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ABSTRACT 

Background: In patients with schizophrenia, distributed abnormalities are observed in 

grey matter volume. A recent hypothesis posits that these distributed changes are 

indicative of a plastic reorganization process occurring in response to a functional 

defect in neuronal information transmission.  We investigated the structural 

covariance across various brain regions in early-stage schizophrenia to determine if 

indeed the observed patterns of volumetric loss conform to a coordinated pattern of 

structural reorganization.  

Methods: Structural MRI scans were obtained from 40 healthy adults and 41 age, 

gender and parental socioeconomic status matched patients with schizophrenia. 

Volumes of grey matter tissue was estimated at regional level across 90 atlas-based 

parcellations. Group level structural covariance was studied using a graph theoretical 

framework. 

Results: Patients had distributed reduction in grey matter volume, with high degree 

of localized covariance (clustering) compared to controls. Patients with 

schizophrenia had reduced centrality of anterior cingulate and insula but increased 

centrality of the fusiform cortex, compared to controls. Simulating targeted removal 

of highly central nodes resulted in significant loss of the overall covariance patterns 

in patients compared to controls. 



Conclusion: Regional volumetric deficits in schizophrenia are not a result of random, 

mutually independent processes. Our observations support the occurrence of a 

spatially interconnected reorganization with systematic de-escalation of conventional 

‘hub’ regions. This raises the question of whether the morphological architecture in 

schizophrenia is primed for compensatory functions, albeit with a high risk of 

inefficiency.   

Key words: morphometry, cortical reorganization, grey matter, psychosis, 

schizophrenia  

 

 

 
Introduction 

Widespread reduction in grey matter volume notable even in the earliest stages of 

the illness (Tandon et al. 2008). Several meta-analyses of voxelwise morphometric 

studies in schizophrenia have concluded that the maximum likelihood of grey matter 

reduction is noted in the insula, anterior cingulate cortex, thalamus, superior 

temporal region and the hippocampal complex (Ellison-Wright et al. 2008; Glahn et 

al. 2008; Leung et al. 2009; Chan et al. 2011). Despite this, several studies report no 

notable structural alterations, especially when undertaking a whole-brain voxelwise 

search (mass univariate analysis), indicating that the regionally localized 

morphological abnormalities are subtle in magnitude (Fusar-Poli & Meyer-

Lindenberg 2016). 

  

The application of graph theory to neuroimaging has enabled the study of entire 

brain as a network (the ‘connectome’) at a systems-level (Bullmore & Sporns 2009). 

Specifically, when applied to morphometric data, graph-theory provides various 

metrics that quantify the degree of structural covariance among cortical regions 



within a group of subjects (Alexander-Bloch et al. 2013, p. ; Griffa et al. 2013). 

Measures of clustering and global efficiency reveal the localized (segregated) and 

distributed covariance patterns among brain regions. In addition to segregation and 

integration, measures of centrality in covariance networks reflect the relative 

importance of selected brain regions (‘hubs’) in ‘influencing’ or ‘shaping’ the 

observed relationships (Rubinov & Sporns 2010). Furthermore, the dependence of a 

network on highly central regions (‘hubs’) can be inferred by studying the degree 

distribution (Achard et al. 2006). The robustness of a covariance network to 

withstand further loss of its component nodes (regions) can also be studied by 

simulating attacks on the nodes and estimating the effect of these attacks on the 

network parameters (Achard et al. 2006; van den Heuvel & Sporns 2011).  Earlier 

investigations of the structural covariance in schizophrenia have revealed a 

disturbance in regional relationships (increased segregation and reduced integration) 

(Bassett et al. 2008; Zhang et al. 2012). 

  

Covariance among cortical regions reflects the ‘common fate’ of brain regions both in 

terms of coordinated maturation and combined plastic changes with training, 

experience or degeneration. In schizophrenia, while some structural changes occur 

even before the first episode, most occur in the first few years after the first episode, 

with a pattern of concomitant grey matter loss and relative increase compared to the 

baseline at the time of onset. We recently proposed that the extant findings of brain 

structural abnormalities in schizophrenia are suggestive of a post-onset cortical 

reorganization process wherein highly connected ‘hub’ regions are de-escalated, 

while peripheral hubs are super-delegated to compensate (Palaniyappan 2017). 

Such a pattern of topological decentralisation has been shown in structural (Crossley 



et al. 2014; Griffa et al. 2015) and functional connectivity networks (Lynall et al. 

2010; Lo et al. 2015) in schizophrenia, but not studied to date in volumetric 

covariance networks. In the presence of grey matter reorganization, regional 

volumetric changes are unlikely to exhibit a random pattern; instead, we can expect 

a highly organized systematic change involving a redistribution of hubs.   

 

In the present study, we used structural MRI data obtained from a sample of 81 

subjects (41 patients, 40 controls) to study the properties of the schizophrenia 

connectome. We investigated if (1) volumetric changes in schizophrenia shows a 

systematic pattern of organized changes as opposed to random regional distribution 

(2) if there is a redistribution of the centrality (or primacy) of hub regions supporting 

the de-escalation hypothesis. We also studied the connectomic effect of further 

(simulated) tissue loss targeting prominent hub regions in patients compared to 

healthy controls.  

 

METHODS: 

Subjects 

The data reported in the present study was obtained from a previously reported 

(Palaniyappan & Liddle 2013) sample of 41 patients satisfying DSM-IV criteria for 

schizophrenia/schizoaffective disorder and 40 healthy controls. Patients were 

recruited from community-based mental health teams in Nottinghamshire and 

Leicestershire, United Kingdom. The diagnosis was made in a clinical consensus 

meeting in accordance with the procedure of Leckman et al. (1982), using all 

available information including a review of case files and a standardized clinical 

interview (Symptoms and Signs in Psychotic Illness (Liddle et al. 2002)). All patients 



were in a stable phase of illness with no change in antipsychotic-, antidepressant-, or 

mood-stabilizing medications in the 6 weeks prior to the study. Subjects with age 

<18 or >50, with neurological disorders, current substance dependence, or 

intelligence quotient < 70 using Quick Test (Ammons & Ammons 1962) were 

excluded. . The median Defined Daily Dose (DDD)(WHO Collaborating Centre for 

Drug Statistics and Methodology 2003) was calculated for all prescribed 

psychotropic medications.  

Healthy controls were recruited from the local community via advertisements, and 40 

subjects free of any psychiatric or neurological disorder group-matched for age and 

parental socioeconomic status (measured using National Statistics - Socio Economic 

Classification (Rose & Pevalin 2003)) included to the patient group. Controls had 

similar exclusion criteria to patients; in addition, subjects with personal or family 

history of psychotic illness were excluded. A clinical interview by a research 

psychiatrist was employed to ensure that the controls were free from current axis 1 

disorder and history of either psychotic illness or neurological disorder. The study 

was given ethical approval by the National Research Ethics Committee, Derbyshire, 

United Kingdom. All volunteers gave written informed consent. Please see Table 1 

for further sample characteristics. 

 

Table 1 here 

 

Image acquisition and processing 

A magnetization-prepared rapid acquisition gradient echo image with 1mm isotropic 

resolution, 256 × 256 × 160 matrix, Repetition Time (TR)/Echo Time (TE) 8.1/3.7ms, 

shot interval 3 s, flip angle 8°, SENSE factor 2 was also acquired for each participant 



for reconstructing the anatomical surface. T1 images were resliced (1mm isotropic) 

and segmented into grey, white and CSF tissue using the SPM8 Diffeomorphic 

Anatomical Registration Through Exponentiated Lie algebra (DARTEL) algorithm 

(Ashburner 2007). GM images were normalized to MNI space. The normalized, 

modulated, unsmoothed GM images were then used as inputs for the construction of 

graph networks.  

 

Constructing covariance networks 

All topological properties were computed using Graph Analysis Toolbox(GAT) 

(Hosseini et al. 2012) (http://brainlens.org/tools.html) that uses computation 

algorithms from Brain Connectivity Toolbox (https://sites.google.com/site/bctnet/). In 

line with previous works ((Achard et al. 2006; Singh et al. 2013) we generated 90 

cortical and subcortical regions using the AAL-90 atlas. Using linear regression 

model with age, gender and intracranial volume as covariates, residuals of regional 

volumes were extracted. We chose these covariates for adjustment, as prior studies 

have demonstrated their confounding potential (Mechelli et al. 2005; Modinos et al. 

2009; Montembeault et al. 2012; Li et al. 2013). A 90X90 Pearson’s correlation 

matrix of residuals of grey matter volumes of the 90 parcellated brain regions was 

used to create a binary adjacency matrix for each group (CON and SCZ). We used a 

range of thresholds determined by connection densities (proportions of connections 

present in a graph to all possible connections) varying from 0.3 to 0.5 (increments of 

0.025) to compare the properties of emerging networks. Across this range in both 

groups, the resulting graphs were fully connected and not fragmented (minimum 

density at which fully connected graph was observed = 0.29). The graphs lose 

sparsity and develop a random configuration when >50% of all possible edges are 

http://brainlens.org/tools.html


retained (a cost density of 0.5). The steps involved in obtaining the connectomes are 

summarized in Figure 1. The connectomes were visualized using BrainNet Viewer 

(Xia et al. 2013) (http://www.nitrc.org/projects/bnv/). 

 

Integration, segregation and centrality 

The patterns of relationship among brain regions within in a network can be 

described using three groups of topological properties (integration, segregation and 

centrality) that can be quantified using various graph theoretical measures (Stam & 

Reijneveld 2007; Bullmore & Sporns 2009; Rubinov & Sporns 2010), as described 

below. 

  (1) Integration: Shortest path length Lp between two regions (A,B) refers to the 

minimum number of node-to-node edges that connect A and B. The average 

shortest path length between all pairs of regions in the network gives the 

characteristic path length of the network (MLp). The inverse of MLp is a measure of 

efficient information transfer, called as global efficiency Eglob. (2) (2) Segregation: 

Clustering coefficient Cp indicates the presence of high degree of covariance 

(number of connections or edges) among neighbouring regions. The average of 

clustering coefficients of each region (or node) provides the clustering coefficient of 

the network (MCp). Local efficiency of a region, Eloc, is a closely related metric given 

by the inverse of the minimum number of connections among each pair of 

neighbouring regions. Cp and Eloc quantify the cliquishness of a region.      

(3) Centrality: The degree (number of connections) of a region (or node) is a 

sensitive measure of centrality for structural networks (Rubinov & Sporns 2010). 

In line with previous connectomic studies (Palaniyappan et al. 2014, 2016), we 

estimated the small-world index by comparing the estimated topological properties 



(MCp and MLp) of the two networks (CON and SCZ) with corresponding mean values 

of 20 null random graphs (MCnull and MLnull) constructed with same number of nodes, 

edges and degree distribution as the volume based networks. Small world index 

(SWI) is given by ([MCp/ MCnull]/[ MLp/ MLnull]. SWI>1 suggests a small world network 

that has a relatively high segregation and integration compared to random null 

networks (Humphries & Gurney 2008). Further, we also used Newman’s optimization 

algorithm (Newman 2006) implemented in GAT with 1000 iterations to identify the 

modular organization in the CON and SCZ connectomes. Modules are defined as a 

subgroup of regions that have higher covariance within the subgroup, than their 

covariance with regions outside the subgroup.  

 

Resilience 

Small-world structural brain networks follow an exponentially truncated power-law 

function for cumulative degree distribution that can be expressed as P(d) ~ [d(k-1) * e(-

d/dc)], where P(d) is the probability of regional degree (d), dc is the cut-off degree 

above which there is an exponential decay in probability of hubs (i.e. regions with 

degree >2 s.d. units), ‘k’ being the estimated component. If such a truncated power-

law relationship can be demonstrated for a connectome, this will indicate a scaling 

regimen that permits the presence of high degree hubs but constrains against the 

emergence of ‘mega-hubs’ that are connected to a very large number of regions. 

Such a constrained network is more resilient to the removal of both high degree hubs 

and random hubs when compared to scale-free networks (such as the world-wide 

web (Barabasi 2009)). We initially tested if this assumption is true for both groups.  

Following this, we assessed the resilience of the connectome using the approach 

adopted by Achard et al. (2006). Random attack involved the removal of one random 



regional node (and its connections) from a network and calculating the size of the 

largest connected component (i.e. a fully connected graph from the remaining 

nodes) and global efficiency of the network. Each random removal was done 100 

times and the average measures of the remaining graph were computed.  This 

process was repeated until a path length of 1 was reached. In targeted attack, nodes 

were removed in the order of their relative degree i.e. the first attack was on the most 

central hub in the network, subsequent removals progressed in a descending order 

of normalized nodal degree. The attacks were carried out separately for the networks 

obtained from each group at the minimum density for full connectivity and the 

resulting plots were compared as described below. 

 

 

Group comparison 

To test the statistical significance of the difference between the topological 

parameters of the two groups, non- parametric permutation testing with 1000 

repetitions was employed. For each iteration, the corrected grey matter volumes of 

each participant were randomly reassigned to one of two new groups with the 

sample size identical as controls and patients. Binary adjacency matrices across a 

range of network densities (0.3 to 0.5, increments of 0.025) were obtained for each 

randomized group. Topological measures were then calculated for the networks and 

differences between the random groups were computed across the entire range of 

densities. For the various topological properties, differences in the area under the 

curves obtained from plotting the values of each random group across the range of 

densities was obtained for each iteration. This resulted in a null distribution of 

differences, against which the p values of the actual differences in the curve 



functions obtained by comparing CON and SCZ were computed. This nonparametric 

permutation test based on functional data analysis (FDA) (Ramsay & Dalzell 1991) 

that compares the functions of the curve obtained across thresholds in one group 

with the curve from the other group. As opposed to multiple tests comparing means 

at each threshold, the use of a single test comparing curve functions (FDA), requires 

no further multiple test correction for the number of threshold points that are studied. 

For regional (n=90 nodes) properties such as local efficiency, clustering and degree, 

an additional correction for multiple comparison (false discovery rate) was used with 

corrected two-tailed p<0.05 considered as significance threshold. This multiple 

testing correction (FDR) is done across the number of nodes (90). The same 

permutation approach was also used when comparing the curves obtained from 

random and targeted attack on CON and SCZ networks. Hubs were defined as the 

nodes whose FDA-based curve function for regional degree is 1 standard deviation 

(Bassett et al. 2008; Hosseini et al. 2013) greater than the mean of corresponding 

curve functions obtained from the 1000 random permutations.  

 

Results 

 

Global properties 

Both control and schizophrenia connectomes showed small-worldness (mean SWI 

across densities for CON =1.012; SCZ=1.068). Patients had significantly higher 

clustering and a trend towards lower global efficiency (Table 2). For both controls 

and patients, we observed an exponentially truncated power-law distribution. The 

exponent estimate (k) was 1.05 in patients and 1.28 in controls. The cut-off degree 

(dc) was 9.02 for patients and 5.93 for controls. The R-square value for the 



distribution fit was 0.88 for patients and 0.86 for controls, suggesting that the 

truncated power-law model had very good fit for the data as expected.  

 

Resilience 

There was a significant reduction in the resilience of the SCZ connectome to 

targeted attack, but not random attack, when compared to controls. When compared 

to controls, random attack produced a 1.8% reduction in the size of the largest 

connected component and 1.24% reduction in global efficiency; but targeted removal 

of hubs produced a 14.2% (>7 times more) reduction in the largest connected 

component and 13.23% (>10 times more) reduction in global efficiency in patients. 

The degree distribution plots and the results of simulation analysis are shown in 

Figure 2. 

 

Figure 2 here 

Table 2 here 

 

Regional Integration, segregation and centrality 

Examination of the individual nodal properties revealed significantly reduced 

clustering coefficient in right middle temporal region (p=0.028) and reduced local 

efficiency in right hippocampus (p=0.034) and right anterior cingulate cortex 

(p=0.046) in patients compared to controls. Nodal degree was significantly reduced 

for right insula (p=0.038) and left middle (dorsolateral) frontal cortex (p=0.002) in 

patients. These results are summarized in figure 3. In both patients and controls, hub 

regions were predominantly located in the frontal cortex and were mostly 

comparable in the two groups (Table 3). Notably, among frontal hubs, anterior 



cingulate and gyrus rectus showed high degree in controls, though did not emerge 

as hubs in patients. Among the non-frontal hubs, insula was a prominent hub in 

controls but not in patients, while fusiform region was a hub in patients but not in 

controls.  

 

 

Figure 3 here 

Tables 3 here 

 

 

Module membership 

The distribution of the module membership in controls revealed 5 prominent modules 

(a large fronto-insular, a temporal, an occipital, a parietal and a subcortical module). 

In patients, the optimal solution yielded 7 modules. Lobar partitioning was less clear-

cut in patients when compared to controls. Most notably, the subcortical module was 

split with bilateral thalami being separated from the rest of the modules. Similarly, 

bilateral superior parietal regions appeared as a separate module. The modular 

structure of the connectome is shown in supplemental figure and table S1. We also 

present the VBM findings (controls vs. patients) in the supplement. 

 

 

Discussion 

 

Using a connectomic approach on morphometric data, we observe that the structural 

covariance of grey matter volume in patients with schizophrenia is not random, but 



significantly deviates from healthy controls. An increase in overall clustering (i.e. 

constrained covariance) despite reduced clustering of certain brain regions (anterior 

cingulate, middle temporal cortex and hippocampus), reduced centrality of the insula 

and dorsolateral frontal cortex along with a modular segregation of thalamus and 

superior parietal regions was seen in schizophrenia. The overall increase in 

segregation and the trend towards reduced global efficiency is consistent with 

several other connectomic studies in schizophrenia (van den Heuvel et al. 2010; 

Fornito et al. 2012; Griffa et al. 2013)(Fornito et al. 2012)(Bassett et al. 2008; 

Alexander-Bloch et al. 2010; Lynall et al. 2010; Zhang et al. 2012) (Wang et al. 

2012). 

 

All of the regional nodes showing altered topological properties in this study are 

implicated in the structural alterations seen in schizophrenia (Ellison-Wright et al. 

2008; Glahn et al. 2008; Palaniyappan & Liddle 2012). While we observed grey 

matter reduction in many of these regions (thalamus, insula, superior temporal gyrus, 

hippocampus; See Table S3) in a VBM analysis at a lenient threshold suitable for 

defining discrete clusters and investigate specific regions of interest, these VBM 

differences did not survive conventional correction for multiple testing (FDR<0.05).  

The observed reduction in regional topological properties (degree of dorsolateral 

prefrontal cortex and insula and local efficiency of anterior cingulate cortex and 

hippocampus) despite having only weakly localisable regional structural changes 

indicates that the graph-based measures are of larger magnitude of effect. These 

findings are consistent with Chen et al.’s (2014) who reported limited VBM-based 

regional GM deficits, but a pronounced deviation of structural covariance in 

schizophrenia. 



 

Our observations replicate previous findings that the structural covariance in 

schizophrenia exhibits small-world properties (Bassett et al. 2008; Zhang et al. 

2012). In addition, for the first time, we show that the degree distribution of the 

structural connectome in patients follows an exponentially truncated power-law 

function. This pattern of degree distribution suggests that despite the volumetric 

deficits that occur, certain brain regions emerge with very high degree (i.e. super-

covarying mega-hubs).  In the context of reduced centrality of traditional ‘hub’ 

regions (i.e. dorsolateral prefrontal, insula, anterior cingulate), the emergence of 

peripheral mega-hubs (e.g. fusiform) supports the possibility of inefficient cortical 

reorganization that is unlikely to be advantageous if further plastic changes affect the 

function of these central nodes  (Bullmore et al. 2009).  

 

Exponentially truncated degree distribution has been previously noted in the 

functional connectome in a sample of 12 patients with schizophrenia (Lynall et al. 

2010), but in contrast to Lynall et al. who observed a lower cut-off of the degree at 

which exponential decay in the probability of hubs in patients, we noted somewhat 

higher cut-off degree in patients. This difference could be attributed to the differing 

properties of the resting-state functional connectome when compared to a 

morphological covariance network. Our observation suggests that the structural 

network in schizophrenia shows a subtle shift towards a scale-free organization. 

There are important implications of this observation for a disease state such as 

schizophrenia that involves grey matter reduction. Most brain regions in a scale-free 

network have very few covarying links, so if the disease process affects nodes in a 

non-selective fashion (random or generalized reduction in volume), the network can 



still function efficiently (Bullmore et al. 2009). However, upon focused removal of 

high degree nodes, a scale-free network will become inefficient rapidly.  

 

For the first time, using simulated targeted and random attacks, we demonstrate this 

over-reliance on hubs affecting the volumetric covariance in schizophrenia. One 

major implication of this finding is that continued tissue loss affecting hub regions 

could compromise the structural covariance, affecting the putative structural 

reorganization process. Notably, we reported functional topological decentralization 

and the emergence of peripheral hubs using task-based and resting state fMRI in 

this sample of patients previously (Palaniyappan & Liddle 2013), supporting the 

notion that functional connectivity changes may underlie structural covariance. 

Extrapolating this observation, we speculate the overreliance on non-conventional 

‘mega’ hubs of structural covariance represent the effect of functional reorganization, 

whereby rapid functional synchronization or percolation of information across the 

entire network is facilitated in the wake of synaptic inefficiency producing a bottle-

neck effect at traditional hub regions (Palaniyappan 2017). While this may be 

advantageous (and possibly aid in recovery) in some cases, reflecting a 

compensation process, by altering regional functional specialization, the putative 

reorganization may prompt inappropriate information transfer, and inefficient 

recruitment of extant brain regions when cognitive demands arise. Studying the 

longitudinal relationship between functional dysconnectivity and grey matter 

reorganization is required to refute or prove the efficiency and compensatory effect 

of the presumed reorganization. 

 



Several limitations must be borne in mind while interpreting these results. Firstly, as 

our approach of estimating structural covariance is based on between-subjects 

variance, we are not able to directly relate the reported topological metrics to 

individual differences in individual measurements of brain function. This limited our 

inferences on the direct functional implications of our findings. We recruited a 

medicated sample of patients with schizophrenia; grey matter changes are noted to 

be more prominent in patients with established illness who are taking antipsychotic 

medications (Leung et al. 2009; Ho et al. 2011). While it is not possible to separate 

the effect of antipsychotic induced changes from those that result from an inherent 

disease process, at least the linear effect of current antipsychotic dose on the 

topological properties of structural connectome appears to be negligible 

(supplemental material).  Ideally, longitudinal data on initially unmedicated sample is 

required to investigate this issue.  There are several uncertain variables when 

constructing graph-based networks. This includes the dependency of several 

topological properties on the size of the selected nodes and the threshold used for 

binarisation (Fornito et al. 2013; Zalesky et al. n.d.). While the results of group 

comparisons on the basis of uniform node selection and thresholding process has 

been shown to yield broadly consistent results (Evans 2013), absolute values of the 

network parameters must be cautiously interpreted. Finally, we interpret the results 

based on the theoretical framework of neuroplasticity; other explanations (e.g. 

neuroprogression or neurodevelopmental defect) cannot be ruled out from the 

presented data. It is worth noting that in the same sample, gyrification based 

covariance showed no overall differences in segregating or integration, though 

regional topological changes were present (Palaniyappan et al. 2014). 

 



Structural covariance reported here suggests that a system-level disturbance in 

morphology that is possibly related to coordinated maturation or plasticity of brain 

regions can be observed despite subtle regionally localised structural changes in 

schizophrenia. This raises the possibility that tissue preservation aimed at specific 

regions might have a wider impact on reversing or preventing the observed 

abnormalities. Importantly, this study highlights the importance of the crucial hub 

regions in influencing the overall topological architecture observed in patients. It is 

tempting to speculate that tissue preservation (or plasticity modulation) strategies 

that focus on these central nodes could favorably alter the cortical reorganization 

process in schizophrenia. Several encouraging tissue preservation strategies have 

been previously suggested, with specific regional effects. Further environmental risk 

factors such as cannabis affect key hub regions such as the hippocampus (Rapp et 

al. 2012). In addition to reducing cannabis, physical exercise (Pajonk et al. 2010) 

and cognitive-enhancement therapy (Eack et al. 2010) can help to preserve the grey 

matter volume of hippocampus; specific cognitive training such as mindfulness 

mediation could affect insular structure (Luders et al. 2012); attentional training 

(Hoekzema et al. 2011) could have a positive impact on frontal volume; 

neuromodulation techniques such as transcranial magnetic stimulation could have a 

positive impact on temporal volume (May et al. 2007). Future studies investigating 

the impact of these strategies on the structural connectome could support or refute 

our optimistic conclusions.  
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Figure Captions: 

Figure 1: The steps involved in generating group-based volumetric connectomes 
A.T1 MPRAGE images resliced and segmented into probabilistic grey, white maps 
and cerebrospinal fluid using SPM8 software. The grey matter maps were 
parcellated into 90 cortical and subcortical regions using the AAL atlas. B. Group-
wise 90x90 correlation matrices created by calculating the correlations between the 
probabilistic grey matter volume in each parcellated brain region. C. Binary 
adjacency matrices were derived from thresholding at a range of densities (min 0.3, 
max 0.5, interval 0.025) for fully connected graphs in both groups. D. Topological 
properties of the connectome were computed using Graph Analysis Toolbox - GAT 
(Hosseini et al., 2012) and visualized using BrainNet Viewer (Xia et al., 2013)  
 
Figure 2: Results of simulated removal of nodes from covariance networks in 
patients and controls. Results of random [left column] and targeted [right] attack are 
shown. In the top panel, the size of the largest connect component (LCC), is plotted 
against the fraction of removed nodes. In the middle panel, global efficiency (Geff), is 
plotted against the fraction of removed nodes. The bottom panel displays the degree 
distribution of nodes in both groups.   
 
Figure 3: Regional changes in the network properties of the gray matter connectome 
in schizophrenia compared to controls. Nodal degree was significantly reduced for 
left middle (dorsolateral) frontal cortex (A) (p=0.002) and right insula (B) (p=0.038); 
Clustering coefficient reduced in right middle temporal region (C) (p=0.028) and local 



efficiency reduced in right anterior cingulate cortex (D) (p=0.034) and right 
hippocampus (E) (p=0.046) in patients compared to controls.  
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Tables: Covariance and cortical reorganization in schizophrenia 

Table 1: Demographic features of the sample 

 Healthy 
controls 
(n=40) 

Patients with 
schizophrenia (n=41) 

T/X2 P 
value 

Age in years (SD) 33.4(9.1) 33.63 (9.2) -0.12 0.91 

Gender 
(male/female) 

29/11 31/10 0.13 0.82 

Handedness 
(right/left) 

36/4 37/4 0.001 0.97 

Mean parental NS-
SEC (SD) 

2.00(1.3) 2.46(1.5) 1.46 0.15 

SSPI score -    

Total  11.7(7.4)   

Reality Distortion - 2.24(2.6)   

Disorganisation - 1.34(1.3)   

Psychomotor 
Poverty 

- 2.88(3.8)   

NS-SEC: National Statistics-Socio Economic Classification; SSPI, Signs and 
Symptoms of Psychotic Illness SD: Standard deviation 
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Table 2: Topological properties of gray matter-based connectome 

 

 

FDA – Functional Data Analysis. Reported values are means across all cost 
densities. FDA comparisons are based on fitting a curve across all cost densities for 
each group and comparing the shape of the curves. 

 

 

 

 

 

 Controls Schizophrenia FDA 
permutation p 
values 

Measures of segregation 

Mean Clustering Coefficient  0.6799 0.7463 0.016 

Measures of Integration 

Global Efficiency 0.6705 0.6176 0.064 

Measures of resilience 

Targeted Attack  

Mean relative size of 
remaining large component 

43.7% 37.5% 0.030 

Mean relative global 
efficiency 

25.7% 22.3% 0.030 

Random Attack  

Mean relative size of 
remaining large component 

48.8% 47.9% 0.262 

Mean relative global 
efficiency 

32.2% 31.8% 0.368 
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Table 3: Hubs in healthy controls and schizophrenia 

Hubs in Controls Hubs in Schizophrenia 

Frontal regions 

Frontal Superior Orbital (Left and 
Right) Frontal Superior Orbital (Right) 

Frontal Middle Orbital (Right) Frontal Middle Orbital (Left) 

Frontal Inferior Orbital (Right) Frontal Inferior Orbital (Right and Left) 

Frontal Medial Superior (Right) Frontal Medial Superior (Right and Left) 

Frontal Medial Orbital (Right) Frontal Medial Orbital (Right and Left) 

Frontal Middle (Right) Frontal Middle (Right) 

Rectal gyrus (Right and Left) - 

Anterior Cingulate (Left) - 

Rest of the brain 

Temporal Superior (Left) Temporal Superior (Right) 

Temporal Middle (Right) Temporal Middle (Right) 

Insula (Left) - 

- Fusiform (Right) 

Regions in block letters are observed to be hubs in one group only. 
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Table S1. Modularity in patients with schizophrenia and healthy controls 

Modules in healthy controls 

Module 1 Module 2 Module 3 Module 4 Module 5 

Precentral_L 
Precentral_R 
Frontal_Sup_L 
Frontal_Sup_R 
Frontal_Sup_Orb_L 
Frontal_Sup_Orb_R 
Frontal_Mid_L 
Frontal_Mid_R 
Frontal_Mid_Orb_L 
Frontal_Inf_Oper_L 
Frontal_Inf_Oper_R 
Frontal_Inf_Tri_L 
Frontal_Inf_Tri_R 
Frontal_Inf_Orb_L 
Frontal_Inf_Orb_R 
Rolandic_Oper_L 
Rolandic_Oper_R 
Supp_Motor_Area_L 
Supp_Motor_Area_R 
Frontal_Sup_Medial_L 
Frontal_Sup_Medial_R 
Frontal_Med_Orb_L 
Insula_L 
Insula_R 
Cingulum_Ant_L 
Cingulum_Ant_R 
Cingulum_Mid_L 
Cingulum_Mid_R 
Lingual_L 
Parietal_Sup_R 
Paracentral_Lobule_L 
Paracentral_Lobule_R 
Heschl_L 
Heschl_R 
Temporal_Sup_L 

Olfactory_L 
Olfactory_R 
Frontal_Med_Orb_R 
Rectus_L 
Rectus_R 
Hippocampus_L 
Hippocampus_R 
ParaHippocampal_L 
ParaHippocampal_R 
Amygdala_L 
Amygdala_R 
Fusiform_L 
Fusiform_R 
Caudate_L 
Caudate_R 
Temporal_Pole_Sup_L 
Temporal_Pole_Sup_R 
Temporal_Mid_L 
Temporal_Mid_R 
Temporal_Pole_Mid_L 
Temporal_Pole_Mid_R 
Temporal_Inf_L 
Temporal_Inf_R 

Calcarine_L 
Calcarine_R 
Cuneus_L 
Cuneus_R 
Lingual_R 
Occipital_Sup_L 
Occipital_Sup_R 

Frontal_Mid_Orb_R 
Cingulum_Post_L 
Cingulum_Post_R 
Occipital_Mid_L 
Occipital_Mid_R 
Occipital_Inf_L 
Occipital_Inf_R 
Postcentral_L 
Postcentral_R 
Parietal_Sup_L 
Parietal_Inf_L 
Parietal_Inf_R 
SupraMarginal_L 
SupraMarginal_R 
Angular_L 
Angular_R 
Precuneus_L 
Precuneus_R 
Temporal_Sup_R 

Putamen_L 
Putamen_R 
Pallidum_L 
Pallidum_R 
Thalamus_L 
Thalamus_R 
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Modules in patients with schizophrenia 

Module 1 Module 2 Module 3 Module 4 Module 5 Module 6 Module 7 

Frontal_Inf_Oper_L 
Frontal_Inf_Oper_R 
Frontal_Inf_Tri_L 
Frontal_Inf_Tri_R 
Frontal_Inf_Orb_L 
Rolandic_Oper_L 
Rolandic_Oper_R 
Frontal_Sup_Medial_L 
Cingulum_Post_L 
Cingulum_Post_R 
Occipital_Mid_L 
Occipital_Inf_L 
Fusiform_L 
Postcentral_L 
Postcentral_R 
Parietal_Inf_L 
Parietal_Inf_R 
SupraMarginal_L 
SupraMarginal_R 
Angular_L 
Angular_R 
Precuneus_L 
Precuneus_R 
Heschl_L 
Heschl_R 
Temporal_Sup_R 
Temporal_Mid_R 
Temporal_Inf_L 
Temporal_Inf_R 

Precentral_L 
Precentral_R 
Frontal_Sup_L 
Frontal_Sup_Orb_R 
Frontal_Mid_L 
Frontal_Mid_R 
Frontal_Mid_Orb_L 
Frontal_Mid_Orb_R 
Frontal_Inf_Orb_R 
Supp_Motor_Area_L 
Frontal_Sup_Medial_R 
Frontal_Med_Orb_L 
Frontal_Med_Orb_R 
Cingulum_Ant_R 
Cingulum_Mid_L 
Cingulum_Mid_R 
Calcarine_L 
Calcarine_R 
Cuneus_L 
Cuneus_R 
Lingual_L 
Lingual_R 
Occipital_Sup_L 
Occipital_Sup_R 
Occipital_Mid_R 
Occipital_Inf_R 
Fusiform_R 
Paracentral_Lobule_L 
Paracentral_Lobule_R 
Temporal_Sup_L 

Parietal_Sup_L 
Parietal_Sup_R 

Caudate_L 
Caudate_R 

Putamen_L 
Putamen_R 
Pallidum_L 
Pallidum_R 

Thalamus_L 
Thalamus_R 

Frontal_Sup_R 
Frontal_Sup_Orb_L 
Supp_Motor_Area_R 
Olfactory_L 
Olfactory_R 
Rectus_L 
Rectus_R 
Insula_L 
Insula_R 
Cingulum_Ant_L 
Hippocampus_L 
Hippocampus_R 
ParaHippocampal_L 
ParaHippocampal_R 
Amygdala_L 
Amygdala_R 
Temporal_Pole_Sup_L 
Temporal_Pole_Sup_R 
Temporal_Mid_L 
Temporal_Pole_Mid_L 
Temporal_Pole_Mid_R 

 



Supplement: Covariance and cortical reorganization in schizophrenia 

Palaniyappan et al.   3 of 9 

Supplemental Section:  Effect of antipsychotics on topological properties 

 

A number of observations from experimental animal studies4 and human observational 

studies from adults with schizophrenia 5–8 have indicated that certain antipsychotics 

may contribute to progressive loss of brain tissue. The evidence is less conclusive for 

atypical antipsychotics 7,9. In the current sample, all patients received atypical 

antipsychotics.  

Cumulative exposure to antipsychotics is likely to be more influential on the brain 

morphology than the current stable dose. In the current study, we did not have the 

longitudinal information on the exact cumulative dose prescription or intake before the 

scans. Further, we also lacked any data on the individual concordance levels of the 

prescribed antipsychotics. Therefore, in line with our previous studies11,12, we 

approximated the cumulative antipsychotic exposure, using a product of define daily 

dose (DDD) and duration of illness since the time of first presentation with psychotic 

episode, determined from patients’ case notes. This index can be taken as an 

approximate measure of lifetime antipsychotic exposure (ALAE).   

We sought to study the relationship between structural covariance and cumulative 

antipsychotic dose exposure (ALAE) using a liberal threshold of p=0.1, with no 

correction for multiple testing.  

To further delineate the effect of approximate lifetime exposure of antipsychotics on 

topology of covariance, we constructed two association matrices for patient sample 

thresholded at minimum density for full connectivity. The first association matrix was 

obtained without adjusting for the effect of approximate lifetime exposure of 

antipsychotic dose. The second matrix was obtained after linearly adjusting for the 

effect of approximate lifetime exposure of antipsychotic dose (i.e. regressing out 

across-subject differences in ALAE in the patient sample and using residuals to 

compute 90*90 correlation matrix). From these two change matrices, we derived a 

differential matrix (∆r) by subtracting one from the other. Of the 4005 cells (90*89/2), 

less than 5% had a difference in coefficients >0.1, suggesting that the effect of lifetime 

antipsychotic exposure on structural covariance affects a small number of associations.  
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Figure S1: Effect of approximate lifetime exposure of antipsychotics on topology 
of covariance: Correlation matrices for patient sample thresholded at minimum 
density for full connectivity. A) Association matrix without adjusting for the effect of 
approximate lifetime exposure of antipsychotic dose. B) Matrix linearly adjusted for the 
effect of approximate lifetime exposure of antipsychotic dose. Colour bar indicates 
absolute correlation coefficients (varying from 0 to 1). C) Absolute matrix obtained from 
subtracting A and B (∆r).  

 

Though a large number of pairwise correlations were relatively unaffected by ALAE, to 

further clarify if this subtle effect of antipsychotic exposure has indeed any effect on 

the topological properties of the covariance matrix, we obtained the global network 

topological measures at the minimum density of full connectivity for both ALAE-

adjusted and non-adjusted networks. Comparison of these values using the same 

permutation approach described in the manuscript did not reveal any significant 

differences between the two networks for small-worldness, mean global and global 

efficiency, clustering coefficient, and targeted and random attack metrics (all p>0.39). 

These comparisons were undertaken without FDR correction to enable detection of 

even weak effects. 

 

 

 

 

 

 

 

 

A B C 



Supplement: Covariance and cortical reorganization in schizophrenia 

Palaniyappan et al.   5 of 9 

Table S2: Effect of antipsychotics on topological properties 

 

 

 

In summary, the negative results despite our extensive approach to relate available 

antipsychotic treatment data to covariance of longitudinal changes suggests that the 

reported topology of covariance is unlikely to be due antipsychotic use. Of note, while 

a number of rigorous studies have examined the effect of antipsychotics on structural 

changes in schizophrenia, to our knowledge there are no reports on how cumulative 

antipsychotic exposure affects the structural covariance among various brain regions 

in schizophrenia. 

 

 

 

 Network unadjusted 
for ALAE 

Network 
linearly 
adjusted for 
ALAE 

Measures of Segregation 

Clustering Coefficient  0.7463 0.7476 

Measures of Integration 

Global Efficiency 0.6176 0.6207 

Measures of resilience 

Targeted Attack  

Mean relative size of remaining 
large component 37.5% 36.7% 

Mean relative global efficiency 22.3% 22.2% 

Random Attack 

Mean relative size of remaining 
large component 47.9% 47.8% 

Mean relative global efficiency 31.8% 31.5% 
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Figure S2: Graphical representation of gray matter connectomes. Connectomes 

in controls and schizophrenic patients are visualized using BrainNet viewer 

(www.nitrc.org/projects/bnv). The modules are color-coded separately for each 

network in the online version of this image. The size of the nodes is proportional to the 

nodal degree (number of edges) within each connectome. 
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Supplemental Section:  Voxel Based Morphometric Differences between 
controls and patients with schizophrenia 

The whole-brain grey matter VBM analyses revealed 13 clusters which were 

reduced in patients with schizophrenia compared to healthy controls using an 

uncorrected threshold of p < .01 with a cluster extent of 100 voxels. Largest 

clusters were found in the cingulate gyrus, thalamus, inferior frontal gyrus, 

insula and hippocampus. Other regions of reduced grey matter were also found 

in temporal regions, parahippocampal gyrus and also the postcentral gyrus. 

These results are summarized in Table S3 and Figure S3 below. 

Table S3. VBM results for grey matter volume differences between 
schizophrenia patients and healthy controls (p < .01 (uncorrected), 
k=100).There were no regions with significant tissue increase in patients 
compared to controls.  

 

Peak region L/R Peak MNI coordinates 
(mm) 

Cluster 
extent 
(voxels) 

Peak T 
value 

x y z 

Middle cingulate gyrus L -3 -33 38 12284 4.51 

Thalamus L -2 -15 5 648 3.5 

Inferior frontal gyrus L -41 29 -6 896 3.44 

Insula R 51 12 -2 1047 3.38 

Middle temporal gyrus L -53 -60 14 345 3.38 

Superior frontal gyrus R 17 56 24 504 3.32 

Postcentral gyrus L -57 -8 33 272 3.06 

Hippocampus L -30 -15 -17 662 3.04 

Superior temporal gyrus L -60 -2 8 246 2.95 

Parahippocampal gyrus R 20 -3 -29 438 2.89 

Middle temporal gyrus L -50 -59 -3 236 2.89 

Insula L -44 -11 5 161 2.81 

Superior temporal gyrus R 56 -29 17 162 2.75 
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Figure S3. VBM results for grey matter volume differences between 
healthy controls> schizophrenia patients. For display purposes, regions 
surviving a threshold of p < .01 and cluster extent of k=100 are shown on 
selected slices of a T1 single subject template using MRICron. 
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