Dutch Hunger Winter of 1944/45. In human studies it is difficult 176 

to pinpoint gestational windows when heightened sensitivity to maternal undernutrition occurs, 177 

but the Dutch famine analyses suggest a poorer prognosis for those offspring conceived 178 

during the famine rather than experiencing it later in gestation24. Similarly, individuals exposed 179 

in utero, particularly during the first trimester, to the Chinese Great Famine (1959-61) have 180 

increased risk of hypertension in adulthood25. Exposure during the periconceptional period of 181 

the Dutch famine is reported to cause epigenetic dysregulation resulting in reduced DNA 182 

methylation of the imprinted growth-regulating IGF2 gene persisting into adulthood, along with 183 

differential methylation in the regulatory regions of genes affecting growth and metabolism24.  184 

In another important human study, dramatic seasonal variation in maternal nutrient 185 

consumption in The Gambia affected perinatal outcomes including birth weight, adult health 186 

and mortality26. By studying genomic regions where methylation patterns are highly correlated 187 

across tissues derived from all three germ lines it has been possible to demonstrate that 188 

maternal nutrition at conception alters the epigenome prior to gastrulation, with the effects 189 

persisting, at minimum, well into childhood and adolescence27. This periconceptional legacy 190 

coincided with seasonal changes in maternal plasma methyl-donor biomarkers which, along 191 

with BMI, are also predictive of childhood methylation patterns28. So far, significant deviations 192 

in the methylation patterns of loci predictive of immune function, tumour suppression29 and 193 

obesity30 have been noted. 194 

Animal models 195 

Animal models have been essential for investigating mechanisms involved in the multistep 196 

processes linking periconceptional maternal undernutrition with later-life disease risk. In 197 

rodents, feeding a low protein diet (LPD) - specifically during the periconceptional period, 198 

either exclusively during the final 3 days of oocyte maturation31 or the 3-4 day window of 199 

preimplantation embryo development (Emb-LPD)32,33, with normal nutrition at all other times - 200 

is sufficient to induce an altered growth trajectory and cardiovascular, metabolic and neuro-201 

behavioural dysfunction in adulthood. Such targeted dietary models commonly show 202 

hypertension in adult offspring, coupled with increased adiposity7,31-33. Similar findings have 203 

been reported in sheep34.  204 
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Rodent and sheep models of maternal periconceptional undernutrition suggest that impaired 205 

regulation of fetal development may underlie co-morbidities. For example, studies in sheep 206 

have shown that the late gestation fetal cardiovascular response to hypoglycaemia is modified 207 

by prior peri-implantation undernutrition35. Moreover, peri‐implantation and late gestation 208 

maternal undernutrition affect fetal sheep skeletal muscle development differentially36, and 209 

maternal undernutrition in early gestation alters gestation length and fetal and postnatal 210 

growth37.  211 

Induction and response mechanisms 212 

The mouse embryonic period low protein diet (Emb-LPD) model has helped reveal how 213 

periconceptional maternal undernutrition may initiate adverse effects during early 214 

embryogenesis7. Emb-LPD reduces circulating maternal insulin and amino acid 215 

concentrations, including reduced branched-chain amino acids (BCAAs) within the uterine 216 

luminal fluid that bathes early embryos before implantation38. BCAAs act as targets for embryo 217 

nutrient sensors, enabling nutrient status to be sensed by blastocysts via the mammalian 218 

target of rapamycin complex 1 (mTORC1) growth-regulating signalling pathway, inducing an 219 

altered growth trajectory from before implantation38 (see below), and shown by embryo 220 

transfer to be induced within the blastocyst33. Altered induction by Emb-LPD in mice activates 221 

compensatory responses that are distinct between extra-embryonic (trophectoderm; primitive 222 

endoderm) and embryonic (epiblast) lineages of the blastocyst (Figure 1). The Emb-LPD 223 

trophectoderm becomes more proliferative, adopts a more invasive migratory phenotype at 224 

implantation, and activates increased endocytosis of maternal uterine luminal fluid proteins as 225 

an alternative source of nutrients, leading to a placenta that is more efficient in nutrient transfer 226 

to the fetus38-40. Similarly, the primitive endoderm activates compensatory responses to 227 

enhance nutrient delivery via the yolk sac placenta, mediated through epigenetic 228 

mechanisms40,41. 229 

In response to Emb-LPD, changes in embryonic lineages may help set the embryonic and 230 

fetal growth trajectory to match prevailing nutrient availability. The embryonic lineages utilise 231 

preimplantation nutrient sensing to regulate growth across somatic organs (e.g., liver and 232 

kidney) through adaptations in the rate of ribosome biogenesis42. In essence, rRNA expression 233 

is suppressed during periods of maternal dietary restriction but is increased, beyond that of 234 

the control rate, when the dietary challenge is removed. This mechanism modulates the level 235 

of DNA methylation at the rDNA promoter, thereby mediating RNA polymerase I interaction 236 

with the promoter to regulate ribosome biogenesis and growth42,43. Interestingly, rDNA has 237 

also been found to be a genomic target for growth regulation in models of maternal high-fat or 238 
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obesogenic diets43.  This exquisite lifetime mechanism, activated in the preimplantation 239 

embryo, is likely to be responsive to uterine luminal fluid nutrient concentrations and appears 240 

to utilise a nutrient-sensing ribosome factor, Rrn3, to mediate the rDNA responses42. The 241 

growth-regulating role of the embryonic lineages is critical since perinatal weight associates 242 

with adult disease risk33. 243 

 244 

 245 

Paternal origin of periconceptional developmental programming 246 

Whilst the connection between a mother’s diet and the long-term health of her offspring has 247 

been studied in detail, our understanding of how a father’s diet impacts his offspring remains 248 

limited. However, links are now emerging between paternal lifestyle, sperm quality and 249 

impaired offspring health9. Here, both direct (sperm quality, epigenetic status, DNA integrity) 250 

and indirect (seminal fluid composition) paternal mechanisms have been identified, with the 251 

potential to affect mouse offspring development across multiple generations44.  252 

Mirroring female reproductive fitness, male fertility is closely linked to nutrition and body 253 

composition. In humans and rodents, elevated BMI is associated with reduced sperm 254 

motility45, increased sperm abnormality46, increased sperm reactive oxygen species levels, 255 

reduced serum testosterone and increased oestradiol concentrations47. Consumption of a 256 

‘Western-style’ diet high in sugar, fat and processed food associates with reduced sperm 257 

motility in men48, while consumption of energy-dense diets in men and rodents is associated 258 

with poor sperm motility, morphology and DNA integrity49. Reduced sperm DNA integrity, as 259 

occurs in obesity and diabetes, correlates with reduced human embryonic development and 260 

decreased pregnancy rates50. In men undergoing IVF treatment, obesity is associated with 261 

reduced blastocyst development and live birth rates51. In rodents, paternal obesity induced by 262 

high-fat diet increases sperm DNA damage52, reduces blastocyst development and 263 

implantation rates53 and causes sub-fertility in male and female offspring for up to two 264 

generations54. Interestingly, these negative effects on offspring development can be prevented 265 

through paternal dietary and exercise interventions in mice55, indicating that sperm-mediated 266 

effects may be transient and even reversible. In rats, a paternal high-fat diet for 10 weeks 267 

before mating affected female (but not male) offspring pancreatic β-cell function and increased 268 

body weight, glucose intolerance and impaired insulin secretion56. Offspring of male mice over-269 

nourished during neonatal life demonstrate glucose intolerance, fasting hyperglycaemia and 270 

insulin resistance, mirroring the metabolic disturbance seen in their fathers57.  271 
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Similar to the impacts of paternal obesity, paternal LPD in mice induces the expression of 272 

genes involved in offspring hepatic lipid and cholesterol biosynthesis58. Analysis of offspring 273 

hepatic epigenetic status revealed genome-wide changes in DNA methylation, including the 274 

key lipid regulator PPARα. In adulthood, offspring from male mice fed LPD have higher birth 275 

weight, a reduced male:female offspring ratio, increased adult adiposity, hypotension, glucose 276 

intolerance and elevated serum TNF-α levels59. Furthermore, paternal LPD also affects 277 

blastocyst AMPK gene expression, placental size, fetal growth and skeletal development60.   278 

As for maternal periconceptional nutrition models, epigenetic mechanisms are likely mediators 279 

of effects of paternal phenotype and exposures on offspring development61. Changes in 280 

patterns of sperm histone modifications (methylation, acetylation), DNA methylation and/or 281 

RNA content are prime candidates for such paternal periconceptional programming. Sperm 282 

from infertile men display significant changes in histone populations62, with enrichment of 283 

active histone marks (i.e. H3K27me3) at key developmental and pluripotency genes in human 284 

and mouse sperm62. Studies have also revealed that sperm-derived histones are transferred 285 

into the oocyte and incorporate into zygotic chromatin following human fertilisation63. However, 286 

whether any of the 2-15% histones retained within the mammalian sperm contribute directly 287 

to zygotic gene expression regulation is unknown. Human sperm also contain several 288 

thousand coding RNA transcripts64 and altered expression is linked with infertility65. Recent 289 

studies have shown that levels of sperm tRNA-derived small RNAs (tsRNAs) are altered by 290 

paternal diet in mice66. Interestingly, offspring generated by injecting zygotes with sperm 291 

tsRNA taken from male mice fed a HFD showed impaired glucose tolerance and insulin 292 

secretion66. While such studies highlight the role of RNA populations in intergenerational 293 

programming67, the significance of these sperm-derived RNA molecules remains to be 294 

elucidated.  295 

Apart from sperm-specific mechanisms of developmental programming, seminal plasma 296 

composition, (e.g. granulocyte-macrophage colony-stimulating factor) influences mouse 297 

embryonic, placental and offspring development68 and initiates maternal reproductive tract 298 

immunological responses, essential in the establishment and maintenance of human 299 

pregnancy69. In mice, paternal seminal fluid impacts on the maternal uterine environment, 300 

altering blastocyst development, placental size and adult offspring glucose tolerance, 301 

adiposity and blood pressure70.   302 

 303 

Defining the parental contribution to periconceptional developmental effects 304 
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Shared maternal and paternal dietary and other lifestyle influences may potentially combine 305 

for greater impact on periconceptional development. However, most research models to date 306 

are uniparental in design and the combined effects of both parents are unknown. Whether the 307 

impact of poor paternal diet on offspring development and wellbeing is of equivalent 308 

significance to that of poor maternal diet is also unknown. As a first step, Box 2 and Figure 3 309 

show a meta-analysis of our mouse maternal and paternal LPD diet models using published 310 

data for offspring weight at birth, adult systolic blood pressure (SBP) and adult heart:body 311 

weight ratio (a measure of heart capacity) including datasets covering maternal intervention 312 

restricted to the periods of oocyte maturation, preimplantation development or the entirety of 313 

gestation31,33,59.  The use of the same robust, statistical random effects regression analysis 314 

across each of these studies strengthens our comparison of parental effects in the current 315 

analysis. However, such rigorous statistical approached are rarely adopted, especially in 316 

animal model studies, and so we have restricted our analysis to data from these three studies 317 

alone. Offspring birth weight was increased in response to maternal LPD during the terminal 318 

stages of oocyte development (Egg-LPD) and during preimplantation preimplantation 319 

development (Emb-LPD) (Figure 3a). Overall, the pooled estimate demonstrated parental 320 

LPD increased offspring birth weight. Our second analysis explored the impact of parental 321 

LPD on adult offspring SBP.  Here, all maternal challenges resulted in offspring hypertension 322 

(Figure 3b), while paternal LPD resulted in a trend towards lower blood pressure in the adult 323 

offspring. Our final analysis examined the impact of parental diet on adult heart:body weight 324 

ratio (Figure 3c). Only paternal LPD had a significant effect, reducing offspring heart:body 325 

weight ratio. These new data demonstrate differential effects from paternal and maternal 326 

periconceptional developmental exposures on offspring phenotype. It is essential that further 327 

studies define the precise impacts and underlying mechanisms by which parental diet regimes 328 

affect offspring development and wellbeing. Studies examining concurrent paternal and 329 

maternal interventions on shared offspring outcomes are also warranted. 330 
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 331 Box 2:  Analysis of parental contribution effect 

 Data for offspring phenotype were taken from Watkins et al 2008a31, 2008b33 and 201459. Each study 

used the same NPD and LPD formulation fed to either female or male mice for distinct 

periconceptional durations.  

 All three studies employed the same rigorous random effects regression analysis to account for the 

hierarchical nature of the studies in the statistical analyses. 

 Raw data on individual offspring weight at birth, adult tail-cuff systolic blood pressure measurement 

and adult heart:body weight ratio for all groups were used for the analyses.    

 Raw mean differences between experimental and study-specific control group (normalised to a value 

of 0) offspring were calculated (Δ = µ1 - µ2) for birth weight, systolic blood pressure (SBP) and 

heart:body weight ratio parameters.  

 Weight (%) refers to the individual contribution (by number of animals) of each study to the total 

Pooled Estimate. Heterogeneity (i.e. variation in outcomes between studies) was assessed using χ2 

test on Cochran’s Q-statistic and by calculating I2 (i.e. percentage of variation across studies attributed 

to heterogeneity rather than chance). As heterogeneity was significant for all analyses, pooled 

estimates were calculated by the random effects (Mantel-Haenszel) method.  

 The largest effect on offspring birth weight was in response to maternal preimplantation (Emb-LPD) 

diet (raw mean difference: 0.18g, 95% CI 0.11 – 0.24; P<0.0001) (Figure 3a). Maternal LPD restricted 

to the terminal stages of oocyte maturation (Egg-LPD) also resulted in increased birth weight (raw 

mean difference: 0.09g, 95% CI 0.05 – 0.13; P<0.0001). However, maternal LPD throughout gestation 

had no impact (raw mean difference: 0.04g, P=0.26) on offspring birth weight (likely reflecting fetal 

growth regulation during gestation, discussed above), as did paternal LPD (raw mean difference 

0.03g, P=0.09). Overall we observe a significant pooled estimate effect of parental LPD on offspring 

weight at birth (raw mean difference: 0.1g, 95% CI 0.07 – 0.13; P<0.0001) representing an increase 

in LPD offspring weight of 7.8%.  

 Analysis of offspring SBP revealed all maternal LPD groups had elevated SBP (raw mean difference: 

Egg-LPD 6.92mmHg, 95% CI 4.95 – 8.90; P<0.0001; Emb-LPD 5.60mmHg, 95% CI 3.63 – 7.56; 

P<0.001; LPD 5.54mmHg, 95% CI 3.66 – 7.42; P<0.0001) (Figure 3b). In contrast, paternal LPD 

resulted in a trend towards the programming of lower offspring blood pressure (raw mean difference: 

-3.49mmHg, 95% CI -7.62 – 0.63; P=0.096). The differential parental effect on offspring SBP meant 

the pooled estimate showed no overall difference (raw mean difference: -0.36mmHg, 95% CI -1.75 – 

1.02; P=0.61). 

 Our final analysis examined the impact of parental diet on adult heart:body weight ratio.  All groups 

displayed either a negative impact or no effect (Figure 3c).  The largest size effect was observed in 

response to maternal Emb-LPD (raw mean difference: -0.05, 95% CI -0.1 – 0.01 P=0.073). Only the 

paternal LPD offspring heart:body weight ratio reached significance (raw mean difference: -0.03, 95% 

CI -0.07 – -0.01; P=0.038) (Figure 3c). Overall, the pooled effects indicated a reduction in adult 

heart:body weight ratio following parental, both maternal and paternal, LPD (raw mean difference: -

0.03, 95% CI -0.05 – -0.01; P=0.0035).  



13 
 

Periconceptional developmental programming and ART 332 

Direct evidence for human periconceptional effects comes from assisted reproductive 333 

treatments (ART) in which mature gametes and the preimplantation embryo are exposed to 334 

precisely timed in vitro manipulations. Several million apparently healthy ART children have 335 

now been born worldwide, but relatively little is known about the possible impact of the 336 

technology-associated exposures during conception and very early development on their 337 

health status during childhood and later life. The spectrum of human demographic 338 

confounders (including parental infertility), changes and improvements in ART techniques 339 

over time, and the relative sample sizes used make analyses complex and the reported 340 

outcomes need to be interpreted with caution. Nevertheless, it is well established that 341 

singleton ART pregnancies have increased risk of low birth weight, congenital abnormalities 342 

and higher mortality rate, although disentangling confounding by parental infertility is difficult71. 343 

Human embryo culture media have changed over time and the predominant current practice 344 

is to use commercially sourced media of proprietary (unspecified) composition (discussed 345 

in12). Comparison of perinatal outcome following use of different commercial media, including 346 

a multicentre randomised controlled trial, has indicated that birth weight is significantly 347 

affected72, with effects on growth still manifest at age 2 years73. 348 

Compared with naturally conceived offspring, the cardiovascular phenotype of IVF children 349 

and adolescents reveals increased risk of high blood pressure11,74, vascular dysfunction with 350 

abnormal blood flow and vessel thickness75 and evidence of cardiovascular remodelling during 351 

development in utero affecting heart shape and chamber size74. Metabolic consequences 352 

include increased fasting glucose and peripheral insulin resistance11,76, raised plasma lipids, 353 

and obesity76. A systematic review found no difference in cognitive outcomes among children 354 

conceived with conventional IVF and those conceived naturally, but did identify conflicting 355 

findings that require clarification among studies of children conceived with intracytoplasmic 356 

sperm injection77.  357 

Collectively, current evidence suggests that ART, like the in vivo nutritional models discussed 358 

above, may alter the development and growth trajectory of human embryos, and increase the 359 

risk of postnatal chronic cardiometabolic dysfunction. This legacy is unlikely to be due to 360 

parental infertility in isolation since controls in some studies comprise those naturally 361 

conceived offspring from sub-fertile parents11,75. Moreover, ART animal models demonstrate 362 

similar long-term consequences to human studies, despite normal parental fertility78. Thus, 363 

IVF embryo culture and transfer in mice results in offspring with altered growth trajectory, 364 

relative hypertension, cardiovascular abnormalities and glucose/insulin dysfunction78. 365 
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ART-associated adverse effects on long-term health appear to have an epigenetic origin 366 

induced during the periconceptional period. ART children have an increased risk of rare 367 

imprinting disorders associated with DNA methylation errors on imprinted genes79 and 368 

aberrant methylation of imprinted H19 gene has been reported in human cultured embryos80. 369 

In mouse models, embryo culture may cause imprinted genes to lose their allele-specific 370 

expression (particularly at the growth regulating H19/IGF2 locus) together with aberrant 371 

methylation patterning in embryos, placental and fetal tissues81. ART-induced aberrant 372 

epigenetic profiles may also be propagated during human pregnancy in fetal and placental 373 

tissues and persist into childhood affecting genes regulating growth such as the IGF2/H19 374 

locus82. Media composition, particularly albumin or serum components or ammonium ion 375 

accumulation from amino acid catabolism, may contribute to altered mouse epigenetic 376 

status83.  Importantly, even a very limited culture period is sufficient to induce epigenetic 377 

changes81. Embryo culture exposure also modifies expression and methylation of non-378 

imprinted genes in mice and alters expression of DNA methyltransferases84.  For example, in 379 

mouse models ART affects the endothelial nitric oxide synthase (eNOS) gene implicated in 380 

vascular dysfunction and modification of culture media composition may prevent this effect85. 381 

Although provocative, more studies in both animal models and humans are required in order 382 

to replicate findings to date.  383 

 384 

Diversity and commonality in periconceptional effects 385 

The evidence reviewed above reveals that periconceptional experience can induce lifelong 386 

changes in phenotype, affecting disease risk.  Beyond these nutritional and ART conditions, 387 

studies in rodents show broader examples of periconceptional effects, such as from maternal 388 

stress86. Moreover, maternal alcohol consumption exclusively around conception induced 389 

metabolic dysfunction in rat adult offspring with evidence of epigenetic disturbance87. In the 390 

case of mouse maternal systemic inflammation at conception, whilst not affecting 391 

cardiometabolic health, suppressed adult offspring innate immunity after challenge, possibly 392 

to protect ‘self’ in a predicted pathogenic postnatal environment88. In addition, mouse embryo 393 

transfer experiments suggest that advanced maternal age may adversely affect offspring 394 

cardiometabolic health89, but the mechanisms underlying this age-associated effect are 395 

unknown.   396 

The diversity of periconceptional induction conditions identified across mammalian species, 397 

coupled with clear evidence of both maternal and paternal pathways, implicates an early 398 

window when environmental exposures, combined with an inherent capacity for 399 
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developmental plasticity, may confer advantage when the offspring are exposed to a similar 400 

environment postnatally. During the periconceptional period there is rapid and radical 401 

molecular, cellular and morphogenetic restructuring; the signalling pathways that control these 402 

processes are sensitive to multiple molecules and other factors within the cellular environment 403 

and may provide a mechanistic underpinning for this concept90. However, as we have 404 

described, the periconceptional setting of metabolic homeostasis may become maladaptive if 405 

conditions change or if nutrient levels induce perturbations in metabolism, generating the 406 

circumstances underlying adverse health risk. A consistent mechanism identified across 407 

conditions and species has been epigenetic variation, a plausible pathway to ‘biological 408 

embedding’ of early life exposures and transmission of phenotypic effects throughout life. This 409 

has been demonstrated directly through manipulation of maternal one-carbon (1-C) 410 

metabolism during early embryogenesis, potentially reducing the availability of methyl donor 411 

groups necessary for DNA and histone methylation91, but such epigenetic changes are not 412 

necessarily linked directly with changes in gene expression92. Thus, a periconceptional 413 

maternal diet deficient in 1-C metabolite substrates and cofactors (vitamin B12, folate, 414 

methionine) in sheep modified offspring DNA methylation and led to adverse cardiometabolic 415 

and immune dysfunction93. Similarly, folate addition to rodent maternal LPD can rescue normal 416 

expression and DNA methylation of metabolic regulators in offspring which underlie 417 

cardiovascular dysfunction94. A mouse paternal low folate diet altered sperm DNA methylation 418 

profile, changed the placental transcriptome and resulted in offspring with craniofacial and 419 

musculoskeletal malformations95. Moreover, the negative impact of mouse paternal 420 

undernutrition on sperm quality, testicular oxidative stress, fertility and offspring fat 421 

accumulation and dyslipidaemia are reversed through vitamin and antioxidant 422 

supplementation96. As with ART, additional studies are warranted to define the critical 423 

window(s) and pathways linking perinatal one-carbon metabolism, epigenetic variation and 424 

programming of later offspring health. 425 

 426 

Conclusion: Protecting health of the next generation and the way forward  427 

We propose there is now sufficient evidence from human and animal research that the 428 

periconceptional period is a key window during which poor maternal and paternal physiology, 429 

body composition, metabolism and diet can induce increased risk of chronic disease in 430 

offspring, a lifetime legacy and major driver of health burden in the 21st century. The evidence 431 

that similar consequences can result from ART practices sharpens the focus on this window. 432 

Environmental factors may perturb gametes or early embryos, affecting homeostatic 433 
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mechanisms, or may induce adaptations to developmental environmental signals with 434 

consequences persisting into adulthood.   435 

This evidence calls for a major re-examination of public health policy to protect against future 436 

disease risk through societal advice on, and greater provision of, preconception care97 as also 437 

promoted in the two accompanying reviews in this series (Stephenson et al, submitted; Barker 438 

et al, submitted). Whilst a preconception focus on parental risk factors such as smoking and 439 

excess alcohol intake is wise and well established, new drives to prepare nutritionally for 440 

pregnancy are critical, including healthy body composition, physical activity and diet for both 441 

parents98. Further definition of the underlying epigenetic, cellular, metabolic and/or 442 

physiological mechanisms and the exposures that drive them, is an important research 443 

agenda that is pivotal to the characterisation of more specific recommendations for 444 

preconception health. 445 

 446 

  447 
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Figure legends 476 

Figure 1.  Biological events underpinning periconceptional conditioning 477 

The periconceptional period is one of extensive cellular change comprising the completion of 478 

meiotic maturation of oocytes, differentiation of spermatozoa, fertilisation and resumption of 479 

mitotic cell cycles in the zygote, marking the transition from parental to embryonic genomes 4 480 

and the onset of morphogenesis 5. Periconceptional biology is indeed ‘busy’ – the 481 

morphological and cellular changes occurring during the switch from parental to embryonic 482 

generations leading to blastocyst formation are driven by pronounced sub-cellular and 483 

molecular processes. These include global restructuring of the epigenome (mainly DNA 484 

methylation and histone modifications that control gene expression), such that expression 485 

from the new embryonic genome is distinct from the parental genomes99. Epigenetic 486 

reorganisation allows the embryo to first exhibit totipotency, a naïve cellular state conferring 487 

the ability to construct both true embryonic (future fetal) cell lineages and the extra-488 

embryonic (placental) lineages that become evident in the blastocyst. Subsequently, 489 

epigenetic modifications underpin embryo pluripotency, the capacity to generate all three 490 

germ layers (ectoderm, mesoderm, endoderm) once gastrulation has taken place. 491 

Morphogenesis of the blastocyst is followed by embryo hatching from the zona pellucida 492 

coat and implantation mediated through adhesion of the outer trophectoderm layer of the 493 

blastocyst to the uterine endometrium and subsequent invasion and decidualisation.  494 

Activation of the new embryonic genome before implantation not only permits de novo gene 495 

expression distinct from parental genomes but also involves establishment of the embryo’s 496 

metabolism that matures over time100.  497 

 498 

Figure 2. Summary of periconceptional developmental conditioning from the four 499 

areas reviewed with main mechanisms highlighted in the progression of disease risk. 500 

ICSI = intracytoplasmic sperm injection, IVF = in vitro fertilization. 501 

 502 

Figure 3. Defining the relative influence of maternal and paternal factors during 503 

periconceptional conditioning in mice following parental low protein diet (LPD; 9 % 504 

casein).   505 

The effect of parental LPD on (A) offspring weight at birth, (B) adult offspring systolic blood 506 

pressure (SBP), and (C) adult offspring heart:body weight ratio are shown when compared 507 
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with offspring from normal protein diet (NPD; 18% casein) fed parents. Analysis of 4 studies 508 

involving female MF1 mice being fed LPD exclusively during the terminal stages of oocyte 509 

maturation (3.5 days prior to mating; Egg-LPD), exclusively during preimplantation embryo 510 

development (Emb-LPD) or throughout gestation (LPD). Forest plots also include offspring 511 

data in response to a paternal low protein (Pat-LPD) fed to C57BL6 males prior to mating. 512 

For Egg-NPD n = 189–80 from 19 litters; Egg-LPD n = 201-67 from 19 litters; NPD n = 131-513 

76 from 19 litters; LPD n = 116-85 from 19 litters; Emb-LPD n = 134-78 from 19 litters; Pat-514 

NPD n = 85-76 from 16 litters; Pat-LPD n = 73-62 from 16 litters. A. Plots present differences 515 

between means (± 95% CI) of birth weight (grams) to study specific NPD group. Data 516 

combining all LPD and all NPD treatment groups is used to determine the Pooled Estimate. 517 

Heterogeneity (χ2) between studies = 1.96 (3 df), I2 = 33%. B. Plots present differences 518 

between means (± 95% CI) of adult SBP (mmHg) to study specific NPD group. Data 519 

combining all LPD and all NPD treatment groups is used to determine the Pooled Estimate. 520 

Heterogeneity (χ2) between studies = 1.05 (4 df), I2 = 39%. C. Plots present differences 521 

between means (± 95% CI) of heart:body weight ratio to study specific NPD group. Data 522 

combining all LPD and all NPD treatment groups is used to determine the Pooled Estimate. 523 

heterogeneity (χ2) between studies = 1.86 (3 df), I2 = 61%. 524 

 525 

 526 

  527 
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