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Abstract 

Purpose: This study examined the feasibility of sprint interval exercise training (SIT) for men 

with non-alcoholic fatty liver disease (NAFLD) and its effects on intrahepatic triglyceride 

(IHTG), insulin sensitivity (hepatic and peripheral), visceral (VAT) and subcutaneous 

adipose tissue (ScAT). 

Methods: Nine men with NAFLD (age 41±8 years; BMI 31.7±3.1 kg·m-2; IHTG 15.6±8.3%) 

were assessed at: 1) baseline 2) after a control phase of no intervention (pre-training) and 3) 

after six weeks of SIT (4-6 maximal 30 s cycling intervals, three times per week). IHTG, 

VAT and ScAT were measured using magnetic resonance spectroscopy or imaging and 

insulin sensitivity was assessed via dual-step hyperinsulinaemic-euglycaemic clamp with 

[6,6-D2] glucose tracer.  

Results: Participants adhered to SIT, completing ≥96.7% of prescribed intervals. SIT 

increased peak oxygen uptake (V̇O2 peak: +13.6% [95% CI: 8.8 to 18.2%]) and elicited a 

relative reduction in IHTG (-12.4% [-31.6 to 6.7%]) and VAT (-16.9% [-24.4 to -9.4%]; n=8), 

with no change in body weight or ScAT. Peripheral insulin sensitivity increased throughout 

the study (n=8; significant main effect of phase) but changes from pre- to post-training were 

highly variable (range: -18.5 to +58.7%) and not significant (P=0.09), despite a moderate 

effect size (g*=0.63). Hepatic insulin sensitivity was not influenced by SIT. 

Conclusions: SIT is feasible for men with NAFLD in a controlled laboratory setting and is 

able to reduce IHTG and VAT in the absence of weight loss.  
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List of abbreviations: 

NAFLD – non-alcoholic fatty liver disease 

SIT – sprint interval exercise training 

IHTG – intrahepatic triglyceride 

VAT – visceral adipose tissue 

ScAT – subcutaneous adipose tissue 

BMI – body mass index 

T2DM – type 2 diabetes mellitus 

HIIT – high intensity intermittent exercise training 

MR – magnetic resonance 

1H-MRS – proton magnetic resonance spectroscopy 

EGP – endogenous glucose production 

HISI – hepatic insulin sensitivity index 

%EGPsupp – percentage suppression of EGP by low-dose insulin infusion 

V̇O2 peak – peak oxygen uptake 

HDL – high-density lipoprotein 

LDL – low-density lipoprotein 

TG – triglyceride 

NEFA – non-esterified fatty acids 
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HOMA-IR – homeostatic model assessment of insulin resistance 

Adipo-IR – adipose tissue insulin resistance index 
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Introduction 

Non-alcoholic fatty liver disease (NAFLD) is a common complication of obesity that is 

integrated in the pathogenesis of extra-hepatic comorbidities such as type 2 diabetes (T2DM) 

and cardiovascular disease (Byrne and Targher 2015). Insulin resistance is a central 

pathophysiological feature of NAFLD with associations between intrahepatic triglyceride 

content (IHTG) and insulin action in skeletal muscle, adipose tissue and the liver (Bril et al. 

2017). The prominence of these metabolic defects within the development and progression of 

NAFLD makes them priority targets for intervention.  

Lifestyle interventions, incorporating diet and physical activity, remain the cornerstone of 

treatment for NAFLD (Marchesini et al. 2016) and the importance of structured exercise 

within such interventions is underscored by both hepatic and extra-hepatic benefits. 

Continuous moderate-to-vigorous intensity exercise interventions increase cardiorespiratory 

fitness, reduce adiposity, improve peripheral insulin sensitivity, enhance cardiovascular 

function and improve circulating markers of metabolic health (Pugh et al. 2014; Hallsworth et 

al. 2015; Keating et al. 2015; Cuthbertson et al. 2016; Zhang et al. 2016). 

Guidelines for the management of NAFLD suggest that individuals undertake 150-200 min of 

moderate-intensity aerobic or resistance exercise each week, spread over three to five 

sessions (Marchesini et al. 2016). Observational evidence (Kistler et al. 2011) and 

experimental data (Cho et al. 2015; Oh et al. 2017) suggest that high-intensity exercise may 

be more potent in attenuating IHTG accumulation and NAFLD progression than moderate-

intensity exercise. This evidence is consistent with exercise intensity-dependent 

improvements in wider cardiometabolic outcomes, including indices of insulin sensitivity 

(Tjønna et al. 2008; Weston et al. 2013). Moderate-intensity exercise improves peripheral 

insulin sensitivity in patients with NAFLD (Cuthbertson et al. 2016) but evidence of its 
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impact on hepatic insulin sensitivity is unclear (Shojaee-Moradie et al. 2007; Cuthbertson et 

al. 2016). The effects of high-intensity exercise on hepatic and peripheral insulin sensitivity 

in individuals with NAFLD have not been assessed. A better understanding of these 

outcomes is important, given the link between IHTG, glycaemic control and metabolic 

disease (Byrne and Targher 2015; Marchesini et al. 2016; Bril et al. 2017). 

High-intensity intermittent exercise training (HIIT), which is characterised by repeated 

intervals of high-intensity exercise interspersed with periods of rest or low-intensity active 

recovery, has emerged as a form of exercise capable of providing many health benefits for 

individuals with, or at risk of, chronic disease (Gibala et al. 2012). Sprint interval training 

(SIT) is a version of HIIT consisting of brief bursts (30 s) of maximal-intensity exercise 

(Little et al. 2011). SIT induces adaptations in skeletal muscle which improve oxidative 

metabolism (Gibala et al. 2012) and, in some studies, enhances whole-body insulin sensitivity 

and glycaemic control (Richards et al. 2010; Cocks et al. 2015). These adaptations are likely 

to be of benefit for individuals with NAFLD, but the influence of SIT on IHTG and tissue-

specific (muscle, adipose tissue, liver) insulin sensitivity remains unknown. 

This study investigated the feasibility and efficacy of SIT as a therapeutic strategy in 

overweight or obese men with NAFLD. We sought to determine the effect of six weeks of 

SIT on IHTG, visceral (VAT) and subcutaneous adipose tissue (ScAT), as well as hepatic and 

peripheral (skeletal muscle and adipose tissue) insulin sensitivity. We hypothesised that SIT 

would reduce IHTG, VAT and ScAT, and increase insulin sensitivity. 
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Participant and Methods  

Ethical approval 

This study was approved by the research ethics committees of Loughborough University and 

the University of Nottingham and was conducted in accordance with the Declaration of 

Helsinki (World Health Organisation 2013). 

Participants 

Nine white European men were recruited from the general population and gave informed, 

written consent to participate. Although no power calculation was performed for this study, 

this sample size was chosen based on studies reporting significant improvements in 

cardiorespiratory fitness and indices of glycaemic control with HIIT (Little et al. 2011; Cocks 

et al. 2015). Eligibility criteria included inactive but weight-stable individuals aged 25 to 55 

years with a body mass index (BMI) between 27 and 40 kg·m-2 and a waist circumference ≥ 

94 cm. Participants were considered inactive if they did not complete any form of regular 

structured exercise.  Participants were identified as exhibiting NAFLD in that they had IHTG 

≥ 5.56%, determined during screening using magnetic resonance (MR) spectroscopy (1H-

MRS), and did not report excessive alcohol consumption (>21 units·week-1) or other 

secondary causes of hepatic steatosis (Marchesini et al. 2016). Participants were excluded if 

they: a) had any form of diagnosed chronic metabolic disease, b) were taking prescribed 

medications for hypertension, dyslipidaemia or glucose regulation or c) had contraindications 

to exercise or MR procedures.    

Study design 

This study utilised a repeated measures longitudinal design in which, following screening, 

participants completed two consecutive six week phases (control and SIT). The control phase 
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acted to monitor the variation in study outcomes over a similar period to that of the exercise 

intervention, but with participants maintaining their usual lifestyle. All participants completed 

the control phase followed by the exercise intervention, in order to avoid the confounding 

effects of detraining during the control phase. All study assessments were performed on 

consecutive days at baseline, pre-training and post-training: day 1) IHTG, VAT and ScAT; 

day 2) hepatic and peripheral insulin sensitivity and systemic metabolic biomarkers; day 3) 

cardiorespiratory fitness. Post-training assessments began 48 h after the final SIT session to 

eliminate the confounding influence of the final exercise training session on insulin 

sensitivity (Sylow et al. 2017). Dietary intake was standardised for 24 h before metabolic 

assessments through provision of all food and energy-containing drinks. This diet provided a 

balanced macronutrient profile and was tailored to each participant’s estimated energy 

requirement (Mifflin et al. 1990) using a  multiplication factor of 1.45 to account for the 

physical activity level of an inactive group (FAO et al. 2001). Participants were instructed 

and regularly reminded to maintain their usual lifestyle habits throughout both the control and 

SIT phases of the study. This included instructions to maintain dietary habits. Energy intake 

was not recorded due to concerns that monitoring may prompt dietary changes and given 

documented concerns regarding the accuracy of self-reported energy intake data (Dhurandhar 

et al. 2015). 

Imaging and Metabolic Assessments 

All metabolic assessments were performed after an overnight fast. MR measurements were 

performed on a Philips Achieva 3T system with 32 channel XL-Torso coil. IHTG was 

measured from a 20x20x20 mm voxel within the right lobe of the liver using 1H-MRS with 

Stimulated Echo Acquisition Mode (STEAM) localization (repetition time = 2046 ms) 

(Stephenson et al. 2013; Bawden et al. 2017). VAT and ScAT were assessed using a two-
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point modified Dixon technique (Philips) (Nakai et al. 2010) and an in-house algorithm to 

generate fat boundaries of visceral and subcutaneous regions.  

Hepatic and peripheral insulin sensitivity were assessed using a modified version of the 

hyperinsulinaemic, euglycaemic clamp with two stages of insulin infusion, low- (20 mU·m-

2·min-1) and high-dose (50 mU·m-2·min-1), each lasting 120 min. A continuous infusion of 

[6,6-D2] glucose tracer was initiated 120 min before the first hyperinsulinaemic stage and 

continued throughout for the quantification of endogenous glucose production (EGP) 

(Johnston et al. 2013). Blood glucose was clamped at 4.5 mmol·L-1 (coefficient of variation: 

mean (± SD) = 1.6 ± 0.9 and 2.7 ± 1.1 % at steady-state low- and high-dose insulin infusion, 

respectively).  

The hepatic insulin sensitivity index (HISI) (Matsuda and DeFronzo 1999) and the 

percentage suppression of EGP by low-dose insulin infusion (%EGPsupp) were calculated as 

indices of hepatic insulin sensitivity in the fasted and insulin-stimulated states, respectively. 

Peripheral insulin sensitivity was assessed as whole-body glucose uptake, which was 

assumed to be equal to the exogenous glucose infusion rate required to maintain euglycaemia 

at high-dose insulin infusion, during which EGP was negligible.  

Assessment of cardiorespiratory fitness and habitual physical activity 

Peak oxygen uptake (V̇O2 peak) and peak power output were measured using a ramped (+16 

Watt·min-1) cycling test on an electromagnetically-braked cycle ergometer (Excalibur Sport, 

Lode BV, The Netherlands) during which participants exercised until they were unable to 

maintain a pedalling cadence of 80 revolutions per min. V̇O2 was measured throughout 

(Metalyser 3B, Cortex Biophysik GmbH, Germany) and V̇O2 peak was determined as the 

highest value achieved across 15 s epochs (Robergs et al. 2010). V̇O2 peak and peak power 

output are presented as both absolute units (L·min-1 and W) and relative to the participant’s 
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body weight (mL·kg-1·min-1 and W·kg-1). Participants were familiarised with this test one 

week before baseline assessments.  

To assess the impact of SIT on habitual physical activity levels, participants wore a tri-axial 

accelerometer (GT3x, Actigraph LLC, USA) for seven consecutive days before each 

assessment (baseline, pre-training and post-training). Data were analysed using computer 

software (Kinesoft 3.3.80, USA) (Troiano et al. 2008) and are presented as absolute minutes 

per day in each activity domain (sedentary time, light, moderate and vigorous physical 

activity) as well as percentages of accelerometer wear time.  

Exercise training 

Participants completed a SIT program consisting of three exercise sessions per week for six 

weeks. Sessions consisted of a low-intensity warm-up (5 min cycling at 50W), followed by 

30 s intervals of maximal sprint cycling on a stationary ergometer (Ergomedic 894E, Monark 

Exercise AB, Sweden), which was separated by periods of active recovery (4.5 min of low 

intensity cycling at 50W). The braking resistance of the ergometer was increased during 

intervals through the application of a load equivalent to 6.5% of lean body mass, determined 

using bioelectrical impedance analysis (BC-418, TANITA Europe BV, Amsterdam, The 

Netherlands). Participants were instructed to cycle ‘all-out’ during intervals whilst members 

of the research team provided verbal encouragement (Whyte et al. 2010). Four intervals were 

completed per session in the first two weeks with an additional interval added to each session 

every two weeks. Participants therefore completed 90 intervals over the six weeks of 

supervised training. 

Biochemical analyses 
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Plasma glucose isotope enrichment (atoms percent excess) was quantified as the 

oxime/trimethylsilyl derivative via gas chromatography mass spectrometry (GC-MS; 7890B, 

MSD 5977A; Agilent Technologies, UK) using selected ion monitoring of the ions at m/z 

319 and 321 (CV = 6.4%). Fasted circulating concentrations of total cholesterol, high-density 

lipoprotein (HDL), low-density lipoprotein (LDL), triglyceride (TG) and non-esterified fatty 

acids (NEFA) were analysed in plasma aliquots, collected before the start of 

hyperinsulinaemic euglycaemic clamps, by enzymatic colorimetric methods using a benchtop 

analyser (Pentra 400, HORIBA ABX Diagnostics, France) (All CV ≤ 1.5%). Serum insulin 

was quantified using radioimmunoassay (Millipore, USA) (CV = 7.3%), and HOMA-IR and 

Adipo-IR were calculated (Matthews et al. 1985; Gastaldelli et al. 2007). 

Tracer calculations 

Rates of EGP in the basal state and at low-dose insulin infusion were calculated (Wolfe and 

Chinkes 2005; Vella and Rizza 2009) accounting for non-steady-state during low-dose 

insulin infusion and assuming a fractional volume of distribution of 160 mL·kg-1.  

Statistical analyses 

Statistical analyses were performed using software (SPSS version 23.0, SPSS Inc., USA). All 

data were checked for normality of distribution prior to analysis. Normally distributed data 

are presented as mean with standard deviation (SD) and one-way repeated measures ANOVA 

was used to assess changes in outcomes across assessment visits (main effect of phase). The 

homogeneity of variance between data collected at each visit was assessed and a Greenhouse-

Geisser or Huynh-Feldt correction was applied, where appropriate. Statistically significant 

main effects were explored post-hoc using paired samples t-tests. Non-normally distributed 

data are presented as the median with interquartile range (IQR) and Friedman tests were used 

to assess the main effect of phase. Wilcoxon matched pairs tests were used for post-hoc 
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pairwise comparisons on non-normally distributed data. Probability (P-) values for post-hoc 

tests were adjusted using the Holm-Bonferroni correction (Holm 1979) to account for 

multiple comparisons. In text, the changes from pre- to post-training are presented as relative 

percentage change along with 95% confidence interval [CI] and effect size (adjusted Hedges’ 

g*). Cohen’s descriptors were used to interpret the magnitude of effect (Cohen 1988). For 

clarity, the change in IHTG is presented as both the absolute and relative percentage change. 

The association between changes in IHTG and whole-body glucose uptake from pre- to post-

SIT was assessed using Pearson’s bivariate correlation analysis. Statistical significance was 

accepted at P ≤ 0.05.   
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Results 

Participant characteristics and exercise training compliance 

All assessments made at baseline, pre- and post-training can be found in Table 1. The median 

self-reported alcohol intake of recruited participants was four units per week (range: 1 to 14). 

One participant was unable to attend hyperinsulinaemic, euglycaemic clamp assessments. All 

participants completed exercise training and attended all 18 sessions. Due to fatigue, one 

participant failed to complete two intervals in their first session and one interval in session 

two, but completed all prescribed intervals thereafter (total intervals: 87 = 96.7%).  

There were no significant differences in any measured outcome between baseline and pre-

training assessments, determined as a non-significant main effect of phase or, where 

appropriate, post-hoc comparison. However, from baseline to pre-training assessments, there 

was a tendency for increased fasted serum insulin and HOMA-IR, and reduced relative V̇O2 

peak (uncorrected P = 0.06, 0.07 and 0.07, respectively; all other outcomes P ≥ 0.13). 

 

Insert Table 1 here 

 

Effects of SIT on cardiorespiratory fitness and habitual physical activity 

Training improved absolute and relative V̇O2 peak by 11.2% [95% CI: 6.4 to 16.0%] (g* = 

0.83) and 13.6% [8.8 to 18.2%] (g* = 0.78; Figure 1a), respectively (P ≤ 0.001). This was 

alongside improvements in absolute (14.7% [10.7 to 18.7%], g* = 0.75) and relative (16.2% 

[11.1 to 21.2%], g* = 0.64; Figure 1b) peak power output (P ≤ 0.001). As outlined in Table 2, 

there were no differences in sedentary time or light, moderate or vigorous physical activity 
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throughout the duration of the study when analysed either as minutes per day or as a 

percentage of accelerometer wear time (main effect of phase: P ≥ 0.24). 

 

Insert Figure 1 here 

 

Effects of SIT on ectopic fat and systemic metabolic biomarkers  

Despite no change in body weight across study visits (main effect of phase: P = 0.17; Figure 

2a), SIT elicited a reduction in IHTG (P = 0.03; Figure 2b). From pre- to post-training, the 

mean absolute reduction was 2.1% [-3.4 to 0.8%], which equated to a relative reduction of 

12.4% [-31.6 to 6.7%] (g* = -0.23). One MR-image was found to be corrupted at the point of 

analysis so changes in VAT and ScAT are presented for n=8. These data do not correspond to 

the same eight individuals who completed the hyperinsulinaemic, euglycaemic clamp 

assessments. Training reduced VAT by 16.9% [-24.4 to -9.4%] (g* = -0.62, P = 0.02; Figure 

2c), but there were no changes in ScAT (main effect; P = 0.16; Figure 2d). Training increased 

circulating HDL by 8.4% [4.6 to 12.2%] (g* = 0.44, P = 0.02) but total cholesterol, LDL and 

triglycerides were unchanged throughout the study (P ≥ 0.19).  

 

Insert Figure 2 here 

 

Effects of SIT on peripheral and hepatic insulin sensitivity 

There was a significant main effect of phase for the increase in whole-body glucose uptake 

across the three study visits (P = 0.02; Figure 3a). However, responses to SIT were highly 
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variable between individuals (range: -18.5% to +58.7%; Figure 3b) and, despite a medium 

effect size (g* = 0.63), the change from pre- to post-training (18.1% [-3.0 to 39.2%]) was not 

statistically significant (unadjusted P = 0.09). There was an association between the change 

in IHTG and the change whole-body glucose uptake from pre- to post-training (r = -0.83, P = 

0.01). Basal EGP, HISI (Figure 3c) and %EGPsupp (Figure 3d) did not differ across study 

visits (P ≥ 0.37). 

Fasted blood glucose, plasma NEFA and Adipo-IR remained unchanged across the study 

visits (P ≥ 0.13). From pre- to post-training, fasted serum insulin (-13.9% [-24.9 to -2.9%], g* 

= -0.48, P = 0.04) and HOMA-IR (-16.6% [-27.5 to -5.6%], g* = -0.56, P = 0.02) were 

reduced. However, these reductions were similar in magnitude to the increases from baseline 

to pre-training (unadjusted P = 0.06 and P = 0.07, respectively) such that post-training values 

were no different from those measured at baseline (P ≥ 0.68). 

 

Insert Figure 3 here  
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Discussion 

The principal findings of this study are that a six-week SIT intervention is feasible for 

individuals with NAFLD and is well adhered to in a controlled laboratory setting. 

Furthermore, six weeks of SIT reduces IHTG and VAT in the absence of body weight change 

and, whilst hepatic insulin sensitivity appears to be unaffected, changes in peripheral insulin 

sensitivity are highly variable between individuals.  

This study reports almost perfect adherence to a six-week SIT intervention in nine individuals. 

Specifically, every participant completed the exercise programme, attending all 18 training 

sessions. Eight participants completed all 90 of the prescribed intervals whilst the remaining 

participant completed 87 intervals, with the three missing intervals contained within the first 

two training sessions. The implication is that individuals with NAFLD are able and willing to 

perform exercise training sessions composed of bursts of maximal exercise. This is important 

because observational evidence (Kistler et al. 2011) and experimental data (Cho et al. 2015; 

Oh et al. 2017) suggest that high-intensity exercise may be more potent in attenuating IHTG 

accumulation and NAFLD progression than moderate-intensity exercise. This SIT 

intervention may, therefore, represent a model of exercise that facilitates the completion of 

more intense exercise in individuals with NAFLD. This intervention was performed in a 

tightly controlled laboratory setting, with specialist equipment and where participants were 

individually supported by the research team. The participants recruited to this study were also 

screened thoroughly to ensure the absence of advanced cardiometabolic disease and may, 

therefore, not be representative of the majority of individuals with NAFLD. Given that the 

risk of an acute cardiac event during exercise is elevated in previously inactive individuals 

with established cardiometabolic disease (Thompson et al. 2007), the implementation of SIT 

requires additional scrutiny. The necessity for medical clearance and acclimatisation to 

exercise must be considered in this context (Riebe et al. 2015).  
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This study reports a mean absolute reduction in IHTG of 2.1% after six weeks of SIT in 

individuals with elevated IHTG (relative change from baseline: -12.4%). Previous studies 

employing aerobic and resistance exercise, combined or in isolation, report a reduction of 

similar magnitude (10 to 21%) in the absence of significant weight loss (Johnson et al. 2009; 

Hallsworth et al. 2011; Sullivan et al. 2012; Keating et al. 2015; Pugh et al. 2016; Houghton 

et al. 2017). However, greater reductions in IHTG (27 to 42%) have been reported when 

significant weight loss occurs as a result of exercise training (Hallsworth et al. 2015; Keating 

et al. 2015; Cuthbertson et al. 2016; Zhang et al. 2016). Therefore, whilst the independent 

effects of exercise on IHTG are recognised (Brouwers et al. 2016), the greatest benefits occur 

when exercise contributes to a negative energy balance. 

It was beyond the scope of this study to examine the mechanisms through which SIT reduced 

IHTG. However, habitual physical activity was consistent throughout and the energy 

expenditure elicited by SIT is low (Deighton et al. 2013). Therefore, whilst we did not 

measure energy intake, the absence of significant weight loss suggests that substantial energy 

restriction is unlikely to have occurred. Consequently, metabolic factors likely underpin the 

reported change in IHTG (Brouwers et al. 2016). Neither fasted circulating NEFA nor Adipo-

IR differed throughout the current study, suggesting that an improvement in adipose tissue 

insulin sensitivity in the fasted state is unlikely to be responsible for the reduction in IHTG 

with training. However, the possibility that changes in postprandial adipose tissue insulin 

sensitivity occurred cannot be dismissed (Brouwers et al. 2016). Circulating glucose 

stimulates hepatic de novo lipogenesis (Ameer et al. 2014) and, although fasted blood glucose 

was unchanged throughout the study, post-prandial glucose is likely to have been reduced in 

those with improved peripheral insulin sensitivity. Therefore, particularly in individuals who 

displayed improvements in whole-body glucose uptake, a reduction in hepatic de novo 

lipogenesis may have contributed to post-training reductions in IHTG (Linden et al. 2015). 
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Lastly, altered very low density lipoprotein metabolism is unlikely to be responsible for 

exercise-induced reductions in IHTG (Sullivan et al. 2012) but enhanced capacity to oxidise 

hepatic lipid is possible (Linden et al. 2015).  

Peripheral insulin sensitivity increased throughout this study but individual changes from pre- 

to post-SIT were highly variable and, despite a mean relative increase of 18.1% and a 

moderate effect size, this change was not significant. In obese but otherwise healthy men, 

four weeks (Cocks et al. 2015), but not two weeks (Whyte et al. 2010), of SIT increased 

peripheral insulin sensitivity. However, 15 to 20% of individuals may display minimal, or 

even adverse, responses after exercise training in outcomes related to glucose homeostasis 

(Stephens and Sparks 2015) and insulin sensitivity improved in only 10 out of 12 healthy 

individuals who completed a two-week SIT intervention, remaining unchanged in one and 

decreasing in another (Richards et al. 2010). This degree of variation in response to exercise 

is consistent with our findings where peripheral insulin sensitivity improved in 75% of 

participants after SIT, yet was reduced in 25%. Given this variation, a greater sample size 

may be required to detect significant differences in peripheral insulin sensitivity following 

SIT. A number of factors, including genetic polymorphisms, epigenetics and baseline 

participant characteristics, may impact on individual responses (Böhm et al. 2016). 

Neither basal nor insulin-stimulated hepatic insulin sensitivity are changed after six weeks of 

SIT. Our findings agree with data showing no change in hepatic insulin sensitivity after 12 

weeks of aerobic training in patients with NAFLD, despite significant reductions in body 

weight (Cuthbertson et al. 2016). EGP during low dose insulin infusion is reduced after 

aerobic or combined aerobic-plus-resistance exercise training in sedentary, healthy 

individuals and in patients with T2DM (Shojaee-Moradie et al. 2007; Meex et al. 2010). 

However, neither of these studies report changes in basal EGP or HISI, and the change at low 

dose insulin infusion reported by Meex et al. was no longer statistically significant when 
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presented as %EGPsupp. EGP in both the basal state and during low dose insulin infusion was 

reduced in overweight, older women after a 9-month moderate-intensity aerobic exercise 

intervention (DiPietro et al. 2006). However, this may have been due to notably higher rates 

of EGP in this group at baseline compared to both the control group, and a separate group 

completing a higher-intensity exercise programme. The high-intensity exercise training had 

no effect on EGP in either the basal or insulin-stimulated states (DiPietro et al. 2006). The 

lack of improvements in hepatic insulin sensitivity in the current study may be due to 

insufficient intervention duration or because IHTG at the end of the intervention remained 

elevated (Cuthbertson et al. 2016). Hepatic insulin sensitivity, assessed as %EGPsupp, may be 

impaired with as little as 1.5% IHTG, with no further deterioration as IHTG increases (Bril et 

al. 2017). Post-training IHTG values in the present study ranged from 4.3 to 25.9% (mean 

12.4%).  

The favourable changes in IHTG, VAT, HDL and cardiorespiratory fitness in response to SIT 

are important for individuals with NAFLD. NAFLD is intricately related to the metabolic 

syndrome and associated with an elevated risk of T2DM, cardiovascular and renal disease 

(Byrne and Targher 2015). Ectopic lipid and dyslipidaemia are components of the metabolic 

syndrome and improvements in these risk factors are important in the treatment of NAFLD. 

Additionally, cardiorespiratory fitness is a marker of metabolic health and inversely 

associated with all-cause and cardiovascular mortality (Blair et al. 1989; Kodama et al. 2009). 

The large increase following SIT most likely reflects metabolic adaptations within skeletal 

muscle (Gibala et al. 2012), which may provide benefit via improved substrate metabolism 

(Rabøl et al. 2011; Brouwers et al. 2016). Collectively, the present study demonstrates the 

potential of SIT to elicit relevant metabolic improvements in men with NAFLD, but it is 

notable that the magnitude of response over this intervention was insufficient to re-establish 

values in an optimal range.  
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A strength of this study is the use of the most precise techniques available to assess key 

outcomes. Conversely, this study was conducted in a relatively small and homogenous 

sample of white European men with no other chronic metabolic disease. We may have lacked 

statistical power to detect differences in some of our outcomes following training and the 

findings of this study may not be generalisable to women, individuals of different ethnicity or 

those with metabolic co-morbidities. Furthermore, participants did not have a formal 

diagnosis of NAFLD so we have no information regarding disease severity. Whilst a 

randomised controlled trial design would be preferred, the inclusion of a control phase was 

chosen to monitor variation in study outcomes over a period of no intervention, whilst 

avoiding the additional recruitment of a non-exercise control group.  

In this study we have shown that men with NAFLD are compliant with SIT which, over six 

weeks, improves cardiorespiratory fitness and reduces IHTG and VAT, without altering body 

weight. Furthermore, changes in peripheral insulin sensitivity with training are highly 

variable between individuals, whilst hepatic insulin sensitivity remains unchanged. These 

results support the potential for interval-based, high-intensity exercise as an alternative to 

continuous moderate-intensity exercise in the management of NAFLD. However, larger 

RCTs are required to test the effectiveness of SIT in diverse populations, as well as its 

applicability in a clinical setting, sustainability over time and efficacy in individuals with 

advanced NAFLD.  
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Figure Legends 

Figure 1 – a) Peak oxygen uptake (V̇O2 peak) and b) peak power output measured at 

baseline, pre- and post-training. Data presented as mean ± SD (n=9). Outcomes presented 

relative to participant body weight. † indicates the difference between baseline and pre-

training values approached statistical significance (unadjusted P = 0.07); * indicates 

significantly different from pre-training value (P ≤ 0.001). 

 

Figure 2 – a) Body weight, b) intrahepatic triglyceride (IHTG), c) visceral adipose tissue 

(VAT) and d) subcutaneous abdominal adipose tissue (ScAT) measured at baseline, pre- 

and post-training. Data presented as mean ± SD. Data for body weight and IHTG are n=9. 

Data for VAT and ScAT are n=8. * indicates significantly different from pre-training value 

(P ≤ 0.03). 

 

Figure 3 – a-b) Peripheral and c) basal and d) insulin-stimulated hepatic insulin 

sensitivity measured at baseline, pre- and post-training. Data in ‘A’ and ‘D’ presented as 

mean ± SD (n=8). #Data in ‘C’ are not normally distributed and thus presented as median 

(IQR). Data in ‘B’ are % change from pre- to post-training measurements for each participant. 

 


