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A B S T R A C T

We have developed a spatiotemporal heating control algorithm for use in homes. This system utilises a com-
bination of relatively low-tech hardware interfaced with electric heating systems and a smartphone interface to
this hardware, and a central server that progressively learns users' room-specific presence profiles and thermal
preferences. This paper describes the associated spatiotemporal heating control algorithm, its evaluation uti-
lising the dynamic building performance simulation software EnergyPlus, and a longitudinal deployment of the
algorithm controlling a quasi-autonomous spatiotemporal home heating system in three domestic homes. In this
we focus on the prediction of occupants' presence and preferred set-point temperature as well as on the cal-
culation of optimum start time and the utilisation of user-scheduled absences; this for two comfort strategies: to
maximise comfort and to minimise discomfort. The former aims to deliver conditions equating to a ‘neutral’
thermal sensation, whereas the latter targets a ‘slightly cool’ sensation with corresponding heating energy
savings. Simulation results confirmed that the algorithm functions as intended and that it is capable of reducing
energy demand by a factor of seven compared with EnergyStar recommended settings for programmable ther-
mostats. Field study results align with these findings and highlight the possibility to reduce energy under the
minimise discomfort strategy without compromising on occupants' thermal comfort.

1. Introduction

This research is motivated by the IPCC's recommendation to achieve
a 40–70% reduction in anthropogenic greenhouse gas emissions by
2050 and to fully decarbonise anthropogenic activities by 2100, to
maintain global warming below 2 °C over the course of the 21st century
[24]. With the Climate Change Act [29] the UK government has es-
tablished legally binding targets to lower the UK's carbon dioxide
emissions to 20% with respect to 1990 levels by 2050. In 2015, the
domestic sector was the second-largest emitting sector (27%) in the UK,
after transportation (38%) [3], with space heating contributing two-
thirds of total domestic usage [26]. The UK housing stock is relatively
poorly insulated and ageing, with between 85% and 97% of dwellings
that will be in use in 2050 already having been built in 2006 [14]. But
the expense of renovating an outdated housing stock suggests that more
efficient ways of heating buildings need also to be examined. To this
end, we develop and evaluate in this paper a new spatiotemporal
heating control solution, which reduces the amount of energy used for
heating whilst achieving occupant comfort aspirations.

Related prior studies on automated home heating control algorithms

applied a neural network to predict occupancy probability that best
matched observation using data from the past few hours, the previous
three days, and for same weekday over the past four weeks, suggesting
possible cost savings [22]. Others used GPS positioning data from oc-
cupants' phones as a trigger for a set-back mode and their simulations
demonstrated that savings up to 7% could be obtained by integrating
drive-home time as a trigger for re-heating the house to user-selected
settings [11]. Subsequent work highlighted that a probabilistic presence
schedule derived from GPS data outperformed user-reported presence
schedules and driving home duration alone [17], indicating that an
automated system could deliver better results for limiting heater
switch-on time than a human-programmed thermostat. However, none
of these studies applied these schedules to a simulated or situated
heating system, thus not reflecting the complexities of managing a
thermal environment to match users' expectations; nor did they adapt
set-points according to users' preferences or exercise spatial dis-
crimination in their control.

In a first response to this shortfall, Gao and Whitehouse [7] de-
monstrated, utilising a control algorithm that acted reactively after
presence was detected, rather than proactively predicting presence and
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catering for future occupancy, that occupants' ability to forgive the
algorithm's delays in this “miss time” could be utilised to reduce heating
and cooling durations, resulting in potential heating and cooling de-
mands up to 15% lower than those achieved using the US recommended
EnergyStar setback schedule (8 a.m.–6 p.m.). This model applied a user-
selected set-point temperature based on their presence. While an in-
teresting approach, the energy saving was achieved at the cost of oc-
cupants' comfort, a trade-off that would not be acceptable to all users.
Another control algorithm used motion sensor and magnetic door
sensor data to (1) monitor occupants' presence to switch the HVAC
system off during night-time and absences, (2) utilised previous pre-
sence data to predict presence and choose between a proactive and
reactive approach to heating, and (3) utilised a ‘deep setback’ in which
the temperature was allowed to decay to 10 °C or grow to 40 °C, (further
change was limited to prevent damage to the building) [20]. A static
set-point of 70 °F (21 °C) was used and the authors concluded that an
energy use reduction of up to 28% was possible, highlighting that
deeper set-backs (allowing temperature to decay or grow more) have a
larger impact on energy saving than longer (limited decay or growth
allowed for a longer period) setbacks [20]. Others have included
weather and building characteristics in a controller utilising a combi-
nation of a proactive and reactive heating strategy, demonstrating that
occupancy prediction can reduce energy spent by 9% [15]. A different
approach utilised occupant discomfort history and occupancy predic-
tion to constrain the expected discomfort to deliver energy savings in an
office setting [21]. Whilst interesting, it would perhaps be more sui-
table to understand the occupants' experience of discomfort and avoid
it, rather than exploit it.

A more comprehensive approach by Scott et al. [28] gave their al-
gorithm control over a gas-fired heating system in 5 households in the
UK (2) and the US (3). One of the five participating households tested a
spatiotemporal control algorithm, whilst the remaining four were
controlled to provide a uniform thermal environment throughout the
house; both responding to predicted occupancy. User presence was
detected using RFID tags and the algorithm's performance was mea-
sured against a 7-day programmable thermostat schedule. Their algo-
rithm pre-heated living spaces in expectation of future presence, ap-
plying a user-defined set-point when the space was occupied during the
day and a sleep set-point during the night. When the space was un-
occupied their algorithm predicted the next occupied period by re-
presenting space occupancy as a binary vector for each day, where each
element represented occupancy in a 15- minute interval. A partial oc-
cupancy vector from midnight up to the current time was used to
predict future occupancy by finding similar days from the past. The
algorithm then computed the Hamming distance, which simply counts
the corresponding number of unequal binary vector elements between
the current partial day and the corresponding parts of all the past oc-
cupancy vectors, picked the 5 nearest past days and predicted presence
as a mean of those five days [28]. Results from deployment demon-
strated an 18% decrease in gas usage for individual room control and an
8% reduction for a uniform solution, showing that a spatiotemporal
heating solution delivers greater energy savings. Koehler et al. [16]
used a GPS-enabled smartphone application to provide location data to
predict occupancy and give the smartphone control over one of ten
domestic heating systems. Their algorithm used time periods of Un-
necessary Heating (percentage of daytime periods when the user was
away from home, but the temperature was above 15.5 °C) and Lost
Comfort (percentage of daytime periods at home when the temperature
was below the user's preferred temperature) periods to optimise heating
times to occupant presence. The authors concluded that 44min of un-
necessary heating per day can be avoided and that their prediction
model was up 6.3% more accurate than manual control, or Scott et al.’s
controller [28]. While these proposed algorithms are a step in the right
direction, they fail to close the thermal comfort feedback loop and
dynamically account for users' thermal preferences. By that, we mean
that they merely applied a user-defined set-point temperature and did

not treat this set-point as a variable that can be part of a thermal
comfort dialogue.

Jazizadeh et al. used fuzzy logic to compute weighted thermal
preference profiles of multi-occupant spaces using occupants' thermal
preference votes, to determine dynamic heating set-points [13]. The
authors gave their algorithm control over a 2-zone office space and
concluded that increased comfort was delivered. It has also been de-
monstrated that temperature set-point variations of± 3 °C can lead to
7–37% savings in energy usage, depending on climate and building size
[9], suggesting that additional energy savings are possible then in-
cluding thermostat set-point in the control algorithm.

From this review of the key advances in advanced home heating
control systems, we conclude that significant effort has been invested in
strategies to predict occupancy, using a variety of data sources, to best
match pre-heating and heating output with presence. Those studies that
have incorporated real-life deployment have treated the thermal com-
fort feedback loop as closed, so that preferred heating set-point was not
included as a control variable; and few of these have addressed the
domestic setting. The work presented here aims to fill this gap. We
propose that including thermal sensation feedback from users over time
can lower the temperature set-point; and/or better match users' spa-
tiotemporal thermal preferences. Furthermore, we suggest that by
nudging this set-point towards the lower end of thermal neutrality,
further energy savings could be realised.

We refer the interested reader to Kruusimägi (2017) for a more
detailed review of advances in home heating control systems and of
joint-cognitive systems approaches [12] to include human subjects in
their design and subsequent deployment, with the aim of maximising
the dual objectives of acceptance and performance gains.

1.1. Aims and objectives

The aim of this paper is to develop a heating control system that
delivers thermal comfort and energy efficiency and to evaluate its fit-
ness for purpose in real-life contexts. In this we consider thermal
comfort to mean that the occupant experiences a sensation of (close to)
thermal neutrality in the space they occupy, and energy efficiency to
mean the delivery of these conditions at minimal energy usage. For a
heating control system to achieve these objectives it needs to: (i) ac-
count for individual differences in occupants' thermal sensation, (ii)
demonstrate an ability to adjust itself to its context, (iii) operate in
relative autonomy to limit energy use in heating unoccupied spaces,
and (iv) facilitate an appropriate degree of manual over-ride for occu-
pants. The control algorithm of such a system would, therefore, need to:
(a) capture and predict occupants' presence in the space, (b) include
occupants' thermal feedback and adaptation in a heating set-point cal-
culation, and (c) optimise heating system start time, to reflect the
(potentially varying) thermodynamic characteristics of the space within
which it operates, and (d) enable occupants to override the heating
system operation and associated set-point. In addition, such an algo-
rithm could be enhanced by a nudging mechanism (a variant of (b)),
utilising occupants' thermal feedback to adjust the heating set-point to
the lower boundary of their comfort range, thus limiting the amount of
energy required without compromising on comfort.

Our interpretation of an algorithm and its underpinning technology
that meets these criteria is presented in the following section. We then
evaluate the fitness for purpose of the core elements of this algorithm,
emulating its operation in a simulation environment, before deploying
the combined system in the field - giving the algorithm control over
heating regimes in three homes for a six month period. In this way, we
were able to explore the user experiences of living with such a system in
a highly ecologically valid1 setting over extended periods.

1 By ecological validity it is meant that a phenomenon observed in a hypothetical si-
tuation also proved true when applied in a real-world setting.
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1.2. Algorithm

Our proposed spatiotemporal heating control algorithm first pre-
dicts future presence probabilities (steps 1–3 in Fig. 1) based on past
presences for that weekday (addressing item (a) above). Predicted
presences are thereafter associated with a temperature set-point (step 4
in Fig. 1) based on occupants' thermal sensation feedback relating to
previous set-points (addressing item (b) above). We present two var-
iations of the algorithm, differing in the manner in which the set-point
calculation is performed. A ‘maximise comfort’ strategy calculates a
temperature at which the occupant was predicted to experience thermal
neutrality on the ASHRAE 7-point scale [1], while the ‘minimise dis-
comfort’ strategy opted for the ‘slightly cool’ sensation. We consider the
latter to be the lower boundary of the occupant's thermal comfort range
that would not cause discomfort. With future presences and set-points
determined, the algorithm proceeds to pre-heat the room (steps 5&6 in
Fig. 1) in readiness for the next presence (addressing item (c) above).
This step utilises an optimum start algorithm that initiates activation of
the heaters so that the target set-point temperature is reached at or near
to the predicted start of presence. The optimum start algorithm con-
tinually updates itself to reflect the physical characteristics of the space
it occupies as well as other factors such as seasonality. In addition, the
algorithm accounts for occupant-dependant departure schedules, re-
ferring to extended, abnormal periods away from home such as holi-
days or other absences, and supports the occupant in overriding pre-
dicted set-point temperatures (establishing quality (d) in algorithm
operation); after which the algorithm resumes normal operation.

The algorithmic flow is summarised (Fig. 1), followed by a more
detailed explanation of each key feature.

At step 1) in Fig. 1 the algorithm calculates presence probabilities
for the current and four subsequent 10-min time-steps. This calculation
(1) is performed using an exponentially weighted running mean [5],
which uses inputs from previous calculations for that weekday and the
measured presence from the last occurrence of that weekday. Weekday
differentiation was utilised to accommodate common changes in peo-
ples' activities between weekdays and weekends, as well as between
individual days within these work pattern-orientated categorisations.

Fig. 1. Depicting the functional flow of the proposed control algorithm.

Fig. 2. Illustrating the system design of field study technology.

Fig. 3. Illustrating the operational interactions between the server, Raspberry Pi and
phone app.
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The presence probability P for current day i is calculated using
previous predictions, measured presence PM, and a weight W of 0.8
(this relatively high value causes the algorithm to favour historic over
recent data, preventing it from over-reacting to erratic user behaviour).
By using previously calculated predictions in this way, we avoid the
need to store the entire series (or some subset thereof), therefore lim-
iting the number of data lookups and calculations that the algorithm
has to perform in comparison with other exponentially weighted run-
ning mean expressions, and only requires 1 week of training data to
function. The algorithm performs this calculation for the current time
step as well as four time steps into the future, aiming to identify
‘meaningful presences’; defined as two consecutive time steps where
P≥ 0.4, to represent a threshold between predicted presence and ab-
sence, with predicted presence probabilities below this value being
treated as predicted absences. The value of 0.4 was established during a

calibration exercise. Our four consecutive time steps, representing a
40min duration, eliminates presences where the user was likely to be
present, but for a period not deemed long enough to warrant heating.
Weighting the use of previous predictions and measured presence al-
lows the algorithm to stay up to date with the latest changes in beha-
viour, without being overly influenced by erratic and non-repeating
behaviour, or indeed by outdated historic data. Consider two cases that
require the algorithm to learn new behaviours – firstly, an occupant's
work hours change to part-time, causing increased presence, but not to
be confused with an abnormal sick day spent at home; secondly, a
change in occupancy leading to entirely new presence profiles and
thermal preferences. A memory decay similar to our implementation
facilitates such cases.

In step 2 in Fig. 1 the algorithm sorts and selects the earliest oc-
curring meaningful presence, utilising this as the target time for which
to achieve the desired conditions. It then performs checks (step 3 in

Fig. 4. Illustrating the smartphone application given to study participants.

Fig. 5. Comparison of (A) actual presence, (B) no check window, (C) 120-s window, and (D) 180-s window recorded presence durations.
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Fig. 1) to ensure this does not fall within a user-specified away sche-
dule2.If the target time is unaffected by away schedules, the algorithm
calculates a preferred set-point temperature for that room in step 4 in
Fig. 1. The set-point calculation utilises occupant thermal sensation
feedback votes on the ASHRAE 7-point scale [1], in conjunction with
coincident measured temperature data. All submitted (using a smart-
phone app) thermal comfort votes are retrieved and the average of
these temperatures calculated based on the Griffiths [10] method, seen
in (2), which states that for every 0.5 point change in thermal sensation
on the ASHRAE scale, there corresponds a 1 °C change in temperature;
meaning that the sensation vote and temperature for which the vote
was cast can be used to calculate the temperature at which neutrality is
sensed:

= −T T Sen2n i (2)

Where Tn denotes neutral temperature, Ti is the indoor air temperature
at the time of observation and Sen is the reported thermal sensation
[-3≤ Sen ≤ +3]. At this step, the algorithm could utilise either the
maximise comfort or minimise discomfort heating strategy; this latter
corresponding to −T 2n .

Subsequently (step 5 in Fig. 1), the algorithm determines whether
pre-heating should commence, switching heaters on if the current time
exceeds or equals the optimum heating start time tstart , thereafter re-
starting the whole process.

= −
−t t T T

Sstart end
now

(3)

Here tend corresponds to the predicted end of the preheating, which also
coincides with the start of the forecasted period of presence, while Tnow
is the current temperature, T is the set-point temperature and S is the
slope. This slope represents the rate at which the heating system in any
room increases the temperature in that room, and is (re-)calculated
(step 6 in Fig. 1) following the pre-heating period as follows:

= ∗ + − ∗−S W S W(1 ) Δ
Δi i

T

t
1 (4)

The new slope Si is calculated using a weighted W (0.8) value for
the previous slope −Si 1 and the changes in time Δt and temperature ΔT
that occurred during the pre-heating period. This is a linear simplifi-
cation [19] of more complex optimum start algorithms, such as that
proposed by Birtles & John [2]. This re-calculation of slopes enables the
algorithm to adapt to changes (influencing heat storage and time-
varying heat gains and losses) that might impact future optimal start
times.

Following preheating, the algorithm enters a state of monitoring,
which causes the heating to maintain the set-point temperature as long
as occupant presence is detected. The set-point temperature is also
maintained for one time-step following the end of preheating without
occupant presence, to account for short absences.

1.3. Deployment architecture

For simplicity, our algorithm was deployed in homes equipped with
standalone electric convector heaters, controlled by WiFi-enabled plugs
(WiFiPlug2 by WifiPlug [30]) and a Raspberry Pi computer, equipped
with temperature and motion sensors; that all communicated with a
central database on a university server that hosted the control algo-
rithm (Fig. 2). This simplified the process of gaining ethics approval for
our experiments, whilst also simplifying our implementation.3

Data collection and control were centralised for storage capacity,
reliability and security reasons – data was safe from on-site damage,
allowed for access by researchers, and ensured failures in Raspberry Pi
computers had decreased significance. Users were provided with com-
munication and control capabilities through a smartphone application
(from here on “app” or “application”). Fig. 3 identified the interactions
between the server, application, and Raspberry Pi units.

As seen in Fig. 3 no direct communication between the application
and Raspberry Pi occurred. Rather, the Raspberry Pi sent presence (3)
and temperature (4) readings to the database (2), from which it re-
ceived instructions (5, 19). This introduced a delay in implementing
user-implemented changes but ensured all data was captured by the
researchers. Similarly, the app read information (8, 17 in Fig. 3) from
the database to display to the user and wrote users' changes (9, 10, 11,
12 in Fig. 3) to the database. The control algorithm (1 in Fig. 3) is a PHP

Fig. 6. Illustrating the % of actual presence covered by different check window sizes and the number of queries required for logging that data.

2 However, throughout the period covered by this away schedule, presence data is still
recorded (albeit consistently recording absences) and this recorded data is still used in
future predictions of presence for the effected day types, thus undermining the accuracy
of future predictions. In a future implementation, data recorded during away schedules
should be overlooked and the window used to calculate presence probabilities corre-
spondingly shifted backwards in time.

3 This does not imply that our algorithm could not be deployed to central water-based
systems; simply that these cases would require the regulation of radiators using wireless
valves (and feedback to the central boiler, to engage or disengage it as necessary).
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programming language implementation of what is described above,
with a few key changes. Namely, for technological simplicity, the al-
gorithm's calculations were triggered automatically every midnight, as
well as based on user-submitted away schedules (12 & 14 in Fig. 3),
calculating the following day's heating schedule for every room, rather
than continuously. However, pre-heating operations (5, 6 in Fig. 1)
resided within the Raspberry Pi (6 in Fig. 3). The algorithm's output was
mostly invisible to the user, except for some feedback through the
control application interface.

The majority of users' interactions with the app involved viewing
information about their house and administering manual over-rides (‘a’
in Fig. 4), providing feedback regarding thermal sensation and pre-
ference as well as perceived control votes (‘b’ in Fig. 4), and creating
and managing “away” schedules (‘c’ in Fig. 4).

Two configurations of the application were deployed, altering the
manner in which users viewed (Fig. 4a) the spaces in their home. The
“visible” version provided feedback 2 h into the past and future (the
temperature-time graph was presented), whilst the “blind” version did
not (the graph was hidden).

Users were prompted to submit a vote (Fig. 4 B) using push notifi-
cations throughout the experiment and were also directed to the vote
screen after every temperature override. User interactions with the app
were captured using a Google Analytics plugin.

2. Evaluating fitness for purpose

In what follows we test the algorithm's control logic in an emulated
environment with regard to its four distinct qualities: a) occupant
presence prediction, b) temperature set-point calculation from thermal
sensation votes, c) optimum pre-heating start time, and d) handling
occupant-defined away schedules. In addition, its energy saving po-
tential is assessed by comparison with a pre-determined schedule that is
common for a programmable thermostat. Subsequently, its perfor-
mance in-situ is assessed with regard to the same qualities a-d; along-
side an evaluation of the technological implementation.

2.1. Emulated environment

Prior to evaluating the fitness-for-purpose of the proposed algorithm
by simulating its control logic in an emulated environment, the algo-
rithm was calibrated for appropriate use of sensor data.

2.1.1. Code calibration
Sensing motion is a potentially unreliable means for inferring oc-

cupants' presence, because people may be present but sedentary so that
the sensor (in our case a presence infrared (PIR) detector) is unable to
detect motion (there is none to detect) and infer correctly that the user
is present. For this reason, a calibration exercise was undertaken to
ensure the algorithm adequately observed presence.

This calibration was conducted in two stages – initially, various
“presence check windows” were introduced to the code and tested in an
office setting where the effort cost of recording observed presence was
low. Subsequently, the best performing check window was tested in a
domestic environment. The “check window” refers to a duration of time
during which, if motion was detected again, two instances of motion
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Table 1
Comparison of modelled rooms.

Characteristic Modern Flat Victorian house

Volume 43.17m3 44.86m3

Floor area 17.27m2 17.95m2

Window area (Cardinal direction) 3.53m2 (E) 2.34m2 (S)
Glass U-value 3.004W/m2-K 5.827W/m2-K
Exterior wall area (Cardinal direction) 13.65m2 (E) 9.25m2 (S)
Exterior wall U-value (with film) 0.355W/m2-K 2.152W/m2-K
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were treated as a continuous presence. Six different check window sizes
were tested ranging from 30 s to 180 s, increasing in 30-s increments. A
Raspberry Pi computer combined with a PIR motion sensor was set up
in an office with 3 individuals working on computers and seated at
desks. While people moved in and out of the office on a regular basis, it
was unusual for the office to be empty except during a lunch break.
Based on this, the assumption was made that presence from first to last
detection was constant.

The recorded office presence data spanned from 8:39 in the morning
until 19:11 in the evening, with a gap from 14:01 to 15:10 when no-
body was present. Fig. 5 illustrates this time period in comparison with
presence captured by selected check windows.

It is worth noting that the motion sensor positioning was not ideal.
The sensor was located in the corner of the office, where two rows of

desks were positioned facing each other in the middle of the room. This
meant that the sensor was behind one of the occupants and its vision
obscured by computer screens for the remaining two. This explains the
lack of data in parts of the morning and in the second half of the day -
relatively subtle motions of hands and upper body associated with
working at a computer were out of sight of the sensor, resulting in
extremely low recorded presence in comparison to actual presence
(15–55%).

In general, an increase in window duration corresponded to an in-
crease in the percentage of actual presence time covered by the sensor
data and a reduction in the number of data logging queries to the re-
mote database, but too long a window would ‘join’ too many instances
of motion detection and not reflect real life presence correctly. Fig. 6
plots the percentage of actual presence and the required queries as a
function of window duration.

The percentage of correctly recorded presence time is asymptotic,
with little improvement above 120s, beyond which there would be an
increased risk of failure to adequately detect presence dynamics (ar-
rival/departure times). Consequently (and supported by literature
[25]), a 120s window was deemed adequate for deployment.

As noted earlier, this check window was further tested by installing
the equipment (without heaters) in an open-plan kitchen/lounge of a 2-
person household. The occupants of the house were asked to manually
record the times they entered and exited the room, just as the sensor
should over the course of a day.

Fig. 7 plots the differences in manually recorded presences and
those recorded by sensors. There were once again periods in the late
afternoon where occupants were present but the sensor did not record
them. This too was due to sensor placement – it can be speculated that
occupants were watching TV or performing sedentary activities on sofas

Fig. 8. Layout of modelled houses (A – Modern flat, B – Victorian house), with simulated rooms highlighted.

Table 2
Input assumptions relating to the four tested aspects of the control algorithm.

Process referred to Initial input assumptions

Presence Calculating the probability that a user is in the room,
based on previous predictions and recorded presence.

An initial value of 0 was imposed for presence probability and recorded presence.

Slope Calculating a slope value for use in the optimum start
algorithm.

An initial value of 1 was used for subsequent adjustment by the algorithm.

Temperature set-point Effects of user-provided feedback on thermal sensation
votes for set-point temperature

An initial value of 10 °C was used. Vote casting was subsequently simulated by sampling
from thermal sensation probability distributions corresponding to the current observed
temperature, using the SCATS dataset [23].

Away schedules Users defining periods when they are away from the
building to switch the heating off.

Two away schedules were built on days 19–21 and 113–119 to simulate the occurrence of
a weekend and a week from home.

Table 3
Describing, for the four tested aspects of the control algorithm the corresponding, input
assumptions.

Configuration number House Heating system Algorithm setting

1 Modern Electric Maximise comfort
2 Modern Electric Minimise discomfort
3 Modern Central heating Maximise comfort
4 Modern Central heating Minimise discomfort
5 Victorian Electric Maximise comfort
6 Victorian Electric Minimise discomfort
7 Victorian Central heating Maximise comfort
8 Victorian Central heating Minimise discomfort
9 Modern Electric Control configuration
10 Modern Central heating Control configuration
11 Victorian Electric Control configuration
12 Victorian Central heating Control configuration
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16



that were the furthest location from the sensor, causing slight posture
changes to be missed.

There were also some false positives recorded by the sensor, but this
may be due to short-lived entries to the room that were not recorded by
the participants.

With a 120s window, the sensing equipment was only capable of
recording 49.5% of the total presence duration. Based on this data, it
would be unrealistic to assume that the algorithm would achieve a 0.8
probability of presence: the threshold above which we would deem
occupants to be present. Therefore, assuming that around 50% of true
presence would be captured, we set a threshold for the probability of
presence of 0.4, in combination with the 120s window. If different,
more reliable presence capture technology was intended to be used, this

value would need to be revisited.

2.1.2. Emulation method
Prior to deployment in the field, the algorithm's functionality was

assessed by simulating its output in an emulated environment, using
EnergyPlus [4] coupled with the Building Control Virtual Test Bed
(BCVTB) [6]. This setup allowed for different house models and algo-
rithm configurations to be tested with ease.

Since the focus of this exercise was merely to validate the algor-
ithm's logic prior to a real-life deployment only a single room was si-
mulated rather than a whole building. A living room was chosen for this
exercise as it was considered to offer a variable presence profile due to
the different activities performed in that space. Four configurations,

Fig. 9. Observed (grey) and predicted (line) presence probabilities for all days: Modern – Electric – Minimise discomfort configuration.
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representing two different house types (a purpose-built flat, and a
Victorian house) and two different heating system types (electric
heating & central heating) were used. Table 1 summarises the differ-
ences in the modelled rooms between the two house types and Fig. 8
present their layout.

These models are of two houses in Nottingham, UK with one oc-
cupant simulated for each. In order to provide a representative depic-
tion of the occupant's presence in the room, time use survey (TUS) data
[8] was integrated. Collected during the year 2000, this TUS data de-
scribes 20,981 people's activities in diary format at 10-min time steps.
This was filtered to eliminate individuals younger than 18 years,
wrapped to match the simulation start time of midnight (TUS diaries
started at 4 a.m.) and grouped by weekday (so representing an average

adult's activities for each average day of the week). The data was
thereafter filtered to leave activities that the user reported to take place
at home, and were likely to take place in the lounge. These included all
reading-related activities, TV and video, radio & music, hobbies (in-
cluding IT, arts etc.), socialising with household members, and house-
hold management using the internet. Other activities were assumed to
correspond to absence from the lounge.

The simulation models used an ideal loads HVAC system: system
capacity was constrained (1 kW for the electrical system and 3 kW for
the thermal) and distribution losses and inertia was ignored, so that
heat was delivered to the target zone(s) in an idealised way. This system
was modelled in two configurations – one to simulate an electric con-
vector heater (limited at a capacity of 1 kW zone sensible heating

Fig. 10. Observed (grey) and predicted (line) presence probabilities: Wednesdays only, all configurations.
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Fig. 11. Observed (grey) and predicted (line) presence probabilities: all consecutive Wednesdays, Modern – Electric – Minimise discomfort configuration.
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Fig. 11. (continued)
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power) and another to represent a central heating system three times as
powerful (3 kW capacity). Capacity limits were imposed to evaluate the
usefulness of the algorithm's modelling of pre-heating start time. The
simulation used Nottingham, UK weather data and was run from first of
January for 180 days (matching the estimated deployment time for the
succeeding field trial, to capture the transition from full heating
[winter], through partial heat to no heating [summer] demand). The
assumptions made in initialising the control algorithm are outlined in
Table 2 below.

A control configuration was also included that utilised Energy Star
recommended thermostat settings for a programmable thermostat [27].
The implemented settings utilised an occupant presence schedule be-
tween 6am and 8am and 6pm-10pm with a 21 °C set-point temperature
and 16 °C setback temperature at other times.

A total of twelve configurations were simulated, as illustrated in
Table 3.

2.1.3. Emulation results
2.1.3.1. Presence prediction. Fig. 9 depicts the algorithm's predicted and
observed (TUS data) presence profiles for all days for the Modern-
Electric-Minimise discomfort configuration and Fig. 10 compares
Wednesday profiles for all configurations.

The algorithm was able to develop these profiles using only one
week of training data, so that algorithm-scheduled heating periods were
defined from the second simulated week onwards, indicating that the
algorithm was relatively quick to learn new behaviours, highlighted in
Fig. 11.

However, it is worth noting that this element was significantly in-
fluenced by the simulated presence value. Within the simulation soft-
ware, when a person was present in the room, the observed presence
value for that 10-min time step would be 1 (meaning that presence is
continuous throughout the timeslot). But in reality, our presence sen-
sing apparatus may detect presence that began or terminated part way

Fig. 12. Slope distribution for all simulated conditions (for clarity the x-axis has been clamped at 0.1, omitting the initial value of 1 and the first calculated instance of c0.2).

Fig. 13. Thermal sensation distribution (stacked area chart) with positive and negative temperature cumulative distribution functions (black lines) comparison between house types.
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Fig. 14. Thermal sensation distribution (stacked area chart) with positive and negative temperature cumulative distribution functions (black lines) comparison between heating types.

Fig. 15. Thermal sensation distribution (stacked area chart) with positive and negative temperature cumulative distribution functions (black lines) comparison between heating control
strategies.
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through this time slot, so that partial presence would be recorded (a
Real number rather than a Boolean); lowering the probability of a
person being present and correspondingly increasing the number of
historically similar day types needed for the threshold to be passed by
which a meaningful presence would be predicted.

The mean observed (albeit based on Time Use Survey data in this
emulation experiment) and predicted presence profiles presented in
Fig. 10 are a close match, suggesting that overall tendencies in occu-
pation are captured well by our algorithm; albeit with systematic over-
prediction (an error in magnitude) suggesting that the calibration
parameters require further tuning, favouring historic predictions over
recent observed presence (W in (1)). Naturally, the algorithm performs
less well when comparing prediction with observation for specific days
(Fig. 11). This is expected in an algorithm which is essentially using
historical data to smooth (albeit with decay) perturbations arising from
a process that is stochastic in nature. Nevertheless, these results do
suggest that the weighting introduced a reasonable memory decay; so
that the algorithm gradually adjusted itself to the latest behaviour
trends.

The algorithm also successfully reproduces distinct presence profiles
for each day of the week. While an individual weekday configuration
makes the algorithm slower to adapt to abrupt but repeated (amongst
similar day types) behaviour changes (due to a relative lack of training
data for this weekday as opposed to using more abundant data for all
weekdays), this sort of decay does support the handling of distinct
differences in behaviour amongst similar day types. For example, for
those working for a proportion of weekdays outside of their home.

Furthermore, with a RMSE of 0.363 in predicted presence prob-
ability across all simulated use cases (flats, heating systems and prac-
tices) and day types and with little variance (Monday 0.353, Tuesday
0.353, Wednesday 0.357, Thursday 0.358, Friday 0.363, Saturday
0.391, Sunday 0.393), the algorithm performs consistently throughout.

Overall then, we suggest that the proposed algorithm performs
adequately in predicting users' presence at home.

2.1.3.2. Slope. The slope in our optimal start algorithm represents the
rate of increase of temperature in the room following activation of a
heater. This variable is recalculated following every pre-heating

instance. Fig. 12 depicts a distribution of all calculated slopes for all
simulated conditions evolving from an initial value of 1. The results
indicate that the algorithm quickly (within 2–3 instances) adjusted the
initial value to reflect the building's characteristics (position on the x-
axis).

It is clear from Fig. 12 that the slope was rather stable but not
constant, meaning that the optimum start algorithm (4) not only adapts
itself to the fixed characteristics of the building (its envelope and
construction materials), but also to the day-to-day variations in heat
flows within the room, affected by thermal gains from occupants, out-
door weather conditions, solar gains, heat flow to adjacent rooms, etc.
These results suggest that the slope calculation and preheating func-
tionality in the algorithm were both useful and functioned as expected.

2.1.3.3. Temperature set-point. Prior to any exploration of the results, it
is important to note that the thermal sensation data used to simulate
user voting was obtained from an experiment assessing occupants'
thermal comfort in the summer. This is likely to cause a lower preferred
set-point than might be expected for winter months, so that users may
report being comfortable at temperatures that would otherwise seem
unlikely or difficult to obtain via heating during winter months.

Figs. 13–15 present the thermal sensation probability distributions
obtained by drawing from observed distributions (SCATS data) for
temperature bins matching those simulated, as well as the cumulative
distribution functions of prevailing temperatures in the simulated en-
vironment throughout the duration of the simulation; with the two
curves intersecting at the median simulated temperature. Owing to
limitations in heating capacity (1 kW electric, 3 kW central) for the
houses of different standards of insulation (Modern insulated cavity
wall, Victorian uninsulated solid wall) we observe considerable varia-
tions in median temperature between housing type (a - Fig. 13) and
more modest differences between heating system (b - Fig. 14) and
strategy (minimise/maximise (dis)comfort strategies) (c - Fig. 15).

These differences are also reflected in thermal sensation probability
distributions, with limited heating capacities yielding elevated levels of
discomfort in the Victorian properties and the different heating strate-
gies yielding the anticipated differences in median indoor temperature
(maximise comfort 18.1 °C and minimise discomfort 17.2 °C).

Fig. 16. Effect of away schedules (black fill) on heating system sensible heating flux (grey line) for four of the eight configurations (configurations 2, 3, 6, 7 were omitted for space
considerations as away schedules affected them in the same manner).
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Interestingly, our different heating strategies led to very similar mean
comfort votes (−1.1 for minimise discomfort, −1.0 for maximise
comfort and −1.0 for the EnergyStar case).

On this basis, we conclude that the algorithm succeeds in adapting
itself to users' thermal preferences and accommodates diversity in these
preferences between housing and heating system configurations; with
constraints on heating system capacity leading to offsets in median
indoor temperature that are typically observed in poorly insulated
housing.

2.1.3.4. Away schedules. Two away schedules were incorporated in the
simulation and the effect of these can be seen in Fig. 16. As explained in
Fig. 1, the algorithm calculates a presence probability regardless of the
away schedule. However, if the calculated time step falls within an
away schedule, the set-point calculation is not executed, therefore
preventing any heating activity from taking place.

Long periods of no heating activity can also be observed towards the

end of the simulation period, due to the relatively warm summer
weather during which little or no additional heating was required.

From this we conclude that the algorithm performs as expected for
the straightforward case of handling away schedules.

2.1.3.5. Energy implications. Finally, Fig. 17 compares performance
criteria (energy demand, mean indoor temperature, and mean
sensation) between all simulation configurations including the
EnergyStar recommended programmable thermostat settings.

These results show that the proposed algorithm significantly out-
performs the recommended (EnergyStar) programmable thermostat
settings, reducing energy demand without compromising on comfort.
The proposed algorithm delivered an average 45.8 kWhm−2 saving in
comparison to a programmed schedule (average 68.8 kWhm−2 for all
EnergyStar conditions, average 23.0 kWhm−2 for all conditions).
Furthermore, the minimise discomfort algorithm configuration used on
average 19.4 kWhm−2 less energy than the maximise comfort condition

Fig. 17. Energy and comfort implications comparison between all simulated conditions.
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Table 4
Displaying the characteristics of the participating households (all names are pseudonyms).

Characteristics Flat 1 Flat 2 Flat 3

House exterior

Occupant characteristics and the
anonymous persona assigned to
them

Postgraduate student (male) - Carl 1 postgraduate student (male) - Paul, 1
professional (female) - Diane

2 postgraduate students (1 male - John,
1 female - Mildred)

Heating strategy Maximise comfort Minimise discomfort Minimise discomfort
App visibility Visible Blind Visible
Dwelling type Purpose built flat Converted flat Converted flat
Rooms deployed with equipment 5 rooms – Lounge, Bedroom, Second

bedroom, Bathroom, Kitchen
4 rooms – Lounge/kitchen, Bedroom,
Bathroom, Hallway

3 rooms – Lounge/kitchen, Bedroom,
Bathroom

Existing heating system Gas central heating Electric convector heaters Electric convector heaters

Fig. 18. Floor plans highlighting the placement of sensor kits and heaters in the participating households (diagrams are not to scale).

Fig. 19. Joint thermal sensation – thermal preference probability distribution comparison for minimise discomfort and maximise comfort heating strategies: diameter is proportional to
probability (or proportion of joint votes).
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(average 13.3 kWhm−2 for minimise discomfort, 32.7 kWhm−2 for
maximise comfort), with simulated average thermal sensation votes
only 0.1 lower on the ASHRAE 7-point scale (average vote of −1.1 for
minimise discomfort, −1.0 for maximise comfort, −1.0 for
EnergyStar). These results suggest that the energy use reduction oc-
curred without an additional cost in user discomfort. However, these
results relate only to simulations of single rooms with synthetic

representations of occupants. Nevertheless, the primary purpose of this
simulation experiment was to evaluate the proof of principle of the
algorithm, and that we believe we have done, rather than determine its
absolute performance. For this we have conducted a real-life deploy-
ment experiment, as set out below.

Fig. 20. Comparison of thermal sensation probability distributions with prevailing temperature positive and negative accumulative distribution functions (black) for participating
households and their heating strategy.
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2.2. Field deployment

2.2.1. Deployment method
Participants that satisfied the following criteria were self-selected.

(1) They were responsible for their household heating expenses, (2)
their existing heating system was preferably (but not limited to) elec-
tricity based (ideally not storage heating), (3) they lived in a house/flat
no bigger than 5–6 rooms, (4) apartments had to have a minimum of 2
rooms, and lastly, (5) occupants owned and used a smartphone running
either an iOS or Android operating system. Recruitment for this study,
which was based in Nottingham UK, was achieved through the aca-
demic participant recruitment service callforparticpants.com,

university email mailing lists and the social media network Facebook.
In total three households (see Table 4 for full detail) were recruited out
of several that showed an interest.

In each case, the heating system was placed as indicated in Fig. 18.
This was a longitudinal experiment lasting 5–6 months (Feb–Jul

2015), with equipment in one household installed later, causing a
shorter deployment time. Prior to apparatus installation, participants
were asked several questions regarding their heating and communica-
tions infrastructure (Raspberry Pi's were set to use local wifi for com-
munications with the remote database) to check their ability to parti-
cipate, and were asked to fill in a pre-study questionnaire, relating to
their anticipated periods of presence in their rooms and their preferred

Fig. 21. Comparison of observed (colour) and predicted (line) average presence profiles in all rooms for all Wednesdays.
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temperatures to provide the algorithm with its initial conditions.
Furthermore, interviews with participants were conducted 2 weeks

after installation, 2 months into the experiment, and after its conclu-
sion. Throughout the duration of the experiment, check-up emails were
sent to the participants and daily check-ups utilising database queries
and system logs were performed remotely. When delays in sensor data
logging intervals occurred, the apparatus was remotely re-booted. In
severe cases, participants were contacted to walk them through a
manual restart by removing and replacing the power supply. With these
measures, the installations were on-line for 87.5% (Flat 1), 56.4% (Flat
2, due to a poor internet connection for 2 rooms), and 82.3% (Flat 3) of
the time. As noted earlier, participants were also sent reminder push
notifications as prompts to submit thermal comfort votes. The rate of
push notifications decayed over the course of the experiment from one
in every two days in February, to every three days in March, and every
four days subsequently until the end of the experiment. Following the
conclusion of the experiment, participants were compensated with £20
Amazon shopping vouchers per month of participation.

2.2.2. Deployment results
In the following, we discuss the algorithm's performance in the

participating households, who can broadly be described as “Fashion
user” (Flat 1) characterised by the occupant's preference for selecting a
desired clothing level and subsequently relying on the heating system to
deliver thermal comfort, and ad-hoc working from home presence
patterns; “Frugal user” (Flat 2) characterised by reported prioritisation
of cost saving on heating (conflicting thermal preferences and strategies
between occupants were also reported) and one occupant following a
strict absence for work routine, while the other's work hours were
flexible, creating variable presence-absence profiles; and “Everything's
fine” users (Flat 3) characterised by their environmental conditions

naturally meeting their comfort expectations due to good insulation and
high temperature gains from neighbouring flats, subsequently low en-
gagement with the heating apparatus, and a strict absence for work
pattern for both occupants. For more detail on the households and their
interactions with the heating system and control application, please
refer to Kruusimagi et al. [18].

2.2.2.1. Providing thermal comfort and user experiences for different
heating strategies. Comparison of the maximise comfort and minimise
discomfort heating strategies revealed that there was little difference
between submitted average sensation votes - minimise discomfort 3.6
(on a 1 to 7 scale, or −0.4 on a −3 to +3 scale), maximise comfort 3.9
(minimise discomfort 108 votes by 4 users, maximise comfort 301 votes
by 1 user). However, analysis of the reported values of how users felt
and wanted to feel at the time (Fig. 19) between the two strategies
showed that two dominant voting cases prevailed. In the first case,
users reported a sensation of “cool” or “slightly cool” while they would
have liked to have felt “neutral” or “slightly warm”. In the second case,
users reported to have felt “slightly warm” or “warm” and would have
liked to have felt a “neutral” or cooler sensation. Interestingly, the
Maximise Comfort users had a higher probability of reporting thermal
preference of “cold” at thermal sensations of “neutral”, “slightly warm”,
or “warm” indicating that their heating strategy tended to deliver
temperatures that were too high. In contrast, the Minimise Discomfort
strategy users were more likely to feel “cold”, but their preference at the
time tended to coincide with the Maximise Comfort users.

The ‘fashion’ and ‘everything's fine’ users' households (top & bottom
in Fig. 20) were within their comfort range (slightly cool/neutral/
slightly warm) for over 75% of the time. In contrast, the ‘frugal’ users'
household (Fig. 20 middle) experienced “cold”, “warm” or “hot” sen-
sations for the same percentage of time. This appears to be in part due

Fig. 22. Comparison of observed (colour) and predicted (line) average presence profiles in Flat 2 Room 4 (lounge) for all days.
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to the users' operation of the system – limiting the amount of time it was
turned on in order to save cost, thus choosing to subject themselves to
such conditions.

While the results require verification from a larger sample size,
these results do indicate that there is potential for utilising a minimise
discomfort strategy as a nudging mechanism to reduce energy use
without compromising on comfort; provided that occupants are in fa-
vour of this strategy.

2.2.2.2. The ability to predict occupant presence and provide a
spatiotemporal heating solution. The recorded presence data and
system functionality logs showed that the algorithm was able to
predict temporal variations in the profile of the probability of
presence reasonably well (see Fig. 21 comparing between rooms and
Fig. 22 comparing between days in the same room), particularly given
the lack of training data, but the magnitude tended to be overestimated
(suggesting once again that the weighting in equation (1) may need to
be adjusted).

More specifically, we can identify in Fig. 21 three rooms that are
used intermittently but actively, and they are small enough that the
motion sensor has a high hit rate. These are rooms Flat (F)1 Room (R)2,
F2R1 and F3R2. We also observe rooms in which we reliably detect and
thus predict presence during periods of activity and relatively poorly
(over-predicting) during inactivity: F1R1, F1R5, F2R3, F3R3. Other
rooms lie somewhat between these extremes. Furthermore, the differ-
ences between the days in Fig. 22 highlights that the algorithm creates a
presence profile specific to the day of the week, adapting itself to the
users' different activities regardless of the day.

Although our results are encouraging, it is worth noting that our
ability to predict presence in this setup was constrained by the tech-
nology used. Although this can be managed to some extent through
calibration, we would recommend the use of more accurate sensing
technology, also requiring a dedicated re-calibration check window and

presence thresholds. In a commercial application of our algorithm,
these can be tailored to home configuration and user behaviours.

2.2.2.3. Algorithm adjusting to its environment and pre-heating in
anticipation of occupancy. As noted earlier, our optimum start
algorithm (OSA) aimed to calculate the most appropriate time to start
pre-heating rooms for predicted presence. Owing to a combination of
housing characteristics, the selected heating strategy and users' heating
aspirations, there is a contrast in the number of instances in which
heaters were activated; in particular when comparing F1 with F2 and
F3 (see Fig. 23). Heaters were relatively frequently activated in F1
leading to a distribution of calculated slope parameters having a
relatively small standard deviation. In contrast, heaters were seldom
activated in the other houses (with the exception of F2R3), but when
activated we do nevertheless observe a shift from the starting value of 1
towards lower values; indicating as observed during emulation process,
that the algorithm successfully calculates a dynamic slope and the
corresponding optimal start time (so long as the predicted presence
probability is accurate).

2.2.2.4. Potential energy savings. Since no data was gathered regarding
the participants' energy usage prior to the technological intervention
(we used our own replacement heaters), it was not possible to
demonstrate any energy savings directly. However, several promising
results emerged.

A comparison of calculated neutral temperatures, based on reported
sensation votes and coincident temperatures, with pre-study ques-
tionnaire responses, revealed that households overestimated their pre-
ferred set-point temperatures by some 2.1 °C (F1=1.71 °C, F2= 4.3 °C,
F3= 0.32 °C). These results suggest that autonomous systems can po-
tentially change households' heating system behaviours with corre-
sponding energy savings.

Furthermore, heater switch-on logs revealed that across all three

Fig. 23. Frequency distribution of calculated slopes from all individual rooms.
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participating households and all rooms, the heaters were switched on
for an average of 1 h and 9min per day (42min Everything's fine user,
2 h 20min Fashion user, 25min Frugal user). These results were con-
sistent with those of the simulated Modern Electric house, where
heating operation times were 3 h 45min (EnergyStar configuration),
1 h 32min (maximise comfort configuration), and 10min (minimise
discomfort configuration). On average across the participating house-
holds, this duration was just under the maximise comfort configuration
in the simulation and suggests that an average saving of 46 kWhm−2

could be realised in comparison with the EnergyStar recommended
programmable thermostat settings over half a year. But, these results
are somewhat speculative. An accurate assessment would require
measurements of energy use (and preferably also indoor and outdoor –
for normalisation purposes – conditions), both pre- and post-interven-
tion.

3. Conclusions

The aim of this exercise was to evaluate the fitness for purpose and
real life performance of a quasi-autonomous spatiotemporal home
heating control algorithm.

Our results suggest that the proposed algorithm was able to develop
a presence profile for a single room for every day of the week in both
emulated and true-to-life environments. While the proposed algorithm
is relatively simple in its logic in comparison to more complex presence
prediction solutions ([28] or [22]), and could be further improved upon
using more reliable sensing technology, we do accommodate real-life
diversity, which has been demonstrated in the field study. Our algor-
ithm's memory decay allows it to perform well in changing conditions
and to adapt itself to interpersonal differences in thermal preference. In
the version presented here, memory decay was not applied to thermal
preference or set-point calculation, but this could readily be accom-
modated. In addition, we have shown that our algorithm was able to
adapt itself to its environment; to the building envelope, heating system
specifications, daily changes in climate conditions. Our algorithm is
able to achieve this level of operation and performance with virtually
no training data. We believe this to be of paramount importance for
systems designed for the home setting.

Our evaluation of both maximise comfort and minimise discomfort
strategies suggest that heating control algorithms can proactively nudge
users towards more energy efficient behaviours without compromising
comfort requirements. This calls for testing of other domestic algo-
rithms in the wild, where their core functionality can be coupled with
users' behaviour and preferences, and thus for the system to be assessed
from a holistic joint-cognitive systems view, ensuring a pleasurable user
experience while allowing for a higher degree of granularity in spa-
tiotemporal heating control and corresponding energy savings.
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