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While various phase-field models have recently appeared for two-phase fluids with dif-

ferent densities, only some are known to be thermodynamically consistent, and practi-
cal stable schemes for their numerical simulation are lacking. In this paper, we derive a

new form of thermodynamically-consistent quasi-incompressible diffuse-interface Navier–

Stokes Cahn–Hilliard model for a two-phase flow of incompressible fluids with different
densities. The derivation is based on mixture theory by invoking the second law of ther-

modynamics and Coleman–Noll procedure. We also demonstrate that our model and

some of the existing models are equivalent and we provide a unification between them.
In addition, we develop a linear and energy-stable time-integration scheme for the de-

rived model. Such a linearly-implicit scheme is nontrivial, because it has to suitably deal

with all nonlinear terms, in particular those involving the density. Our proposed scheme
is the first linear method for quasi-incompressible two-phase flows with nonsolenoidal ve-
locity that satisfies discrete energy dissipation independent of the time-step size, provided

that the mixture density remains positive. The scheme also preserves mass. Numerical
experiments verify the suitability of the scheme for two-phase flow applications with

high density ratios using large time steps by considering the coalescence and break-up

dynamics of droplets including pinching due to gravity.
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1. Introduction

Diffuse-interface (phase-field) models have emerged as a reliable and versatile alter-

native to sharp-interface methods for multi-phase flows. The main idea of diffuse-

interface models is to replace the sharp interface by a thin, but finite, transition

region, where a partial mixing of macroscopically immiscible fluids is allowed, and

to define a continuous order parameter (the phase variable) using mass or vol-

ume concentration. This leads to the main advantage of diffuse-interface models,

which is the natural capability of capturing topological changes, e.g., break-up and

coalescence. Another fundamental feature of diffuse-interface models is their rig-

orous thermodynamic basis. Most of the models satisfy a nonlinear stability re-

lationship such as dissipation of a non-convex free-energy functional, which en-

dows these models with a strong mathematical foundation. Over the years, dif-

fuse interface models have been analyzed theoretically16,17,28,1 and used widely in

many applications5,11,40,45,54, while several reviews4,25,38 have appeared of phase-

field models in the context of fluid mechanics.

In this work we derive a new form of diffuse-interface model, and a corresponding

practical time-stepping method, for binary-fluid flows whose components are incom-

pressible with different densities. The model is a so-called quasi-incompressible43

Navier–Stokes-Cahn–Hilliard (NSCH) model, which is based on the Navier–Stokes

equations coupled with the convective Cahn–Hilliard equation. The Cahn–Hilliard

equation is a fundamental continuum model for phase separation individually, which

was introduced by Cahn & Hilliard12 in 1958. Since it is a fourth-order singularly-

perturbed nonlinear parabolic PDE, it is challenging to solve it numerically. Cou-

pling it with the Navier–Stokes equations increases the mathematical complexity

of the model which makes it difficult to design provably stable numerical schemes.

We will introduce a linear and stable time-integration scheme for our derived quasi-

incompressible NSCH model. The scheme preserves the structural properties of the

model, viz. mass conservation and energy dissipation, at the semi-discrete level

independent of the time-step size.

To explain the principal idea behind our model derivation, let us give a

short overview of existing NSCH models. The concepts underlying diffuse-interface

models for immiscible binary fluids were introduced in the classical works by

Van der Waals55 and Korteweg41. One of the first appearances of the coupled NSCH

model, called ‘Model H’, can be found in the review by Hohenberg & Halperin34.

This model assumes a solenoidal mixture-velocity field (divv = 0) and the coupling

takes place via a convective term in the Cahn–Hilliard equation and an additional

stress tensor term in the Navier–Stokes equations. A derivation of Model H in

the rational continuum mechanics framework was presented by Gurtin, Polignone

& Viñals30, who established compatibility with the second law of thermodynamics

using the standard Coleman–Noll procedure13,53,29. Importantly, Model H assumes

that the individual densities and the mixture density are uniformly constant. How-

ever, that assumption makes Model H inapplicable for the large variety of problems



December 7, 2017 18:20 WSPC/INSTRUCTION FILE SSVV

3

with non-matching component densities.

Lowengrub & Truskinovsky43 and Abels, Garcke & Grün2 extended Model H

to thermodynamically-consistent models for non-matching densities using two dif-

ferent modelling assumptions on the velocity field (mass averaged and volume av-

eraged velocity, respectively) and on the phase-field variable (mass concentration

and volume fraction, respectively). Although the models by Lowengrub & Truski-

novsky and Abels et al. are developed to represent the same type of flow dynamics,

the resulting equations have significant differences due to the underlying modeling

choices. More precisely, by adopting a mass-averaged mixture velocity, the model

by Lowengrub & Truskinovsky (see also Kim & Lowengrub40) leads to a (generally)

non-solenoidal velocity field (divv 6= 0) and additional nonlinear terms compared

to Model H, whereas the volume-averaged mixture-velocity model of Abels et al.

has a solenoidal velocity field and a modified momentum equation (similar to an

earlier model obtained by Boyer10 through asymptotic arguments).

Noteworthy are also the recent follow-up works by Shen, Yang & Wang49 and

Aki, Dreyer, Giesselmann & Kraus3, who independently introduced seemingly dif-

ferent quasi-incompressible NSCH models based on a volume-fraction phase vari-

able and non-solenoidal mass-averaged velocity. Shen et al. obtained their model

without reference to a Coleman–Noll procedure, but were able to demonstrate

global energy dissipation for their model. The work of Aki et al. actually contains

the derivation of a more general Navier–Stokes–Korteweg/Cahn–Hilliard/Allen–

Cahn model in the non-isothermal and isothermal case (and also includes phase

transition). Their derivation leads to a Korteweg stress tensor term as commonly

seen in Navier–Stokes–Korteweg models4,32,42,25,21. Other simpler models have also

been introduced,15,47,11 which neglect certain terms in the above-mentioned quasi-

incompressible models. These models seem to be inconsistent with mixture theory

and the second law of thermodynamics, and have been studied mostly because of

their simpler implied numerical treatment, which is closer to that of the variable-

density Navier–Stokes equations26 and Volume-of-fluid (VOF) method46.

The first objective of this paper is to derive from mixture theory the following

new form of quasi-incompressible NSCH model:

φ̇+ φ∇ · v = ∇ · (m(φ)∇µ)

µ =
σ

ε

df

dφ
− σε∆φ− p

ρ̂

dρ̂

dφ

ρv̇ = −∇p− φ∇µ+
p

ρ̂

dρ̂

dφ
∇φ+∇ ·

(
η(φ)(2D + λ(∇ · v)I)

)
− ρ̂g

∇ · v = α∇ · (m(φ)∇µ)

ρ̇+ ρ∇ · v = 0

ρ̂ = ρ1
1 + φ

2
+ ρ2

1− φ
2

(1.1)

and to prove its thermodynamic consistency. Here, φ is the volume fraction as phase

variable, v is the mass-averaged mixture velocity, µ is the chemical potential, p is
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the pressure and ρ = ρ̂ ≡ ρ̂(φ) is the mixture density. Moreover, ρ1 and ρ2 are the

component densities (assumed constant), σ is a constant related to the fluid-fluid

surface tension, ε is the interface thickness parameter, η(φ) is the mixture viscosity,

m(φ) is a mobility function, α = ρ2−ρ1
ρ2+ρ1

is a constant, and λ ≥ −2/d is a constant

(d being the dimension). Furthermore, the term ρ̂g stands for the gravitational

force and D is the symmetric velocity gradient tensor. Note that we presented

model (1.1) with a compatible dual-density form, viz. ρ and ρ̂. The appearance of

two equivalent but distinct representations of the mixture density specifically serves

in the construction of a linear energy-stable time-integration scheme; see below.

The distinguishing feature of model (1.1) is the term p
ρ̂
dρ̂
dφ (in (1.1)2 and (1.1)3),

which has not appeared in previous quasi-incompressible NSCH models. We will

show that our model is nevertheless equivalent to the model by Shen, Yang and

Wang49, as well as the corresponding model in Aki, Dreyer, Giesselmann and

Kraus3. We thereby provide a unification of the existing models based on a mass-

averaged velocity and volume-fraction phase variable. It should be noted that in

the case of matching densities, all of the aforementioned NSCH models for variable-

density two-phase flows, including our model, reduce to Model H.

The development of stable and efficient time-integration methods for NSCH sys-

tems with non-matched densities is challenging on account of the strong coupling

between the equations and the various nonlinear terms, in particular those involv-

ing the density. An important notion in the analysis of stability of time-integration

schemes is that of energy stability , which implies that the discrete time-integration

scheme inherits the fundamental free-energy dissipation property of the underly-

ing PDE system.18,25 Unconditional energy stability is crucial for robustness of

diffuse-interface simulations and for proper resolution of interfaces as it enables, in

principle, arbitrary time and space discretizations and hence provides a basis for

adaptive refinement.

In the case of the Cahn–Hilliard equation, various energy-stable semi-discrete

(continuous in space, discrete in time) schemes of first and second order have ap-

peared over the past years,57,35,24,52,59,25 some of which are linear, i.e., they re-

quire only one solution of a linear-algebraic system per time step.a These schemes

have been extended to NSCH systems with matched densities39,31 and for quasi-

incompressible NSCH systems with a solenoidal mixture-velocity field15,47,44,48,22.

However, non-solenoidal quasi-incompressible NSCH systems have only received

scant consideration so far. The reason for this is that existing techniques for

solenoidal systems can not be straightforwardly extended to non-solenoidal sys-

tems (which apart from being non-solenoidal also have auxiliary pressure terms).

One recent scheme is by Guo, Lin & Lowengrub27, who proposed a complicated

nonlinear energy-stable scheme for the model by Lowengrub & Truskinovsky43.

The second objective of this work is to introduce a simple linear energy-stable

aLinear energy-stable schemes typically require that the nonconvex free energy has quadratic
growth (possibly obtained by truncating super-quadratic growth).25
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time-integration scheme for model (1.1). The proposed scheme is energy stable in-

dependent of the time-step size, provided that the mixture density remains positive.

Moreover, under standard assumptions on the boundary conditions, the scheme is

mass conservative. To our knowledge, this is the first work with a linear energy-

stable time-integration scheme for a quasi-incompressible NSCH system with non-

solenoidal velocity field. In contrast to existing time-integration schemes, we make

use of a dual-density formulation involving both ρ and ρ̂ in its discretization (see

Section 3.2). The dual-density formulation provides the basis for the energy stability

of the scheme, especially for numerical computations with high component-density

ratios.

The remainder of this paper is structured as follows: In Section 2, we derive

the new form of thermodynamically consistent quasi-incompressible model for two-

phase flows and discuss its equivalence to other models. Section 3 presents a weak

form of the system and a time-discrete scheme including proofs of continuous and

discrete energy dissipation. In Section 4, we exhibit the properties of our fully-

discrete scheme based on numerical computations using standard finite elements as

a spatial discretization. Section 5 presents concluding remarks.

2. Derivation of the Quasi-Incompressible NSCH Model

In this section, we present a new form of quasi-incompressible diffuse–interface

NSCH model with gravity, inspired by Aki, Dreyer, Giesselmann and Kraus3. We

derive the model for an isothermal mixture with a thin interfacial region between

two immiscible and incompressible fluids. The derivation is based on the theory of

mixtures9,53, which assumes that the mass, momentum and energy are conserved

at the constituent level as well as within the mixture, see Sections 2.1–2.3. The

model is derived in Sections 2.4–2.5 via application of the standard Coleman–Noll

procedure13,29 to the energy dissipation inequality, which enforces the second law

of thermodynamics and endows the model with thermodynamic consistency. We

demonstrate the equivalence of the model to other existing models in Section 2.6,

and present a non-dimensionalisation and interface-profile analysis in Sections 2.7–

2.8.

2.1. Continuum theory of mixtures

To provide a setting for our model, we consider an open bounded domain Ω ⊂ Rd
(d = 2, 3) and label the fluids of the binary mixture by k = 1, 2. Let the volume

fractionb be φk = Vk/V , where Vk is the volume of the kth component and V is

the total volume of the mixture. Similarly, the mass concentration can be defined

bThe volume fraction and mass concentration are defined by division of volume and mass of the
fluids and the mixture. However, their actual definitions are the limit of the volume and the mass

of species per unit volume and mass, i.e. φk = limV→0
Vk
V

and ck = limV→0
Mk
M

, respectively.
Here, we drop the limit notation for simplicity.
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as ck = Mk/M with the mass of the kth component, Mk, and the total mass

of the mixture, M . Particularly, since M =
∑
kMk and V =

∑
k Vk, we have∑

k ck =
∑
k φk = 1.

Each component of the fluid is assumed to be incompressible, so we describe a

constant specific density ρk = Mk/Vk for k = 1, 2. Similarly, partial mass densities

can be defined as ρ̃k = Mk/V , which are non-constant and their sum is the total

mass density of the mixture, ρ =
∑
k ρ̃k. Note that the three densities are related

by

ρ̃k = ρkφk = ρck. (2.1)

Unlike the individual components, the mixture is not assumed to be incompress-

ible. We assume the mixture density to be a function of an order parameter φ such

that ρ ≡ ρ̂(φ), where φ is related to the volume fractions according to φ := φ1−φ2.

It is to be noted that the total density can generally be chosen as a function of

various combinations of volume or mass fractions, some of which are mentioned by

Abels, Garcke & Grün2. We define the order parameter φ based on the volumes

V1, V2 and V by V1/V = (1 + φ)/2 and V2/V = (1 − φ)/2, which leads to the

relations ρ̃1 = ρ1(1 + φ)/2 and ρ̃2 = ρ2(1 − φ)/2, for φ ∈ [−1, 1]. This implies the

following algebraic equation for the mixture density:

ρ̃1 + ρ̃2 = ρ1
1 + φ

2
+ ρ2

1− φ
2

=: ρ̂(φ). (2.2)

Note that ρ̂(φ) coincides with the mixture density ρ, where both represent the non-

constant mixture density. Although ρ and ρ̂ := ρ̂(φ) coincide, they serve separate

roles in the formulation and, accordingly, can not be used interchangeably. We

introduce the mixture velocity v as the mass averaged/barycentric velocity:

v =
1

ρ

∑
k

ρ̃kvk, (2.3)

where vk denotes the velocity of component k.

2.2. Balance equations

Balance of mass for the individual constituents k = 1, 2 can be written as

∂tρ̃k +∇ · (ρ̃kvk) = 0, (2.4)

where we assume no mass production of or conversion between the constituents,

which is reflected in the zero right hand side.

We replace ρ̃1 and ρ̃2 by ρ1(1 + φ)/2 and ρ2(1− φ)/2 in (2.4), respectively, use

the definition of diffusion velocity according to wk = vk − v and relation (2.1) to

obtain

∂t

(ρ1

2
(1 + φ)

)
+∇ ·

(ρ1

2
(1 + φ)v

)
+∇ · (ρ̃1w1) = 0 (2.5)

∂t

(ρ2

2
(1− φ)

)
+∇ ·

(ρ2

2
(1− φ)v

)
+∇ · (ρ̃2w2) = 0 (2.6)
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Multiplying (2.5) and (2.6) by 1/ρ1 and 1/ρ2, respectively, and subtracting the

resulting equations gives the phase equation:

φ̇+ φ∇ · v +∇ · h = 0 (2.7)

where h = φ1w1 − φ2w2 is the mass flux due to diffusive changes in the phase

variable φ and ẋ is the material derivative ẋ = ∂tx+v · ∇x for any field variable x.

Similarly, summing the equations in (2.5)–(2.6) and using the identity ρ1φ1w1 +

ρ2φ2w2 = 0, which can be inferred from (2.3), we obtain the following quasi-

incompressibility relation for the mixture velocity v:

∇ · v + α∇ · h = 0, (2.8)

where

α :=
ρ2 − ρ1

ρ2 + ρ1
(2.9)

is a constant. By combining (2.7) and (2.8) we obtain the following relation between

the phase variable and the mixture velocity:

∇ · v =
α

1− αφ
φ̇. (2.10)

Remark 2.1. If the specific densities are equal, that is, ρ1 = ρ2, then (2.8) reduces

to ∇ ·v = 0. The barycentric velocity is therefore solenoidal if the specific densities

of the two components coincide, but not generally otherwise.

Balance of mass is not only satisfied for the components, but also for the mixture.

Indeed, summing (2.4) in k, we obtain

∂tρ+∇ · (ρv) = 0 or ρ̇+ ρ∇ · v = 0 (2.11)

and similarly

∂tρ̂+∇ · (ρ̂v) = 0, (2.12)

where ρ̂ is the algebraic definition of the mixture density as in (2.2). Then, from

(2.12) it follows that

∇ · v = −1

ρ̂
˙̂ρ = −1

ρ̂

dρ̂

dφ
φ̇, (2.13)

which is another identity for the divergence of the mixture velocity in (2.8). Addi-

tionally, from (2.10) and (2.13), we have

− 1

ρ̂

dρ̂

dφ
=

α

1− αφ
, (2.14)

where dρ̂/dφ is constant.
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For our model, we are interested in the velocity of the mixture, v, more than the

specific velocities, vk. Therefore, instead of introducing the momentum equation for

each constituent, we will consider the mixture momentum balance

∂t(ρv) +∇ · (ρv ⊗ v) = ∇ ·T + b,

where T is the stress tensor of the mixture and b is the body force. By (2.11), this

can be simplified to

ρv̇ = ∇ ·T + b. (2.15)

We restrict our considerations here to body-force terms corresponding to gravita-

tional effects. Accordingly, b in (2.15) is replaced by −ρ̂g with g as gravitational

acceleration and  as the vertical unit vector.

Remark 2.2. An alternative mixture velocity definition to (2.3) is the volume-

averaged velocity v = φ1v1 + φ2v2, which is employed in other works2,10,22. This

choice would reduce (2.8) to ∇ · v = 0 even for non-matching densities, i.e. for

ρ1 6= ρ2. However, this simplification requires a change in the conservation equations

for mass and momentum to obtain a thermodynamically consistent model. More

explicitly, volume averaged velocity leads to an additional term in the momentum

conservation equation related to diffusion of components in order to describe the

density flux.2

2.3. The second axiom of thermodynamics

Similar to the momentum equation (2.15), we assume the balance of internal energy

not for the individual constituents, but for the mixture. However, instead of intro-

ducing the balance of energy equation here, we directly consider the second axiom of

thermodynamics in the form of an energy dissipation inequality.30 The connection

between the internal-energy density and the dissipation inequality is made via the

Helmholtz free-energy density, ρψ.

Let us consider the following energy dissipation inequality in terms of the free

energy ρψ, the kinetic and gravitational potential energy K(P) and G(P), the

total work done by macro- and micro-stresses W (P) and the energy transported by

diffusion M(P):

d

dt

∫
P(t)

(
ρψ +K(P) +G(P)

)
dv ≤W (P)−M(P), (2.16)

where P denotes any time-dependent subset of Ω, which moves with the mixture

velocity v.

Equation (2.16) implies that the work on P plus the rate at which free energy is

transported to P by diffusion always exceed the sum of the increase in free, kinetic
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and the gravitational potential energy. Specifically, following Gurtin28 we consider

K(P) =
1

2
ρ|v|2, G(P) = ρ̂gy, (2.17)

W (P) =

∫
∂P

Tn · v da+

∫
∂P

φ̇ξ · n da, M(P) =

∫
∂P

µh · n da, (2.18)

where y is the vertical coordinate, n is the exterior unit normal vector to the bound-

ary of P, ∂P, µ denotes a chemical potential and ξ is a vectorial surface force as a

component of micro-stress.

Upon substituting (2.17) and (2.18) into (2.16) and applying the Reynolds trans-

port theorem, we obtain∫
P

∂

∂t
(ρψ) dv +

∫
∂P

ρψv · n da+

∫
P

1

2

∂

∂t
(ρ|v|2) dv

+

∫
∂P

1

2
ρ|v|2v · n da+

∫
P
∂tρ̂gy dv +

∫
∂P

ρ̂gyv · n da

≤
∫
∂P

Tn · v da+

∫
∂P

φ̇ξ · n da−
∫
∂P

µh · n da.

(2.19)

Then using the conservation laws (2.11), (2.12) and (2.15) on the left hand side and

the divergence theorem on the right hand side of the inequality, the following local

form of (2.19) is obtained:

ρψ̇ −T : ∇v −∇ · (φ̇ξ) +∇ · (µh) ≤ 0. (2.20)

By applying the product rule to the last two terms in (2.20) and introducing

˙ρψ = ρψ̇ + ψρ̇ and T = T0 − pI,

we obtain

˙ρψ − ψρ̇−T0 : ∇v + p∇ · v − φ̇∇ · ξ − ξ∇(φ̇) + µ∇ · h + h · ∇µ ≤ 0. (2.21)

The partition T = T0 − pI is such that −pI corresponds to the hydro-static part

of the stress tensor T. The reduced dissipation inequality (2.21) forms the basis

for determining our class of admissible constitutive relations and the independent

variables.

Remark 2.3. We define ψ as the density of the Helmholtz free energy with respect

to the mass measure and, accordingly, ρψ as the volumetric free-energy density. In

many other formulations30,2, ψ is defined directly as a volumetric free energy. Our

choice for ψ is crucial to simplify the final derived model such that the momentum

equation has a density-free capillary force term, which enables the construction of

a linear time-integration scheme.
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2.4. Constitutive equations and Coleman–Noll procedure

We consider the independent variables: φ,v, µ, p and the dependent functions:

ρψ, ρ̂,T,h, ξ. The explicit form of the functions in terms of independent variables is

determined via the Coleman–Noll procedure, except ρ̂ which has been defined pre-

viously in (2.2). We start with the constitutive assumption for the energy density

ρψ according to ρψ = ρ̂ψ(φ,∇φ), which gives

˙̂
ρψ =

∂(ρ̂ψ)

∂φ
φ̇+

∂(ρ̂ψ)

∂∇φ
∇̇φ. (2.22)

Furthermore, on account of ∇̇φ = ∇(φ̇)−∇v · ∇φ, it follows from (2.22) that

˙̂
ρψ =

∂(ρ̂ψ)

∂φ
φ̇+

∂(ρ̂ψ)

∂∇φ
∇(φ̇)−

(
∂(ρ̂ψ)

∂∇φ
⊗∇φ

)
: ∇v. (2.23)

Using the identities (2.8), (2.11) and (2.23), the inequality (2.21) can be recast into

∂(ρ̂ψ)

∂φ
φ̇+

∂(ρ̂ψ)

∂∇φ
∇(φ̇)−

(
∂(ρ̂ψ)

∂∇φ
⊗∇φ

)
: ∇v + (ρ̂ψ)I : ∇v −T0 : ∇v

+ p∇ · v − φ̇∇ · ξ − ξ∇(φ̇) + µ∇ · h + h · ∇µ ≤ 0,

(2.24)

where pI : ∇v = p∇ · v. In (2.24), we have written each term as a contraction of

a dependent and an independent variable except for the boxed terms. The boxed

terms can be recast into the same form by means of the relations

∇ · v = −1

ρ̂

dρ̂

dφ
φ̇ and ∇ · h = −φ̇− φ∇ · v, (2.25)

which results in the following local dissipation inequality

∂(ρ̂ψ)

∂φ
φ̇+

∂(ρ̂ψ)

∂∇φ
∇(φ̇)−

(
∂(ρ̂ψ)

∂∇φ
⊗∇φ

)
: ∇v + (ρ̂ψ)I : ∇v −T0 : ∇v

− p

ρ̂

dρ̂

dφ
φ̇− φ̇∇ · ξ − ξ∇(φ̇) + µ(−φ̇− φ∇ · v) + h · ∇µ ≤ 0.

(2.26)

Replacing T0 by T0 = T + pI and rearranging terms, we obtain

−∇v :

(
T + pI +

∂(ρ̂ψ)

∂∇φ
⊗∇φ+ (µφ− ρ̂ψ)I

)

+ φ̇

(
∂(ρ̂ψ)

∂φ
−∇ · ξ − µ− p

ρ̂

dρ̂

dφ

)

+∇(φ̇)

(
∂(ρ̂ψ)

∂∇φ
− ξ

)
+ h · ∇µ ≤ 0.

(2.27)
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Based on the inequality (2.27), we choose the constitutive relations as:

T = T̂(φ,∇φ,∇v)

ξ = ξ̂(φ,∇φ)

h = ĥ(φ,∇φ, µ,∇µ),

where according to the standard Coleman–Noll argument, the form of the functions

can be selected arbitrarily. To avoid that a variation of φ̇ and ∇(φ̇) leads to a

violation of the inequality (2.27), we insist that:

∂(ρ̂ψ)

∂φ
−∇ · ξ − µ− p

ρ̂

dρ̂

dφ
= 0 (2.28)

∂(ρ̂ψ)

∂∇φ
− ξ = 0, (2.29)

which provide equations for µ and ξ, respectively. The following constitutive rela-

tions then ensure compliance with (2.27):

h = −m(φ)∇µ, (2.30)

T + pI +

(
∂(ρ̂ψ)

∂∇φ
⊗∇φ

)
+ (µφ− ρ̂ψ)I = η(φ) (2D + λ(∇ · v)I) (2.31)

where D = 1
2

(
∇v +∇vT

)
is the symmetric velocity gradient tensor and ∇vT

denotes transpose of ∇v. Then (2.27) is satisfied as, in particular,

− η(φ) (2D + λ(∇ · v)I) : ∇v −m(φ)|∇µ|2 ≤ 0,

where η(φ) ≥ 0 is the viscosity, m(φ) ≥ is the mobility. The viscous contribution

−η(φ) (2D + λ(∇ · v)I) is non-positive under the standing assumption λ ≥ −2/d .51

Remark 2.4. We introduce η(φ) (2D + λ(∇ · v)I) as the viscous stress tensor

where the fluid is considered to be an isotropic Newtonian mixture with volume-

fraction-dependent viscosity.45

2.5. Special choice of free energy and the Navier–Stokes

Cahn–Hilliard Equation

To obtain a specific quasi-incompressible model, we choose the Helmholtz free en-

ergy in the Ginzburg-Landau form12:

ρ̂ψ(φ,∇φ) =
σ

ε
f(φ) +

σε

2
|∇φ|2,

where ε > 0 represents the thickness of the interface of the mixture, σ is related to

the surface energy density and f(φ) represents a double-well potential, for example

the globally C2,1-continuous standard (truncated) quartic polynomial according to

f(φ) :=


(φ+ 1)2, φ < −1
1
4 (φ2 − 1)2, φ ∈ [−1, 1]

(φ− 1)2, φ > 1

(2.32)
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Then, by the definition of ρ̂ψ it holds that

∂(ρ̂ψ)

∂φ
=
σ

ε

df

dφ
,

∂(ρ̂ψ)

∂∇φ
= σε∇φ. (2.33)

If we substitute (2.33) into (2.28)–(2.31) and by (2.7) and (2.15), we obtain the

following quasi-incompressible Navier–Stokes-Cahn–Hilliard system:

φ̇+ φ∇ · v = ∇ · (m(φ)∇µ) (2.34a)

µ =
σ

ε

df

dφ
− σε∆φ− p

ρ̂

dρ̂

dφ
(2.34b)

ρv̇ = −∇p− σε∇ · (∇φ⊗∇φ) +∇ ·
(σ
ε
f(φ) +

σε

2
|∇φ|2 − µφ

)
I

+∇ ·
(
η(φ) (2D + λ(∇ · v)I)

)
− ρ̂g (2.34c)

∇ · v = α∇ · (m(φ)∇µ) (2.34d)

ρ̇+ ρ∇ · v = 0 (2.34e)

ρ̂ = ρ1
1 + φ

2
+ ρ2

1− φ
2

(2.34f)

The NSCH system (2.34) is thermodynamically consistent by construction, i.e. it

complies with the second law of thermodynamics.

Remark 2.5. One may note that the two variants (2.34e) and (2.34f) of the mixture

density both appear in the equation of motion (2.34c). More explicitly, the density

in (2.34e) appears in the ρv̇ term, while the density in (2.34f) appears in the gravity

term ρ̂g. (2.34f) also appears in the equation of chemical potential (2.34b). Defining

the mixture densities ρ and ρ̂ via two separate equations in (2.34e) and (2.34f) is

crucial to obtain an energy dissipative time-discrete scheme. These two definitions

of the mixture density are consistent by construction; see Section 2.1.

Remark 2.6. The components of the stress in (2.34c) can be endowed with specific

physical interpretations. The tensor η(φ)(2D + λ(∇ · v)I) represents the standard

viscous stress tensor. The tensors σε(∇φ⊗∇φ) and
(
σ
ε f(φ) + σε

2 |∇φ|
2 − µφ

)
I are

associated with capillary forces due to the surface tension and an additional contri-

bution due to quasi-incompressibility, respectively.

Equation (2.34c) can be reformulated such that the additional complicated stress

terms assume a simpler form. To this end, we note that for σε∇ · (∇φ ⊗ ∇φ) we

have the following sequence of identities:

σε∇ · (∇φ⊗∇φ) = σε(∆φ∇φ+
1

2
∇|∇φ|2)

= ∇φ
(
σ

ε

df

dφ
− µ− p

ρ̂

dρ̂

dφ

)
+
σε

2
∇|∇φ|2

= ∇ ·
(σ
ε
f(φ) +

σε

2
|∇φ|2 − µφ

)
I + φ∇µ− p

ρ̂

dρ̂

dφ
∇φ, (2.35)
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where the second identity in (2.35) follows from (2.34b). Inserting (2.35) into (2.34c)

leads to the final form of the quasi-incompressible Navier–Stokes Cahn–Hilliard

model

φ̇+ φ∇ · v = ∇ · (m(φ)∇µ)

µ =
σ

ε

df

dφ
− σε∆φ− p

ρ̂

dρ̂

dφ

ρv̇ = −∇p− φ∇µ+
p

ρ̂

dρ̂

dφ
∇φ+∇ · (η(φ) (2D + λ(∇ · v)I))− ρ̂g

∇ · v = α∇ · (m(φ)∇µ)

ρ̇+ ρ∇ · v = 0

ρ̂ = ρ1
1 + φ

2
+ ρ2

1− φ
2

(2.36a)

(2.36b)

(2.36c)

(2.36d)

(2.36e)

(2.36f)

Remark 2.7. For matching densities, i.e. ρ1 = ρ2, equations (2.36e) and (2.36f) are

trivially satisfied and equations (2.36a)–(2.36d) reduce to the standard incompress-

ible NSCH system30. Additionally, the −φ∇µ term can be rewritten as∇·(∇φ⊗∇φ)

upon redefining the pressure by p̃ = p− σ
ε f(φ)− σε

2 |∇φ|
2 + µφ.

In the sequel, we will generally equip (2.36) with the following natural boundary

conditions:

∂nφ = ∂nµ = 0, v = 0 on ∂Ω, (2.37)

where ∂n(·) represents the normal-derivative in the trace sense. Also, for the sake

of simplicity, we restrict our considerations to constant viscosity and mobility, i.e.

η(φ) := η and m(φ) := m.

Remark 2.8. Other boundary conditions, e.g. of non-homogeneous form can be

considered as well. However, one should take into consideration that there is a

compatibility between the velocity v and the chemical potential µ due to the quasi-

incompressibility equation (2.36d), that is,∫
∂Ω

v · n dS = α

∫
∂Ω

m(φ) ∂nµ dS

The total energy functional associated with (2.36) is compatible with (2.16)

and comprises the Helmholtz free energy, the kinetic energy and the gravitational

energy:

E (φ, ρ, ρ̂,v) :=

∫
Ω

(
1

2
ρ|v|2 +

σ

ε
f(φ) +

σε

2
|∇φ|2 + ρ̂gy

)
dΩ, (2.38)

Here, 1
2ρ|v|

2 is the kinetic energy, σε f(φ)+ σε
2 |∇φ|

2 is the Cahn–Hilliard free energy

and ρ̂gy is the gravitational potential energy.
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2.6. Equivalent form and relation to existing models

Based on the same modeling assumptions, one can derive a seemingly different

quasi-incompressible model to (2.36). Let us follow the same steps in the derivation

until (2.24) and rewrite the term p∇ · v using

∇ · v = αφ̇+ αφ∇ · v (2.39)

instead of ∇ · v = −1

ρ̂

dρ̂

dφ
φ̇ in (2.25). Then the local dissipation inequality becomes

∂(ρ̂ψ)

∂φ
φ̇+

∂(ρ̂ψ)

∂∇φ
∇(φ̇)−

(
∂(ρ̂ψ)

∂∇φ
⊗∇φ

)
: ∇v + (ρ̂ψ)I : ∇v −T0 : ∇v

+ αpφ̇+ (αpφ) I : ∇v − φ̇∇ · ξ − ξ∇(φ̇) + µ(−φ̇− φ∇ · v) + h · ∇µ ≤ 0.

(2.40)

Applying the Coleman–Noll procedure to (2.40), we obtain the same equations as

(2.29) and (2.30) and the following two equations for chemical potential and the

stress tensor:

∂(ρ̂ψ)

∂φ
−∇ · ξ − µ+ αp = 0

T + pI + (ξ ⊗∇φ) + (µφ− ρ̂ψ + αpφ)I = η(φ) (2D + λ(∇ · v)I) .

(2.41)

Hence, repeating the steps in (2.35), we obtain the following alternative quasi-

incompressible NSCH model:

φ̇+ φ∇ · v = ∇ · (m(φ)∇µ)

µ =
σ

ε

df

dφ
− σε∆φ+ αp

ρv̇ = −∇p− φ∇(µ− αp) +∇ · (η(φ) (2D + λ(∇ · v)I))− ρ̂g
∇ · v = α∇ · (m(φ)∇µ)

ρ̇+ ρ∇ · v = 0

ρ̂ = ρ1
1 + φ

2
+ ρ2

1− φ
2

.

(2.42a)

(2.42b)

(2.42c)

(2.42d)

(2.42e)

(2.42f)

It can be observed, however, that the models (2.36) and (2.42) are equivalent,

by redefining the pressure! Using the relation (2.14), if the pressure p in (2.42b)

and (2.42c) is redefined as p = p̃
1−αφ , then one obtains (2.36b) and (2.36c).

Remark 2.9 (Equivalence with Shen, Yang & Wang). The form obtained

in (2.42) is equivalent to the model by Shen, Yang & Wang49, which was derived

using different arguments, not invoking the Coleman–Noll procedure. Indeed, their

Eqs. (2.13a)–(2.13d) on their page 1050, can be obtained from our (2.42a)–(2.42d)

upon simply redefining our ρ2 = 2ρ̃2 − ρ1, to account for the fact that their phase

variable ranges from 0 to 1 (as opposed to −1 to 1 in our case). With that substitu-

tion, the α in (2.42b)–(2.42d) changes to ρ̃2−ρ1
ρ̃2

, and ρ̂(φ) = ρ1φ+ ρ̃2(1− φ), which

correspond to the model of Shen et al.
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Remark 2.10 (Equivalence with Aki, Dreyer, Giesselmann & Kraus). The

form obtained in (2.42) is also equivalent to the isothermal form (and without phase

transition) of the generalized model by Aki, Dreyer, Giesselmann & Kraus3. Indeed,

using (2.35) and the identity

∇ ·
(
∇φ⊗∇φ− (φ∆φ+ 1

2 |∇φ|
2)I
)

= −φ∇∆φ ,

Eq. (2.42c) can be written as

ρv̇ = −∇p+ σεφ∇∆φ+∇P (φ) +∇ · (η(φ) (2D + λ(∇ · v)I))− ρ̂g (2.43)

where P (φ) := φdWdφ (φ) −W (φ) is the thermodynamic pressure as used by Aki et

al., and W (φ) := σε−1f(φ). The system given by (2.42a), (2.42b), (2.43), (2.42d) is

now exactly equal to the one in Aki et al. on page 828 (cf. their Eqs. (2.16)–(2.20)),

upon setting the mobilities in their model to mj = m(φ)
c2+

and mr = 0.

These equivalences unify the seemingly different quasi-incompressible NSCH

models based on the mass-averaged velocity and volume-fraction phase variable,

which have all been derived in different ways.

2.7. Non-dimensionalization

We perform the non-dimensionalization of (2.36) based on physical properties of the

liquid associated with the density ρ1, which are the characteristic scales of length,

L∗, velocity, U∗ and P∗ = σ/L∗. Considering that φ is already a dimensionless phase

field variable, the governing dimensionless variables are given by:

x̄ =
x

L∗
v̄ =

v

U∗
t̄ = t

L∗
U∗

p̄ =
p

P∗
µ̄ =

µ

P∗
ρ̄ =

ρ

ρ1

where P∗ is used for both dimensionless pressure and chemical potential. Suppress-

ing the over bar for the sake of simplicity, the dimensionless quasi-incompressible

NSCH system (2.36) writes as:

φ̇+ φ∇ · v =
1

Pe
4µ

µ =
1

Cn

df

dφ
− Cn∆φ− p

ρ̂

dρ̂

dφ

ρv̇ = − 1

We

(
∇p+ φ∇µ− p

ρ̂

dρ̂

dφ
∇φ
)

+
1

Re
∇ · (2D + λ(∇ · v)I)− 1

Fr2 ρ̂

∇ · v =
α

Pe
4µ

ρ̇+ ρ∇ · v = 0

ρ̂ =
1 + φ

2
+
ρ2

ρ1

1− φ
2

,

(2.44a)

(2.44b)

(2.44c)

(2.44d)

(2.44e)

(2.44f)
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where Pe = U∗L
2
∗/mσ is the diffusional P éclet number, Cn = ε/L∗ is the Cahn

number as a measure of the interface thickness, We = ρ1U
2
∗L∗/σ is the Weber

number, Re = ρ1U∗L∗/η is the Reynolds number and Fr = U∗/
√
gL∗ is the Froude

number, which expresses the relative strengths of the inertial and the gravitational

forces. Additionally, α is the ratio of specific densities as already defined in (2.9)

and the dimensionless dρ̂/dφ writes:

dρ̂

dφ
=

1

2

(
1 +

ρ2

ρ1

)
.

The dimensionless form of (2.42) can be obtained similarly.

In addition to the main system, the dimensionless energy is obtained from (2.38)

by rescaling Ē = E/ρ1U
2
∗ as

E (φ, ρ, ρ̂,v) =

∫
Ω

(
1

2
ρ|v|2 +

1

We Cn
f(φ) +

Cn

2 We
|∇φ|2 +

1

Fr2 ρ̂y

)
dΩ. (2.45)

2.8. Interface profile

To elucidate the manner in which the fluid–fluid interface is represented in the quasi-

incompressible NSCH model (2.44), we consider the particular case of a stationary

planar fluid–fluid interface in the absence of gravity. Under suitable boundary con-

ditions, it follows from (2.44) that v = 0 and µ = const. Denoting by s a coordinate

normal to the interface and centered at the interface, equations (2.44) then imply

dp

ds
− p

ρ̂

dρ̂

dφ

dφ

ds
= 0

µ− 1

Cn

df

dφ
+ Cn

d2φ

ds2
+
p

ρ̂

dρ̂

dφ
= 0

 in R (2.46)

We insist that the mixture reduces to the pure species and exhibits a uniform

pressure (i.e. trace of the stress) away from the interface:

lim
s→±∞

φ(s) = ±1 lim
s→±∞

dp(s)− tr ζ(s) = dp∞ (2.47)

where ζ represents the dimensionless capillary-stress tensor according to

ζ = −Cn∇φ⊗∇φ+ I

(
Cn

2

∣∣∇φ∣∣2 +
1

Cn
f(φ)− µφ

)
= −Cn

2

∣∣∣∣dφds
∣∣∣∣2 +

1

Cn
f(φ)− µφ

(2.48)

and tr ζ represents its trace. The second identity in (2.48) holds in the one-

dimensional case under consideration. The first equation in (2.46) can be solved

via separation of variables to obtain the general solution p = Cρ(φ) for some con-

stant C. It can then be verified by substitution that

φ(s) = tanh

(
s√

2 Cn

)
p(s) = p∞+p∞

(
ρ1 − ρ2

ρ1 + ρ2

)
φ(s) µ = −p∞

(
ρ1 − ρ2

ρ1 + ρ2

)
(2.49)
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Fig. 1: Illustration of the energy density in (2.50) for Cn ∈ 2{−3,−2,−1,0}.

solves (2.46)–(2.47). It is to be noted that, in particular, the order parameter φ

assumes the typical tanh-form.36,37

Remark 2.11. The fluid–fluid surface tension can be conceived of as the increase

in the free energy that accompanies an increase in surface area of the fluid-fluid

meniscus.14 Accordingly, the surface tension associated with the solution (2.49) of

the order parameter can be derived from Eq. (2.45) as:

1

We

∫ +∞

−∞

(
Cn

2

∣∣∣∣dφds
∣∣∣∣2 +

1

Cn
f(φ)

)
ds =

1

We

∫ ∞
−∞

(
1

2 Cn

)
sech4

(
s√

2 Cn

)
ds

=
2
√

2

3 We
(2.50)

with sech(·) the hyperbolic-secant function.

Remark 2.12. The energy density in (2.50) is a strictly positive function that

is essentially localized in the vicinity of the interface, and that collapses onto the

interface in the sharp-interface limit Cn→ +0; see Figure 1.

3. Energy-Dissipative Numerical Method

We constructed our model (2.44) based on thermodynamic consistency, which is

equivalent to satisfying the second axiom of thermodynamics. The axiom demands

entropy production which in turn implies dissipation of total energy E, i.e. according

to (2.45), dtE ≤ 0. To maintain stability in numerical computations, this physical

dissipation property should be observed at the discrete level, as it is in the contin-

uous PDE model. In this section, for completeness, we first present the continuous

energy dissipation for the weak formulation of (2.44). Then we present a linearly
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implicit, first order accurate time-integration scheme. We restrict ourselves here

only to time-discretization and prove the discrete dissipation for a space-continuous

semi-discrete model.

3.1. Energy dissipative weak formulation

We assume that the natural boundary conditions (2.37) hold. The system of dif-

ferential equations in (2.44) subject to (2.37) can be condensed into the following

weak form: Find φ, µ ∈ H1(Ω), v ∈ H1(Ω), p ∈ L2(Ω) such that∫
Ω

(
φ̇ω + φ∇ · vω +

1

Pe
∇µ · ∇ω

)
dΩ = 0, ∀ω ∈ H1(Ω) (3.1a)∫

Ω

(
µψ − 1

Cn

df

dφ
ψ − Cn∇φ · ∇ψ +

p

ρ̂

dρ̂

dφ
ψ

)
dΩ = 0, ∀ψ ∈ H1(Ω) (3.1b)∫

Ω

(
ρv̇ · χ+

1

We
(−p (∇ · χ) + φ∇µ · χ− p

ρ̂

dρ̂

dφ
∇φ · χ) +

2

Re
D : ∇χ

+
λ

Re
(∇ · v) (∇ · χ) +

1

Fr2 ρ̂ · χ
)
dΩ = 0, ∀χ ∈ H1(Ω) (3.1c)∫

Ω

(
(∇ · v) θ +

α

Pe
∇µ · ∇θ

)
dΩ = 0, ∀θ ∈ L2(Ω) (3.1d)

for a.e. t ∈ (0, T ).

The specification of the function spaces in the weak formulation (3.1) is formal

and a consideration of existence and stability is beyond the scope of this work.

However, additional (a-posteriori) conditions are required, e.g. φ ∈ L∞(Ω) and

φ ∈ [−1, 1] a.e. in Ω, to ensure that the integrals in (3.1) are bounded. The mixture

densities ρ̂ and ρ have not been included in (3.1), because ρ̂ is defined via the

algebraic relation (2.44f) and it can be replaced with its definition in (3.1). Similarly,

ρ is related to the model with respect to the mass conservation equation (2.44e)

and it is not considered as part of the system (3.1). However, to ensure that the

integrals in the weak form (3.1) are appropriately bounded, we require the mixture

densities to satisfy ρ, ρ̂ ∈ L∞(Ω,R>0).

Theorem 3.1. Let φ, µ,v, p be a sufficiently smooth solution to (3.1) subject to

the boundary condition (2.37). Assume also that ρ and ρ̂ according to (2.44e) and

(2.44f), respectively, are positive. Then the following energy dissipation relation

holds:

d

dt

∫
Ω

(
1

2
ρ|v|2 +

1

We Cn
f(φ) +

Cn

2 We
|∇φ|2 +

1

Fr2 ρ̂y

)
dΩ

= − 1

Re
‖∇v‖2L2 −

1 + λ

Re
‖∇ · v‖2L2 −

1

Pe We
‖∇µ‖2L2 ≤ 0.

(3.2)

Proof. Setting χ = v for the momentum equation (3.1c) and invoking integration
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by parts and the boundary conditions (2.37), we obtain

d

dt

∫
Ω

1

2
ρ|v|2 dΩ +

1

Re
‖∇v‖2L2 +

1 + λ

Re
‖∇ · v‖2L2 +

∫
Ω

1

Fr2 ρ̂ · v dΩ

+

∫
Ω

1

We

(
−p(∇ · v) + φ∇µ · v − p

ρ̂

dρ̂

dφ
∇φ · v

)
dΩ = 0.

(3.3)

In (3.3) we have used the following identity, which is obtained by the mass con-

servation equation (2.44e), integration by parts and the homogeneous boundary

condition v|∂Ω = 0:∫
Ω

ρ(v · ∇)v · v dΩ = −
∫

Ω

1

2
∇ · (ρv)|v|2 dΩ =

∫
Ω

1

2
∂tρ|v|2 dΩ.

Then, set ω = 1
We (µ+ p

ρ̂
dρ̂
dφ )+ 1

Fr2
dρ̂
dφy and ψ = −∂tφ/We for the phase equation (3.1a)

and the chemical potential equation (3.1b), respectively, to obtain∫
Ω

1

We
(∂tφ+∇ · (φv))

(
µ+

p

ρ̂

dρ̂

dφ

)
dΩ +

1

Pe We
‖∇µ‖2L2

+

∫
Ω

1

Pe We
∇µ · ∇

(
p

ρ̂

dρ

dφ

)
dΩ +

∫
Ω

(∂tφ+∇ · (φv))
1

Fr2

dρ̂

dφ
y dΩ

+

∫
Ω

1

Pe
∇µ · ∇

(
1

Fr2

dρ̂

dφ
y

)
dΩ = 0, (3.4)∫

Ω

1

We

(
−µ∂tφ+

1

Cn

df

dφ
∂tφ+ Cn∇φ · ∂t(∇φ)− p

ρ̂

dρ̂

dφ
∂tφ

)
dΩ = 0, (3.5)

Similarly, the choice θ = − 1
α

(
1

We
p
ρ̂
dρ̂
dφ + 1

Fr2
dρ̂
dφy
)

for (3.1d) gives∫
Ω

− 1

α
∇ · v

(
1

We

p

ρ̂

dρ̂

dφ
+

1

Fr2

dρ̂

dφ
y

)
dΩ

−
∫

Ω

1

Pe
∇µ · ∇

(
1

We

p

ρ̂

dρ̂

dφ
+

1

Fr2

dρ̂

dφ
y

)
= 0.

(3.6)

Adding equations (3.3)–(3.6) results in

d

dt

∫
Ω

(
1

2
ρ|v|2 +

1

We Cn
f(φ) +

Cn

2 We
|∇φ|2 +

1

Fr2 ρ̂y

)
dΩ

= − 1

Re
‖∇v‖2L2 −

1 + λ

Re
‖∇ · v‖2L2 −

1

Pe We
‖∇µ‖2L2

+

∫
Ω

1

We

(
p(∇ · v) +

p

ρ̂

dρ̂

dφ

(
∇φ · v −∇ · (φv) +

1

α
∇ · v

))
dΩ

+

∫
Ω

1

Fr2

(
−ρ̂ · v − dρ̂

dφ
y

(
∇ · (φv)− 1

α
∇ · v

))
dΩ.

Using integration by parts, the relation (2.14) and the fact that ρ̂ is a function of
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φ as defined in (2.44f), one can deduce that the last two integrals vanish:∫
Ω

1

We

(
p(∇ · v) +

p

ρ̂

dρ̂

dφ

(
∇φ · v −∇ · (φv) +

1

α
∇ · v

))
dΩ = 0∫

Ω

1

Fr2

(
−ρ̂ · v − dρ̂

dφ
y

(
∇ · (φv)− 1

α
∇ · v

))
dΩ = 0,

(3.7)

which completes the proof.

The energy-dissipation relation in Theorem 3.1 is a fundamental structural prop-

erty. Noting that the energy in (2.45) corresponds to a convex functional in v and φ,

the energy-dissipation relation endows the quasi-incompressible NSCH system (3.1)

with stability in the Lyapunov sense. The energy-dissipation property should be

preserved in discrete approximations: see Section 3.2. Additionally, conservation of

mass and phase are other structural properties of the NSCH model to be retained

in discrete approximations. The continuity equation (2.44e) and the boundary con-

ditions in (2.37) imply conservation of mass:

d

dt

∫
Ω

ρ dΩ =

∫
Ω

∂tρ dΩ =

∫
Ω

−∇ · (ρv) dΩ =

∫
∂Ω

−ρv · n dS = 0

Similarly, conservation of phase φ follows from the expression for ρ̂ as a function of

φ, equations (2.44a) and (2.44d), relation (2.14) and the boundary conditions:

d

dt

∫
Ω

ρ̂ dΩ =

∫
Ω

dρ̂

dφ

∂φ

∂t
dΩ =

∫
Ω

dρ̂

dφ

(
−∇ · (φv) +

1

Pe
4µ
)
dΩ

=

∫
Ω

dρ̂

dφ

(
−∇ · (φv) +

1

α
∇ · v

)
dΩ =

∫
Ω

−∇ · (ρ̂v) dΩ

=

∫
∂Ω

−ρ̂v · n dS = 0.

(3.8)

Because dρ̂/dφ is constant, the chain of identities in (3.8) implies∫
Ω

∂φ

∂t
dΩ =

d

dt

∫
Ω

φdΩ = 0 (3.9)

That is, the phase φ is conserved.

3.2. Linear energy-stable time-integration scheme

In this section, we introduce a linear finite difference time-integration scheme for

model (2.44). Instead of the weak form, we propose the scheme in the context of

the strong form of the PDE to present it with a clear algorithm chart.

We consider a partitioned of the time interval (0, T ) into N sub-intervals of con-

stant time-step size, ∆t = tn+1− tn for n = 0, 1, 2, . . . , N − 1. Algorithm 1 presents

a coupled, first-order accurate and energy-dissipative time-integration scheme for

the NSCH system (2.44). The properties of the scheme are stated and proved in

Theorem 3.2. Except for the initialization step in which we take ρ̂0 = ρ0, each time
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Given φ0,v0. Initialize ρ0 using the algebraic definition by

ρ0 =
1 + φ0

2
+
ρ2

ρ1

1− φ0

2
.

For n = 0, 1, 2, . . . , N − 1,

Step 1. Compute

ρ̂n =
1 + φn

2
+
ρ2

ρ1

1− φn

2
. (3.10)

Step 2. Solve the following system to obtain φn+1, µn+1,vn+1 and pn+1

φn+1 − φn

∆t
+∇ · (φnvn+1) =

1

Pe
4µn+1 (3.11a)

µn+1 =
β

Cn
(φn+1 − φn) +

1

Cn
f ′(φn)− Cn∆φn+1 − 1

ρ̂n
dρ̂n

dφn
pn+1 (3.11b)

ρn
vn+1 − vn

∆t
+ ρnvn · ∇vn+1 =

− 1

We

(
∇pn+1 + φn∇µn+1 − 1

ρ̂n
dρ̂n

dφn
pn+1∇φn

)
+

1

Re
∇ ·
(
2Dn+1 + λ(∇ · vn+1)I

)
− 1

Fr2 ρ̂
n (3.11c)

∇ · vn+1 =
α

Pe
4µn+1 (3.11d)

with boundary conditions

∇φn+1 · n = ∇µn+1 · n = 0, vn+1 = 0 on ∂Ω. (3.12)

Step 3. Update ρn to ρn+1 for n ≥ 1, using the mass conservation

equation:

ρn+1 = ρn −∆t∇ · (ρnvn). (3.13)

This completes one time step, update n to n+ 1.

Algorithm 1: Energy-dissipative linearly-implicit time-stepping scheme

step in the time-integration algorithm involves both densities ρ̂n and ρn according

to (3.10) and (3.13), respectively. By virtue of this approach and by delaying the

transport velocity in the nonlinear convective term (3.11c) to tn, Algorithm 1 is lin-

early implicit, i.e. equations (3.10)–(3.13) are linear in φn+1, µn+1,vn+1 and pn+1.

It is to be noted that a stabilizing term β
Cn (φn+1−φn) has been introduced in the

definition of the chemical potential in (3.11b). The constant stabilization parameter

β depends on the choice of f(φ). Specifically, for the f(φ) function in (2.32), the
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scheme becomes stable if the stabilization constant satisfies β ≥ 1.

Theorem 3.2. Consider the time-integration scheme in Algorithm 1 with the dou-

ble well potential f according to (2.32). Assume that ρn > 0 for all n. If the stabi-

lization parameter β in (3.11b) is selected in accordance with

β ≥ 1 (3.14)

then the scheme in Algorithm 1 is:

(i) unconditionally energy stable: for all n = 1, . . . , N − 1 the following

discrete energy-dissipation relation holds:

En+1 − En ≤− ∆t

Re
‖∇vn+1‖2L2 −

∆t(1 + λ)

Re
‖∇ · vn+1‖2L2

− ∆t

Pe We
‖∇µn+1‖2L2 −

1

2
ρn‖vn+1 − vn‖2L2

− Cn

2 We
‖∇(φn+1 − φn)‖2L2 −

β − 1

We Cn
‖φn+1 − φn‖2L2 ≤ 0

(3.15)

independent of the time-step size ∆t > 0.

(ii) mass and phase conserving: for all n = 1, . . . , N − 1 there holds∫
Ω

ρn+1 dΩ =

∫
Ω

ρ0 dΩ,

∫
Ω

ρ̂n+1 dΩ =

∫
Ω

ρ̂0 dΩ, and∫
Ω

φn+1 dΩ =

∫
Ω

φ0 dΩ.

(3.16)

Proof.

(i) Our proof of the discrete energy dissipation relation (3.15) closely follows the

derivation for the time-continuous case in the proof of Theorem. 3.1. Using the

definition of the energy in (2.45), the discrete energy can be written as

En =

∫
Ω

(
1

2
ρn|vn|2 +

1

We Cn
f(φn) +

Cn

2 We
|∇φn|2 +

1

Fr2 ρ̂
ny

)
dΩ. (3.17)

For the difference in discrete energies at tn+1 and tn it then follows that

En+1 − En =

∫
Ω

1

2

(
ρn+1|vn+1|2 − ρn|vn|2

)
dΩ

+

∫
Ω

1

We Cn

(
f(φn+1)− f(φn)

)
dΩ

+

∫
Ω

Cn

2 We

(
|∇φn+1|2 − |∇φn|2

)
dΩ

+

∫
Ω

1

Fr2

(
ρ̂n+1 − ρ̂n

)
y dΩ.

(3.18)
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For the first term in (3.18), it holds that∫
Ω

1

2

(
ρn+1|vn+1|2 − ρn|vn|2

)
dΩ =∫

Ω

1

2
(ρn+1 − ρn)|vn+1|2 dΩ +

∫
Ω

1

2
ρn
(
|vn+1|2 − |vn|2

)
dΩ (3.19)

by adding and subtracting ρn|vn+1|2/2. Using (3.13) and invoking integration by

parts on (ρn+1 − ρn)|vn+1|2, we obtain∫
Ω

1

2
(ρn+1 − ρn)|vn+1|2 dΩ =

∫
Ω

∆tρn (vn · ∇)vn+1 · vn+1 dΩ.

Moreover, applying the algebraic identity
(
a2 − b2

)
= 2a(a − b) − (a − b)2 to

ρn
(
|vn+1|2 − |vn|2

)
/2 gives∫

Ω

1

2
ρn
(
|vn+1|2 − |vn|2

)
dΩ =∫

Ω

ρnvn+1 ·
(
vn+1 − vn

)
dΩ−

∫
Ω

1

2
ρn|vn+1 − vn|2 dΩ.

Hence, the identity (3.18) can be recast into

En+1 − En =

∫
Ω

(
∆tρn(vn · ∇)vn+1 · vn+1 + ρnvn+1 ·

(
vn+1 − vn

) )
dΩ

− 1

2
ρn‖vn+1 − vn‖2L2 +

∫
Ω

1

We Cn

(
f(φn+1)− f(φn)

)
dΩ

+
Cn

2 We

(
‖∇φn+1‖2L2 − ‖∇φn‖2L2

)
+

∫
Ω

1

Fr2

dρ̂n

dφn
(φn+1 − φn)y dΩ

(3.20)

Note that the ultimate terms in (3.20) and in (3.18) coincide by virtue of the

identities:

ρ̂n+1 − ρ̂n =
1

2

(
1 +

ρ2

ρ1

)
(φn+1 − φn) =

dρ̂n

dφn
(φn+1 − φn). (3.21)

Next, we regard the time-stepping scheme (3.11a)–(3.11d). By multiplying the phase

equation (3.11a) with

∆t

We

(
µn+1 +

1

ρ̂n
dρ̂n

dφn
pn+1

)
+

∆t

Fr2

dρ̂n

dφn
y (3.22)

integrating over the domain and invoking integration by parts, we obtain∫
Ω

1

We

(
µn+1 +

1

ρ̂n
dρ̂n

dφn
pn+1

)(
(φn+1 − φn) + ∆t∇ · (φnvn+1)

)
dΩ

+

∫
Ω

1

Fr2

dρ̂n

dφn
y
(

(φn+1 − φn) + ∆t∇ · (φnvn+1)
)
dΩ

= − ∆t

Pe We
‖∇µn+1‖2L2 +

∫
Ω

(
1

We

1

ρ̂n
dρ̂n

dφn
pn+1 +

1

Fr2

dρ̂n

dφn
y

)
∆t

Pe
4µn+1 dΩ.

(3.23)
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Multiplying (3.11b) by −(φn+1 − φn)/We, integrating over the domain and using

integration by parts, we deduce:

−
∫

Ω

1

We
µn+1(φn+1 − φn) dΩ

= − β

We Cn
‖φn+1 − φn‖2L2 −

∫
Ω

1

We Cn
f ′(φn)(φn+1 − φn) dΩ− Cn

We
‖∇φn+1‖2L2

+

∫
Ω

Cn

We
(∇φn+1 · ∇φn) dΩ +

∫
Ω

1

We
(φn+1 − φn)

1

ρ̂n
dρ̂n

dφn
pn+1 dΩ

(3.24)

Similary, multiplication of (3.11c) by ∆tvn+1, integrating over the domain and

invoking integration by parts yields:∫
Ω

(
ρnvn+1 ·

(
vn+1 − vn

)
+ ∆tρn(vn · ∇)vn+1 · vn+1

)
dΩ

= −
∫

Ω

∆t

We

(
∇pn+1 + φn∇µn+1 − 1

ρ̂n
dρ̂n

dφn
pn+1∇φn

)
· vn+1 dΩ

− ∆t

Re
‖∇vn+1‖2L2 −

∆t(1 + λ)

Re
‖∇ · vn+1‖2L2 −

∫
Ω

∆t

Fr2 ρ̂
n · vn+1 dΩ

(3.25)

Finally, upon multiplying (3.11d) by

− ∆t

α

(
1

We

1

ρ̂n
dρ̂n

dφn
pn+1 +

1

Fr2

dρ̂n

dφn
y

)
(3.26)

and integrating over the domain, we obtain:

−
∫

Ω

∆t

α

(
1

We

1

ρ̂n
dρ̂n

dφn
pn+1 +

1

Fr2

dρ̂n

dφn
y

)
(∇ · vn+1) dΩ

= −
∫

Ω

∆t

Pe

(
1

We

1

ρ̂n
dρ̂n

dφn
pn+1 +

1

Fr2

dρ̂n

dφn
y

)
4µn+1 dΩ (3.27)

By collecting the results in (3.23)–(3.27), we obtain the identity:∫
Ω

(
ρnvn+1 ·

(
vn+1 − vn

)
+ ∆tρn(vn · ∇)vn+1 · vn+1

)
dΩ

+

∫
Ω

1

Fr2

dρ̂n

dφn
(φn+1 − φn)y dΩ

= −∆t

Re
‖∇vn+1‖2L2 −

∆t(1 + λ)

Re
‖∇ · vn+1‖2L2 −

∆t

Pe We
‖∇µn+1‖2L2

− Cn

We
‖∇φn+1‖2L2 +

∫
Ω

Cn

We
(∇φn+1 · ∇φn) dΩ

−
∫

Ω

1

We Cn
f ′(φn)(φn+1 − φn) dΩ− β

We Cn
‖φn+1 − φn‖2L2

+

∫
Ω

∆t

We

(
−∇pn+1 · vn+1 +

1

ρ̂n
dρ̂n

dφn
pn+1(−φn∇ · vn+1 +

1

α
∇ · vn+1)

)
dΩ

+

∫
Ω

∆t

Fr2

(
−ρ̂n · vn+1 − dρ̂n

dφn
y

(
∇ · (φnvn+1)− 1

α
∇ · vn+1

))
dΩ.

(3.28)
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The penultimate and ultimate terms in the right member of (3.28) vanish by virtue

of relation (2.14), in a similar manner as their continuous counterparts in (3.7). By

replacing the first and the last terms in (3.20) in accordance with (3.28), we obtain

En+1 − En =− ∆t

Re
‖∇vn+1‖2L2 −

∆t(1 + λ)

Re
‖∇ · vn+1‖2L2 −

∆t

Pe We
‖∇µn+1‖2L2

− 1

2
ρn‖vn+1 − vn‖2L2 −

Cn

2 We
‖∇(φn+1 − φn)‖2L2

+

∫
Ω

1

We Cn

(
− f ′(φn)(φn+1 − φn) + f(φn+1)− f(φn)

)
dΩ

− β

We Cn
‖φn+1 − φn‖2L2 . (3.29)

To derive (3.29), we have also combined the sum of the fourth term in the right hand

side of (3.20) with the fourth and the fifth terms in the right hand side of (3.28)

according to:

Cn

2 We

(
‖∇φn+1‖2L2 − ‖∇φn‖2L2

)
− Cn

We
‖∇φn+1‖2L2

+

∫
Ω

Cn

We
(∇φn+1 · ∇φn) dΩ = − Cn

2 We
‖∇(φn+1 − φn)‖2L2 . (3.30)

Finally, we use Taylor expansion on the double-well function f(φ) to obtain the

identity:

f(φn+1)− f(φn) = f ′(φn)(φn+1 − φn) +
f ′′(ξn)

2
(φn+1 − φn)2

for some ξn ∈ [φn, φn+1] and for all φn+1. For the double-well function in (2.32), it

holds that:

max
φ∈R
|f ′′(φ)| ≤ 2. (3.31)

From (3.29), we then infer the following bound:

En+1 − En ≤− ∆t

Re
‖∇vn+1‖2L2 −

∆t(1 + λ)

Re
‖∇ · vn+1‖2L2 −

∆t

Pe We
‖∇µn+1‖2L2

− 1

2
ρn‖vn+1 − vn‖2L2 −

Cn

2 We
‖∇(φn+1 − φn)‖2L2

− β − 1

We Cn
‖φn+1 − φn‖2L2 ≤ 0

(3.32)

The bound (3.32) implies the desired discrete dissipation law (3.15). Let us note

that in the above proof we have not imposed any conditions on the time step ∆t > 0.

(ii) Integrating (3.13) over the domain Ω, applying the divergence theorem and the

homogeneous boundary condition for velocity, we obtain:∫
Ω

(ρn+1 − ρn) dΩ =

∫
Ω

−∆t∇ · (ρnvn) dΩ =

∫
∂Ω

−∆tρnvn · n dS = 0. (3.33)
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Similarly, by integrating (3.21) over the domain, using (3.11a) and (3.11d) together

with the discrete version of (2.14) and applying the boundary conditions in (3.12),

we obtain the following sequence of identities:∫
Ω

(ρ̂n+1 − ρ̂n) dΩ =
dρ̂n

dφn

∫
Ω

(φn+1 − φn) dΩ

=
dρ̂n

dφn

∫
Ω

∆t

(
−∇ · (φnvn+1) +

1

Pe
4µn+1

)
dΩ

=
dρ̂n

dφn

∫
Ω

∆t

(
−∇ · (φnvn+1) +

1

α
∇ · vn+1

)
dΩ

=

∫
Ω

−∆t∇ · (ρ̂nvn+1) dΩ =

∫
∂Ω

−∆tρ̂nvn+1 · n dS = 0.

(3.34)

The assertions in (3.16) follow by induction on (3.33) and (3.34).

Remark 3.1. Compared to the continuous dissipation relation (3.2), the dis-

crete energy dissipation (3.32) has additional dissipation terms due to the un-

derlying backward Euler method in Algorithm 1 and the stabilization term, viz.

− 1
2ρ
n‖vn+1 − vn‖2L2 − Cn

2 We‖∇(φn+1 − φn)‖2L2 and − β−1
We Cn‖φ

n+1 − φn‖2L2 , respec-

tively. Gravity does not contribute to the dissipation, neither in the continuous

dissipation relation (3.2) nor in the time-discrete dissipation relation (3.32).

Remark 3.2. A stabilization term similar to the one in (3.11b) has been proposed

by Shen, Yang and Wang49. Their stabilization is motivated on the basis of the

heuristic argument that it damps high-frequency or high wave-number modes in

the numerical simulation, thus stabilizing the time-integration scheme and allowing

for larger time steps. The proof of Theorem 3.2 conveys that the stabilization term in

fact ensures that the energy-dissipation property of the quasi-incompressible NSCH

system is retained in the time-discrete case.

Remark 3.3. Theorem 3.2 is contingent on the premise that the mixture density ρn

is positive for all n. Otherwise, the sign of the fourth term in (3.15) reverses and

the energy decay relation En+1 − En ≤ 0 is not ensured. In addition, if positivity

of ρn is violated, then the energy (3.17) does not constitute a Lyapunov functional.

For binary fluids with matching densities, ρ1 = ρ2, positivity of ρn is trivially

satisfied. For non-matching densities, positivity of the mixture density is directly

connected with the range of the phase variable φ, viz. compliance with φ ∈ [−1, 1];

cf. Equation (2.2). Accordingly, assuming without loss of generality that ρ2 < ρ1,

it holds that ρ ∈ [ρ2, ρ1]. The conditions on the phase variable and the mixture

density can be imposed a-priori by restricting φ(t) and ρ(t) to the convex spaces{
φ ∈ H1(Ω) ∩ L∞(Ω) : |φ| ≤ 1 a.e. in Ω

}{
ρ ∈ H1(Ω) ∩ L∞(Ω) : ρ ∈ [ρ2, ρ1] a.e. in Ω

} (3.35)

Arrangement of the order parameter φ in a convex space instead of a general linear

space has been investigated in the context of the Cahn–Hilliard equation with a
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non-smooth free energy.7 Numerical approximation methods for the Cahn–Hilliard

equation in this setting have also been studied.8,33 However, it is not known if solu-

tions to the NSCH system (2.44) subject to (2.37) and subject to initial conditions

in (3.35) remain in (3.35) as time progresses.

Just as it is not known for (2.44) if it admits solutions that remain in (3.35)

as time progresses, it is not known for the semi-discretization in Algorithm 1 if it

has this property and, if so, under which circumstances this property is retained

under spatial discretization. In practice we observe that positivity of ρn can be

violated for large density ratios, on coarse meshes and at large time steps. By

virtue of (3.13), for non-matched densities positivity of the mixture density ρn+1

according to Algorithm 1 is ensured if the following (local) time-step restriction

holds:

(∆t)n+1 < min

{⌊
ρn

∇ · (ρnvn)

⌋
in Ω

}
(3.36)

where b·c = 1
2 (·) + 1

2 | · | represents the non-negative part of a function (·). Hence,

the time-integration scheme in Algorithm 1 is energy stable if the time-step is set

adaptively in accordance with (3.36).

Remark 3.4. In (3.11b), any choice of β ≥ 1 yields a non-unique splitting of the

double-well potential f(φ) in a similar manner as originally discussed by Eyre18.

That is, for the splitting, the truncated f(φ) can be composed of a convex (contrac-

tive) and a concave (expansive) part according to f = fc−fe, where both functions

fc and fe are convex. Particularly, in our computations we choose β = 2 which

reduces the stabilization into the linearly-stabilized splitting also proposed by Eyre

according to:

fc − fe =


(
φ2 + 1

4

)
−
(
−2φ− 3

4

)
, φ < −1(

φ2 + 1
4

)
−
(

3
2φ

2 − 1
4φ

4
)
, φ ∈ [−1, 1](

φ2 + 1
4

)
−
(
2φ− 3

4

)
, φ > 1,

(3.37)

which leads to a linearly implicit algorithm.

Remark 3.5. A fully discrete scheme can be obtained by applying a finite element

method to the weak form (3.1a)–(3.1d) with (2.44e) and (2.44f). For analyses of

fully discrete schemes, the interested reader is referred to Feng19 and Giesselman

& Preyer23.

4. Numerical Experiments

In this section, we present numerical experiments using our linear semi-implicit

energy-dissipative scheme according to Algorithm 1. We consider 2D test cases

with matching and variable densities and show the unconditional stability in discrete

energy dissipation for large time step sizes. We also consider a falling droplet to test

the scheme with gravity. We set λ = −2/3 in all experiments. The dimensionless

parameters that are used for the numerical simulations are listed in Table 1.
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Example 1 Cn=0.01 We=0.45 Pe=4.5 Re=100 Fr−2=0

Example 2 Cn=0.0625 We=0.45 Pe=4.5 Re=100 Fr−2=0

Example 3 Cn=0.03 We=2.5 Pe=20000 Re=1.7 Fr−2=0.1

Table 1: Parameters for the test cases

In the computations, for the spatial discretization, we use P1−P1 finite-elements

for the phase variables φ and µ and P2 − P1 Taylor-Hood elements for velocity v

and pressure p on uniform meshes with square elements. For time discretization,

the stabilizing term is taken β = 2 and we apply homogeneous Neumann and ho-

mogeneous Dirichlet boundary conditions to φ, µ and v, respectively, in accordance

with (2.37). We also take zero initial velocity v0(x) = 0. The initial conditions

for the phase variable, φ are determined on the basis of the considered initial fluid

volumes.

4.1. Example 1: Coalescence for various density ratios

The goal of this test case is to investigate the time-integration scheme for varying

density ratios, ρ2 : ρ1. To this end, we consider the coalescence of two sufficiently

close but non-touching droplets in a domain Ω = (0, 1)2 with time step size ∆t =

0.05 for a matched density case with ρ2 : ρ1 = 1 : 1 and a very large density-ratio

scenario with two heavier droplets set in a lighter ambient medium with ρ2 : ρ1 =

1:1000. One may note that the latter ratio is very high when compared with other

numerical results in the literature. For both cases, we ignore the effect of gravity.

The other parameters are listed in Table 1. We set the initial condition for the phase

variable according to:

φ0(x) = 1−
2∑
i=1

tanh

(√
(x− xi)2 + (y − yi)2 − ri

Cn
√

2

)
(4.1)

with r1 = 0.25 and r2 = 0.1 and (x1, y1) = (0.4, 0.5) and (x2, y2) = (0.78, 0.5). The

initial condition (4.1) represents two circular droplets with radii r1 and r2 centered

at (x1, y1) and (x2, y2). We cover Ω with a spatial mesh composed of 1282 uniform

elements, which provides a support structure for the finite element spaces detailed

above.

Figure 2 and the top row of Figure 3 present the evolution of the phase variable

for the matched and the non-matched density cases, respectively, from t = 0.05

to 50. One can observe that for both the matched and non-matched density cases,

the droplets coalesce and form a circular droplet. The initial coalescence can be

attributed to diffusion, while the evolution to the stationary circular shape is due

to capillary forces which have the effect of minimizing surface area.

The divergence of the mixture velocity for the non-matched density case is also

displayed in Figure 3. The corresponding plots illustrate the quasi-incompressible
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t = 0.05 t = 0.65 t = 1.5 t = 12 t = 50

Fig. 2: Droplet coalescence for matched densities: Evolution of phase variable, φ with
density ratio ρ2 : ρ1 = 1 : 1, from t = 0.05 to 50, Cn= 0.01, We=0.45, Pe=4.5, Re=100,
Fr−2 = 0 and ∆t = 0.05

t = 0.05 t = 0.65 t = 1.5 t = 12 t = 50

t = 0.05 t = 0.65 t = 1.5 t = 12 t = 50

Fig. 3: Droplet coalescence for non-matched densities: Evolution of phase variable, φ
(top) and divergence of mixture velocity (bottom) with density ratio ρ2 : ρ1 = 1 : 1000,
from t = 0.05 to 50, Cn= 0.01, We=0.45, Pe=4.5, Re=100, Fr−2 = 0 and ∆t = 0.05

behavior. It can be observed that the divergence of the mixture velocity is non-zero,

i.e. ∇ · v 6= 0, in the vicinity of the moving interface, where compressible mixing of

the phases occurs. In the pure phases away from the interface, for which the indi-

vidual components are incompressible, we indeed observe that the mixture velocity

is solenoidal, i.e. ∇ · v = 0. As opposed to the non-matching density case, for the

matching-density case the incompressibility condition is satisfied up to discretiza-

tion errors throughout the domain, in the pure phases as well as at the interface

(results not displayed).

Figure 4 displays the evolution of the mass and energy corresponding to the

phase-field evolution in Figures 2–3. The results in the left panel confirm that

the total mass is preserved in accordance with Theorem 3.2. From the right panel

one can observe that the energy is indeed non-increasing in accordance with the
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(a) Mass (b) Energy

Fig. 4: Evolution of mass and energy for the droplet-coalescence test case for matched
densities ρ2 :ρ1 = 1:1 and non-matched densities ρ2 :ρ1 = 1:1000.

discrete energy-dissipation property of the time-integration scheme according to

Theorem 3.2.

4.2. Example 2: Breakup of two droplets with large time step size

This test case serves to study the stability of the scheme in Algorithm 1 for large

time steps. We regard a rectangular domain Ω = (−2, 2) × (−4, 4). The domain is

covered with a mesh composed of 75 × 150 elements, which again supports finite-

element approximation spaces as before. We consider a large density ratio ρ2 : ρ1 =

1 : 1000 and a large time step ∆t = 0.5. The considered setup pertains to breakup

of two droplets of identical size connected by a thin liquid bridge. We take the

dimensionless parameters as presented in Table 1.

Figure 5 shows snapshots of the evolution of the phase field. One can observe

that the liquid bridge that initially connects the two droplets fissures under the

effect of surface tension and the separate droplets subsequently evolve to a circular

shape in time, during which their surface area decreases.

The evolution of the energy for various time-step sizes is presented in Figure 6.

In panel (a), the energy evolution is presented for very large time step sizes. It is

important to note that the time-integration scheme dissipates the energy even at

such very large time steps, in accordance with Theorem 3.2. The red dissipation

curve in panel (a) corresponds to the simulation presented in Figure 5. For all

dissipation curves in panel (a), we observe a strong initial dissipation followed by a

decrease of the dissipation rate. The initial dissipation rate signals the topological

change by which the connected liquid volume separates into two disjoint liquid

volumes. The asymptotic dissipation rate as t→∞ corresponds to the two droplets

assuming their circular shape and the corresponding decrease in the surface area.

Note that for diffuse interface problems of NSCH type the considered time-step

sizes in panel (a) are very large; typical time-step sizes for this type of problems
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t = 0.5 t = 10 t = 14 t = 25 t = 55 t = 150

Fig. 5: Breakup of a liquid bridge between two droplets for a large density ratio ρ2 :ρ1 =
1 : 1000 and with large time-step size ∆t = 0.5: Evolution of phase variable from t = 0.5
to 150 (Cn= 0.0625, We=0.45, Pe=4.5, Re=100, Fr−2 = 0).

reported in the literature are of the order of 10−3. By virtue of the fact that our

time-integration scheme retains its stability even at such large time-step sizes, it

provides a solid basis for time adaptivity. In Figure 6(b) we consider the energy

dissipation of the time-integration scheme in the limit ∆t→ 0. To this end, we plot

the evolution of the energy versus time for ∆t = {10−6, . . . , 10−3}. One can observe

that the energy evolution converges as ∆t→ 0 and that small but finite dissipation

remains in this limit, in accordance with the energy dissipation of the underlying

quasi-incompressible NSCH equations. The total mass is preserved independent of

the time-step size (results not displayed).

(a) (b)

Fig. 6: Energy evolution for breakup of a liquid bridge between two droplets for density

ratio ρ2 :ρ1 = 1:1000 and ∆t ∈ 2{−5,−3,−1,1} (a) and ∆t ∈ 10{−6,−5,−4,−3} (b).
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4.3. Example 3: Pinching droplet

In this third test case, we explore the time-integration scheme subject to the effect

of gravity. We consider a domain Ω = (−0.3, 0.3)× (−0.8, 0.8) composed of 60×200

uniform square elements supporting the previously defined finite-element approxi-

mation spaces. Note that the computational domain is restricted to the right half

of Ω in view of symmetry. The initial condition corresponds to a droplet attached

to the top boundary:

φ0(x) = − tanh

(√
x2 + (y − 2.9)2 − 0.35√

2 Cn

)

see Figure 7. The parameters are set in accordance with Table 1. For this example,

we set the density ratio ρ2 :ρ1 = 1:2.5, because at large density ratios the condition

ρn > 0 can be violated for the considered large time-step size.

The evolution of the phase-field corresponding to the falling droplet is presented

in Figure 7. Initially, the droplet is attached to the upper wall. In time, due to

gravity it moves downward and after detaching from the upper wall it continues its

t = 0.03 t = 4.5 t = 12 t = 21 t = 25.5

t = 27 t = 30 t = 60 t = 85.5 t = 120

Fig. 7: Evolution of the phase variable for a pinching droplet subject to gravity with
density ratio ρ2 : ρ1 = 1 : 2.5 from t = 0.03 to 120 (Cn= 0.03, We=2.5, Pe=2 × 104,
Re=1.7, Fr−2 = 0.1, ∆t = 0.03).
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vertical movement as an almost circular shaped droplet. Upon reaching the bottom

boundary, the droplet spreads under the Neumann boundary condition for the phase

variable φ, and assumes an ellipsoidal shape as t → ∞, which corresponds to the

equilibrium shape under gravity. It is to be noted that the homogeneous Neumann

condition can be conceived of as a neutral wetting condition, i.e. the contact angle

of the fluid–fluid interface with the solid wall corresponds to π/2 .37,60,54

5. Conclusion

In this paper, we presented a new form of diffuse-interface Navier–Stokes-Cahn–

Hilliard model for binary fluids with distinct densities. The model is based on the

assumption that the fluids are individually incompressible but their partial mixture

shows a quasi-incompressible character. Accordingly, the mass-averaged mixture ve-

locity is generally non-solenoidal. We established an energy-dissipation relation for

the quasi-incompressible NSCH system. In addition, we presented a new linearly

implicit time-integration scheme for the NSCH model and proved energy stabil-

ity of this scheme independent of the time-step size. Moreover, we showed that

the time-integration scheme retains the mass and phase conservation properties of

the underlying NSCH system. Central to the energy-dissipation property of the

time-integration scheme is the use of two distinct but compatible definitions of the

mixture density in the formulation.

We conducted numerical experiments for breakup and coalescence of droplets

and for a falling droplet subject to gravity. The numerical results confirm the energy-

dissipation and mass-and-phase-conservation properties of the time-integration

scheme for high density ratios and large time step sizes. In the computations pertain-

ing to binary fluids with non-matching densities, we observed a non-zero velocity-

divergence near the interface due to the mixing of the incompressible components of

the fluid, in agreement with the quasi-incompressible behavior of the NSCH system.

By virtue of the energy-stability of the presented time-integration scheme, the

proposed scheme provides a solid basis for adaptive temporal refinement. We view

the work presented in this paper as preparatory to space-and-time adaptive approx-

imation methods. In particular, adaptivity based on a-posteriori error estimates is

essential to obtain efficient approximations for diffuse-interface type models with

controllable accuracy.20,56,6,50,58 This is valuable for investigating the complicated

multi-scale features that occur in many binary-fluid flows with capillarity, e.g. the

formation of satellite droplets.
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