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Abstract

A general way to study the extremes of a random variable is to consider the fam-
ily of its Wang distortion risk measures. This class of risk measures encompasses
several indicators such as the classical quantile/Value-at-Risk, the Tail-Value-
at-Risk and Conditional Tail Moments. Trimmed and winsorised versions of the
empirical counterparts of extreme analogues of Wang distortion risk measures
are considered. Their asymptotic properties are analysed, and it is shown that
it is possible to construct corrected versions of trimmed or winsorised estimators
of extreme Wang distortion risk measures who appear to perform overall better
than their standard empirical counterparts in difficult finite-sample situations
when the underlying distribution has a very heavy right tail. This technique is
showcased on a set of real fire insurance data.

Keywords: asymptotic normality, extreme value statistics, heavy-tailed
distribution, trimming, Wang distortion risk measure, winsorising

1. Introduction

Early developments of extreme value analysis focused on estimating a quantile
at a level so high that the straightforward empirical quantile estimator could
not be expected to be consistent. Motivating problems include estimating ex-
treme rainfall at a given location (Koutsoyiannis, 2004) or extreme daily wind
speeds (Beirlant et al., 1996), modeling large forest fires (Alvarado et al., 1998),
analysing extreme log-returns of financial time series (Drees, 2003) and study-
ing extreme risks related to large losses for an insurance company (Rootzén and
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Tajvidi, 1997). A large part of practical applications of extreme value theory
can actually be modelled using heavy-tailed distributions, which shall be the
focus of this paper. A distribution is said to be heavy-tailed if its survival func-
tion 1 − F , where F is the related cumulative distribution function, roughly
behaves like a power function with exponent −1/γ at infinity where the positive
parameter γ is the so-called tail index of the distribution. In such a model,
the function 1− F essentially satisfies a homogeneity property and it therefore
becomes possible to use an extrapolation method (Weissman, 1978) to estimate
quantiles at arbitrarily extreme levels, provided an estimate of γ is computed.
Under appropriate stationarity assumptions this analysis can be used to draw
predictive conclusions: extreme value analysis has been applied to determine
how high the dykes surrounding the areas below sea level in the Netherlands
should be so as to protect these zones from flood risk in case of extreme storms
affecting Northern Europe (de Haan and Ferreira, 2006). It is also used nowa-
days by insurance companies operating in Europe so as to determine their own
solvency capital necessary to meet the European Union Solvency II directive
requirement that an insurance company should be able to survive the upcoming
calendar year with a probability not less than 0.995.

Of course, the knowledge of a single high quantile is clearly not enough to charac-
terise the behaviour of a random variable in its right tail, since two distributions
may well share a quantile at some common level although their respective tail
behaviours are different. This is why other quantities such as the Tail-Value-
at-Risk, Conditional Value-at-Risk or Conditional Tail Moment (see El Methni
et al., 2014) were developed and studied; a common feature of these indicators
is that their computation takes into account the whole right tail of the random
variable of interest. This, of course, also entails increased sensitivity to a change
in tail behaviour compared to what is observed in quantiles, at the population
level and at the finite-sample level alike. These measures are of great value in
practice, especially in actuarial science: for instance, as mentioned in Dowd and
Blake (2006), the Tail-Value-at-Risk would be used if one is interested in the
average loss after a catastrophic event or to estimate the cover needed for an
excess-of-loss reinsurance treaty. As shown in El Methni and Stupfler (2017),
the aforementioned quantities can actually be written as simple combinations of
Wang distortion risk measures of a power of the variable of interest (abbreviated
by Wang DRMs hereafter; see Wang, 1996). Wang DRMs are weighted averages
of the quantile function, the weighting scheme being specified by the so-called
distortion function; on the practical side, Wang DRMs can, among others, be
useful to price insurance premiums, bonds, and tackle capital allocation prob-
lems, see e.g. Wang et al. (1997), Wang (2004) and Belles-Sampera et al. (2014).
It is therefore not surprising that the estimation of Wang DRMs above a fixed
level of risk has been the subject of a number of papers: in particular, we refer
the reader to Jones and Zitikis (2003), Necir and Meraghni (2009), Necir et al.
(2010) and Deme et al. (2013, 2015).

To the best of our knowledge though, the only study providing estimators of
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extreme distortion risk measures is the recent work of El Methni and Stupfler
(2017). More precisely, they show that a simple and efficient solution to esti-
mate extreme Wang DRMs when the right tail of the underlying distribution is
moderately heavy is to consider a so-called functional plug-in estimator. Two
weaknesses of this study can be highlighted however. The first problem, a prac-
tical one, is that it is a consequence of the results in the simulation study of
El Methni and Stupfler (2017) that the finite-sample performance of the sug-
gested class of estimators decreases sharply in terms of mean squared error as the
tail of the underlying distribution gets heavier. This is due to the propensity of
heavier-tailed distributions to generate highly variable top order statistics and,
therefore, to increase dramatically the variability of the estimates. No solution
is put forward in El Methni and Stupfler (2017) in order to tackle this issue. The
second problem, which is theoretical, is that their asymptotic results about this
class of estimators are restricted to asymptotic normality and are thus somewhat
frustrating in the sense that they are stated under an integrability condition on
the quantile function which is substantially stronger than the simple existence
of the Wang DRM to be estimated. In particular, a consistency result under
the latter condition, in the spirit of the one Jones and Zitikis (2003) obtained
for the estimation of fixed-order Wang DRMs, is not provided in El Methni and
Stupfler (2017).

Herein it is shown that robustifying the functional plug-in estimator of El Methni
and Stupfler (2017) by deleting certain top order statistics and/or replacing
them by lower order statistics, namely trimming or winsorising the estimator,
enables one to obtain estimators with reduced variability, as well as to show a
consistency result under weaker hypotheses and to retain the asymptotic nor-
mality result under the same technical conditions. Trimming and winsorising
have both been (and arguably still are) the easiest and most intuitive ways to
give a statistical technique some degree of robustness to high-value outliers. A
historical account is given in Stigler (1973). The motivation here is rather that
the integrability condition of El Methni and Stupfler (2017) depends solely on
the behaviour of the quantile function around 1 and becomes more and more
stringent as the rate of divergence of this function to infinity increases. At the
sample level, this means that this integrability condition has to be fulfilled in
order to control the highest order statistics. Deleting the most extreme part
of the sample or replacing it by lower (but still high) order statistics can thus
be thought of informally as a way to reduce the difficulty of the problem, both
from the theoretical and practical point of view.

To be more specific, we shall essentially consider a Wang DRM of a random
variable given that it lies between two high-level quantiles, instead of assuming
that it simply lies above a high threshold like El Methni and Stupfler (2017) did.
This is then estimated by its empirical counterpart, which leads to a trimmed
estimator of a Wang DRM. The winsorised estimator, meanwhile, is obtained by
considering the empirical counterpart of a Wang DRM given that the random
variable lies above a high threshold and is clipped above yet another higher
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level. By construction, these two estimators do not depend on some of the
highest observations, and therefore can be expected to suffer from less finite-
sample variability than the original estimator of El Methni and Stupfler (2017)
does. To ensure consistency, the highest level (that is, the trimming/winsorising
level) is then made to increase to 1 faster than the lowest one does as the
sample size increases. Both of these estimators can actually be embedded into
a common class of estimators, whose consistency and asymptotic normality are
studied. A somewhat surprising feature of this technique is that one can also
obtain the consistency of the estimator using the full data above a high level by
approximating it by such robustified estimators whose fraction of deleted data
becomes smaller as the sample size increases; this argument is actually similar in
spirit to a proof by Etemadi (1981) of the law of large numbers for independent
copies of an integrable random variable, starting with the case when the variance
is finite and concluding by a truncation argument.

These new estimators, for all their improved properties as far as variability is
concerned, should be expected to suffer from finite-sample bias issues, since
they are in fact sample counterparts of a different quantity than the originally
targeted Wang DRM. The second step is then to devise a correction method
which allows the estimator to have a bias intuitively similar to that of the basic
functional plug-in estimator and therefore to be (almost) unbiased in practice,
while retaining its low variability. The gist of the correction step is to note
that the newly proposed estimators are in reality approximately equal to the
Wang DRM to be estimated multiplied by a quantity converging to 1 and de-
pending on the extremes of the sample only. This makes it possible to estimate
the error made when using the purely trimmed or winsorised estimators and
thus to design corrected estimators by multiplying them by a simple and in-
tuitive correction factor. This correction step should therefore be viewed as
closer to Bessel’s correction method for the sample variance estimator when the
mean is unknown, rather than to traditional bias-correction devices developed
in second-order extreme value frameworks such as the estimators of Peng (1998)
and Caeiro et al. (2005) which are based on the asymptotic distribution of an es-
timator to be corrected. Of course, while this approach should only be expected
to be reasonable if the threshold above which the Wang DRM is computed may
be consistently estimated by its empirical analogue, extreme Wang DRM esti-
mators can be obtained afterwards by an extrapolation technique warranted by
the extreme value framework.

The outline of this paper is the following. In Section 2, we recall what Wang
DRMs are, as well as a definition of extreme analogues of Wang DRMs presented
in El Methni and Stupfler (2017). Section 3 then considers their estimation,
by introducing a two-stage improvement of the functional plug-in estimator of
El Methni and Stupfler (2017), first in the intermediate case and then in the
arbitrarily extreme case. The finite-sample performance of the estimators is
examined on a simulation study in Section 4 and the method is applied on a
real insurance data set in Section 5. Section 6 concludes and offers some per-
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spective on future work. Proofs of all results and additional simulation results
are deferred to an online supplementary material document.

2. Extreme Wang DRMs

It shall be said in all what follows that a function g : [0, 1]→ [0, 1] is a distortion
function if it is nondecreasing and right-continuous, with g(0) = 0 and g(1) = 1.
Let X be a positive random variable with cumulative distribution function F .
The Wang distortion risk measure (DRM) of X with distortion function g is
(Wang, 1996):

Rg(X) :=

∫ ∞
0

g(1− F (x))dx.

An alternative, easily interpretable expression of Rg(X) is actually available,
and it shall be used extensively in what follows. Denote by q the quantile
function of X, namely q(α) = inf{x ≥ 0 |F (x) ≥ α} for all α ∈ (0, 1). In
other words, the function q is the left-continuous inverse of F . Let moreover
m = inf{α ∈ [0, 1] | g(α) > 0} and M = sup{α ∈ [0, 1] | g(α) < 1}, and assume
that F is strictly increasing on V ∩ (0,∞), with V an open interval containing
[q(1−M), q(1 −m)]. Noticing that F (x) = inf{α ∈ (0, 1) | q(α) > x} and thus
F is the right-continuous inverse of q, a classical change-of-variables formula
and an integration by parts then entail that Rg(X), provided it is finite, can be
written as

Rg(X) =

∫ 1

0

g(α)dq(1− α) =

∫ 1

0

q(1− α)dg(α).

A Wang DRM is thus a Lebesgue-Stieltjes weighted version of the expectation of
the random variable X, the weighting scheme being given by the measure dg(·).
The above formula is actually true when g is continuous, with no condition at
all on the distribution of X; when g is absolutely continuous, the weight is given
by the Lebesgue derivative g′ of g. Specific examples include

• the quantile (or Value-at-Risk) at level β for g(x) = I{x ≥ 1− β}, with
I{·} being the indicator function, in which case dg(·) is actually the Dirac
measure at 1− β;

• the Tail-Value-at-Risk TVaR(β) in the worst 100(1−β)% cases, namely the
average of all quantiles exceeding the quantile q(β), for g(x) = min(x/(1−
β), 1) and dg(·) being the Lebesgue measure on [0, 1− β] up to a positive
constant.

For more examples of DRMs, see Table 1 in El Methni and Stupfler (2017).

While the family of Wang DRMs of X already gives more information than a
finite number of its quantiles, yet more information may be recovered by con-
sidering Wang DRMs of functions of X. More precisely, if h : (0,∞)→ (0,∞) is
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a strictly increasing, continuously differentiable function then, under the afore-
mentioned regularity conditions, the Wang DRM of h(X) with distortion func-
tion g is

Rg(h(X)) =

∫ 1

0

h ◦ q(1− α)dg(α).

Since, when F is continuous, the Conditional Tail Moment (CTM) of order a of
X (see El Methni et al., 2014) is

E(Xa|X > q(β)) =
1

1− β

∫ 1−β

0

[q(1− α)]adα,

the CTM of order a may therefore be obtained by choosing g(x) = min(x/(1−
β), 1), β ∈ (0, 1) and h(x) = xa, with a > 0, and so may any risk measure
obtained by combinations of CTMs; we refer the reader to Table 2 in El Methni
and Stupfler (2017) for further examples.

The idea developed in El Methni and Stupfler (2017) in order to obtain Wang
DRMs of the extremes of X is to consider

Rg,β(h(X)) :=

∫ 1

0

h ◦ q(1− (1− β)s)dg(s).

A similar, if slightly different, idea is Yang (2015), while a construction adapted
to stop-loss risk measures is Vandewalle and Beirlant (2006). In the remainder
of this paper, it is assumed that the quantile function q of X is continuous and
strictly increasing in a neighbourhood of infinity; it can then be shown (see
Proposition 1 in El Methni and Stupfler, 2017) that Rg,β(h(X)) is actually, for

β large enough, the Wang DRM Rg of h(Xβ), where Xβ
d
= X|X > q(β). In

other words, Rg,β(h(X)) is the Wang DRM of h(X) given that X lies above a
(high) level. Using this construction, it is very easy to recover several extreme
parameters such as an extreme quantile/Value-at-Risk, an extreme Tail-Value-
at-Risk or extreme versions of the CTMs.

An important question is then to consider the estimation of such extreme Wang
DRMs. An idea to tackle this problem is that of El Methni and Stupfler (2017):
consider a sample of independent random variables (X1, . . . , Xn) having cumula-
tive distribution function F and (βn) a nondecreasing sequence of real numbers

belonging to (0, 1) which converges to 1. Moreover, denote by F̂n the empirical
cumulative distribution function related to this sample and by q̂n the related
empirical quantile function:

F̂n(x) =
1

n

n∑
i=1

I{Xi ≤ x} and q̂n(α) = inf{t ∈ R | F̂n(t) ≥ α} = Xdnαe,n,

in which X1,n ≤ · · · ≤ Xn,n are the order statistics of the sample (X1, . . . , Xn)
and d·e denotes the ceiling function. A first step is to estimate the Wang DRM
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Rg,βn(h(X)) by its empirical, functional plug-in counterpart:

R̂PL
g,βn

(h(X)) :=

∫ 1

0

h ◦ q̂n(1− (1− βn)s)dg(s) =

∫ 1

0

h(Xdn(1−(1−βn)s)e,n)dg(s).

When h is a power function, which is enough to recover all Wang DRMs as well
as the class of Conditional Tail Moments, this estimator, which shall be referred
to as the PL estimator hereafter, is consistent and asymptotically normal when
(βn) is an intermediate sequence, namely n(1 − βn) → ∞ as n → ∞, within
an extreme value framework which will be introduced shortly (see El Methni
and Stupfler, 2017). This is a usual and well-understood restriction in extreme
value theory: to estimate the Wang DRM above level q(βn) by an empirical
estimator in a consistent fashion, then q(βn) should be asymptotically within
the range of the data, or equivalently, there should be a growing number of data
points above q(βn) to ensure that its empirical estimator Xdnβne,n is relatively
consistent. The case when n(1−βn)→ λ <∞, corresponding to proper extreme
quantiles, is then handled by the classical extrapolation argument of Weissman
(1978).

3. Extreme Wang DRM estimation

3.1. Heavy tails, top order statistics and finite-sample variability

A problem with the use of the PL estimator in practice can arise when g is
strictly increasing in a left neighbourhood of 1, which is for instance the case
for the Tail-Value-at-Risk, Dual Power and Proportional Hazard risk measures
considered in El Methni and Stupfler (2017). In that case, the PL estimator
takes into account all the data above level Xdnβne,n in the sample; in any sam-
ple where some of the highest order statistics are far from their population
counterparts, this will result in inappropriate estimates. Such situations appear
regularly: suppose here that X has a Pareto distribution with parameter 1/γ,
i.e.

∀x ≥ 1, F (x) = 1− x−1/γ so that ∀α ∈ (0, 1), q(α) = (1− α)−γ .

The probability that the sample maximum Xn,n exceeds a multiple of its pop-
ulation counterpart, namely the quantile q(1− n−1), is then

P(Xn,n > Kq(1− n−1)) = 1−
[
1− P(X > Kq(1− n−1))

]n
= 1−

[
1− K−1/γ

n

]n
≈ 1− exp(−K−1/γ) for large enough n.

This result is, of course, linked to the fact that sample quantiles at extreme levels
do not estimate the corresponding true quantiles consistently; a related point
is that, sample-wise, the most extreme values tend not to give a fair picture of
the extremes of the underlying distribution (see e.g. Ghosh and Resnick, 2010).
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Carrying on with this example, it follows that in the case γ = 0.49, K = 3, and
n = 1000, the sample maximum is larger than 88.54, which is three times the
quantile at level 0.999, with probability approximately equal to 0.101. In this
sense, approximately 10% of samples feature at least one unusually high value.
Besides, as the above calculation shows, the probability that a sample features
one or several very large values increases as γ increases, i.e. as the tail gets
heavier. The influence of such values on extreme Wang DRM estimates should
of course not be underestimated. In the case of the Tail-Value-at-Risk, obtained
for g(s) = s, namely:

TVaR(β) = RId,β(X) =
1

1− β

∫ 1−β

0

q(1− α)dα =
(1− β)−γ

1− γ
,

a simulation study shows that, on 5000 replicates of a sample of 1000 indepen-
dent random copies of the aforementioned Pareto distribution conditioned on
the fact that the sample maximum is larger than 88.54, the relative bias of the
Tail-Value-at-Risk PL estimator,

R̂PL
Id,β(X) =

1

1− β

∫ 1−β

0

q̂n(1− α)dα =
1

n(1− β)

n(1−β)∑
j=1

Xn−j+1,n,

at level β = 0.95 is approximately 0.389. In other words, the PL estimator is,
on such samples, on average a little less than 40% higher than it should be.
Of course, this could have been expected since it is straightforward to see that
the above PL estimator is adversely affected by high values of Xn,n (just as the
sample mean is). The concern here is rather that problematic cases, through the
apparition of very high values of the sample maximum and more generally of the
highest order statistics, appear more and more frequently as γ increases, even
when γ is such that the estimator R̂PL

Id,β(X) is asymptotically Gaussian (which is
the case here for the extreme Tail-Value-at-Risk estimator since γ = 0.49 < 1/2,
see Theorem 2 in El Methni and Stupfler, 2017). This should therefore mean
increased variability of the estimates as γ gets larger and indeed, at the finite-
sample level, MSEs become higher (up to unsustainably high levels) when the
tail of X gets heavier, as the simulation study in El Methni and Stupfler (2017)
tends to show. Our first objective is to introduce estimators which deal with
this variability issue.

3.2. First step of improvement: reducing finite-sample variability

A simple idea to tackle the problem highlighted in Section 3.1 is to delete the
highest problematic values altogether, namely to trim the PL estimator, by
considering the statistic

R̂Trim
g,βn,tn(h(X)) =

∫ 1

0

h ◦ q̂n(tn − (tn − βn)s)dg(s),
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where (tn) is a sequence of trimming levels, i.e. a sequence such that βn < tn ≤
1. This is the empirical estimator of

RTrim
g,βn,tn(h(X)) =

∫ 1

0

h ◦ q(tn − (tn − βn)s)dg(s),

which in many cases is actually the Wang DRM of h(X) given that X lies
between q(βn) and q(tn), as the following result shows.

Proposition 1. Let β ∈ (0, 1) and t ∈ (0, 1] such that t > β. If q is continuous
and strictly increasing on an open interval containing [β, 1) then:

RTrim
g,β,t(h(X)) = Rg(h(XTrim

β,t )) with XTrim
β,t

d
= X|X ∈ [q(β), q(t)].

In practice, it is very often the case that ntn and n(tn − βn) are positive in-
tegers (see Sections 4 and 5). In that particular case, the trimmed estimator

R̂Trim
g,βn,tn

(h(X)), which we shall call the Trim-PL estimator, can be conveniently
rewritten as a generalised L-statistic:

R̂Trim
g,βn,tn(h(X))

=

n(tn−βn)∑
i=1

h(Xntn−i+1,n)

∫ 1

0

I{xi−1,n(βn, tn) ≤ s < xi,n(βn, tn)}dg(s)

+ h(Xnβn,n)

[
g(1)− lim

s→1
s<1

g(s)

]
with xi,n(βn, tn) =

i

n(tn − βn)

=

n(tn−βn)∑
i=1

h(Xntn−i+1,n)

 lim
s→xi,n(βn,tn)
s<xi,n(βn,tn)

g(s)− lim
s→xi−1,n(βn,tn)
s<xi−1,n(βn,tn)

g(s)


+ h(Xnβn,n)

[
1− lim

s→1
s<1

g(s)

]
.

When the function g is moreover continuous on [0, 1], this can be further sim-
plified as

R̂Trim
g,βn,tn(h(X))

= h(Xnβn+1,n) +

n(tn−βn)−1∑
i=1

g

(
i

n(tn − βn)

)
[h(Xntn−i+1,n)− h(Xntn−i,n)].

It should thus be clear at this stage that the Trim-PL estimator R̂Trim
g,βn,tn

(h(X))

is both the empirical counterpart of RTrim
g,βn,tn

(h(X)) and a trimmed estimator
of Rg,βn

(h(X)) in the sense that the top order statistics Xntn+1,n, . . . , Xn,n are
discarded for the estimation. This amounts to a trimming percentage equal to
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100(1−tn)% in the highest values of the sample. The intermediate PL estimator
of El Methni and Stupfler (2017) is recovered for tn = 1.

Although the idea of trimming seems appealing because it is expected to curb
the estimator’s variability, it may not be the best method available in that it
effectively reduces the available sample size. The overall bias of the estima-
tor, meanwhile, would be negatively affected as well, since despite their high
variability, the highest order statistics in the sample are those who carry the
least bias about the extremes of the underlying distribution. One could try re-
ducing the loss of information that trimming entails by winsorising the estima-
tor R̂PL

g,βn
(h(X)) instead, which amounts to considering the following so-called

Wins-PL estimator:

R̂Wins
g,βn,tn(h(X)) =

∫ 1

0

h ◦ q̂n(min(tn, 1− (1− βn)s))dg(s).

When ntn and n(tn − βn) are positive integers it is easy to see that, contrary
to the trimmed estimator, the winsorised estimator replaces the data points
Xntn+1,n, . . . , Xn,n by Xntn,n. This estimator can of course also be written as
a generalised L-statistic, viz.

R̂Wins
g,βn,tn(h(X))

= h(Xntn,n)

∫ 1

0

I{0 ≤ s < xn(1−tn),n(βn, 1)}dg(s)

+

n(1−βn)∑
i=n(1−tn)+1

h(Xn−i+1,n)

∫ 1

0

I{xi−1,n(βn, 1) ≤ s < xi,n(βn, 1)}dg(s)

+ h(Xnβn,n)

[
g(1)− lim

s→1
s<1

g(s)

]

=

n(1−βn)∑
i=n(1−tn)+1

h(Xn−i+1,n)

 lim
s→xi,n(βn,1)
s<xi,n(βn,1)

g(s)− lim
s→xi−1,n(βn,1)
s<xi−1,n(βn,1)

g(s)


+ h(Xnβn,n)

[
g(1)− lim

s→1
s<1

g(s)

]
+ h(Xntn,n) lim

s→xn(1−tn),n(βn,1)

s<xn(1−tn),n(βn,1)

g(s).

If g is continuous on [0, 1], this reads:

R̂Wins
g,βn,tn(h(X))

= h(Xnβn+1,n) +

n(1−βn)−1∑
i=n(1−tn)+1

g

(
i

n(1− βn)

)
[h(Xn−i+1,n)− h(Xn−i,n)].

Like the Trim-PL estimator, the Wins-PL estimator is a direct empirical esti-
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mator, of the quantity

RWins
g,βn,tn(h(X)) =

∫ 1

0

h ◦ q(min(tn, 1− (1− βn)s))dg(s),

which is actually essentially the Wang DRM of h(X) given that X is larger than
q(βn) and clipped above level q(tn):

Proposition 2. Let β ∈ (0, 1) and t ∈ (0, 1] such that t > β. If q is continuous
and strictly increasing on an open interval containing [β, 1) then:

RWins
g,β,t (h(X)) = Rg(h(XWins

β,t ))

with XWins
β,t

d
= XI{q(β) ≤ X < q(t)}+ q(t)I{X ≥ q(t)}.

The focus of this paper is to study the merits of trimming/winsorising in the
context of the estimation of extreme Wang DRMs, both theoretically and at the
finite-sample level. While it would be straightforward to obtain the asymptotic
properties of both estimators for fixed orders β and t through L-statistic tech-
niques (see e.g. Jones and Zitikis, 2003), a difficulty here lies in the fact that
β = βn ↑ 1. As a consequence, theoretical developments involve knowing the
weak behaviour of the quantile process s 7→ q̂n(s) on [βn, 1]. The crucial tool is a
corollary of the powerful distributional approximation stated in Theorem 2.1 of
Drees (1998), relating this tail quantile process to a standard Brownian motion
up to a bias term. The relevant framework for this result is that of regular vari-
ation: a function f is said to be regularly varying at infinity with index b ∈ R
if f is nonnegative on the half-line (0,∞) and for any x > 0, f(tx)/f(t) → xb

as t → ∞. In this paper, the distribution of X is heavy-tailed, namely, 1 − F
is regularly varying with index −1/γ < 0, the parameter γ being the so-called
tail index of the cumulative distribution function F . We shall actually use an
equivalent assumption on the left-continuous inverse U of 1/(1−F ), defined for
y ≥ 1 by U(y) = inf{t ∈ R | 1/(1− F (t)) ≥ y} = q(1− y−1), and called the tail
quantile function. More precisely, the main hypothesis is that the tail quantile
function is regularly varying with index γ and satisfies a second-order condition
(see de Haan and Ferreira, 2006):

Condition C2(γ, ρ,A): for any x > 0, we have

lim
t→∞

1

A(t)

(
U(tx)

U(t)
− xγ

)
= xγ

xρ − 1

ρ
,

with γ > 0, ρ ≤ 0 and A is a Borel measurable function which converges to 0
and has constant sign. When ρ = 0, the right-hand side is to be read as xγ log x.

In condition C2(γ, ρ,A), the function |A| must be regularly varying at infin-
ity with index ρ (see Theorem 2.3.3 in de Haan and Ferreira, 2006). Such
a condition is classical when studying estimators of extreme parameters of a
heavy-tailed distribution, because it makes it possible, through the function A,
to measure the deviation of the distribution of the random variable of interest

11



from the Pareto distribution, the latter being the simplest case of a heavy-tailed
distribution. The function A thus typically appears in bias conditions. Most
standard examples of heavy-tailed distributions used in extreme value theory
satisfy assumption C2(γ, ρ,A), see e.g. the examples p.59 in Beirlant et al. (2004)
and pp.61–62 in de Haan and Ferreira (2006).

Our next step is to highlight that the Trim-PL and Wins-PL estimators are
actually part of a common class of estimators. For 0 < β < t ≤ 1, let F(β, t)
be the set of those nonincreasing Borel measurable functions ψ taking values in
[0, 1] such that

ψ(0) = t, ψ(1) = β and ∀s ∈ [0, 1], 0 ≤ 1− (1− β)s− ψ(s) ≤ 1− t.

Let now (ψn) be a sequence of functions such that for all n, ψn ∈ F(βn, tn),
and set

Rg,βn
(h(X);ψn) :=

∫ 1

0

h ◦ q ◦ ψn(s)dg(s),

whose empirical counterpart is the estimator

R̂g,βn(h(X);ψn) =

∫ 1

0

h ◦ q̂n ◦ ψn(s)dg(s) =

∫ 1

0

h(Xdnψn(s)e,n)dg(s).

All estimators in this class only take into account data points among the Xi,n,
dnβne ≤ i ≤ dntne, and can therefore be considered robust with respect to
change in the most extreme values in the sample when n(1− tn) ≥ 1. The class

of estimators R̂g,βn(h(X);ψn) is a reasonable, unifying framework for our pur-
pose: indeed, particular examples of the sequence (ψn) are s 7→ tn − (tn − βn)s
which appears as the argument of the empirical quantile function in the Trim-PL
estimator, and s 7→ min(tn, 1− (1−βn)s) giving rise to the Wins-PL estimator.
These two examples should be those coming to mind when reading the asymp-
totic results below. Finally, the case ψn(s) = 1−(1−βn)s, corresponding to the
original PL estimator of El Methni and Stupfler (2017), is recovered by setting
tn = 1.

At the technical level, because ψn(s) ≈ 1 − (1 − βn)s in a certain sense when
tn is close enough to 1, the quantity Rg,βn

(h(X);ψn) should be expected to

be close to Rg,βn
(h(X)) and therefore, R̂g,βn

(h(X);ψn) should be thought to
be a consistent estimator of Rg,βn(h(X)). The first result below shows that

R̂g,βn(h(X);ψn) is a relatively consistent and
√
n(1− βn)−asymptotically nor-

mal estimator of Rg,βn(h(X)) when h is a power function, under suitable con-
ditions on βn and tn.

Theorem 1. Assume that U satisfies condition C2(γ, ρ,A). Assume further
that (ψn) is a sequence of functions such that for all n, ψn ∈ F(βn, tn), with
0 < βn < tn ≤ 1, βn → 1, n(1− βn)→∞ and (1− tn)/(1− βn)→ 0.

(i) Pick a distortion function g and a > 0, and assume that for some η > 0,
we have ∫ 1

0

s−aγ−ηdg(s) <∞.
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If furthermore
√
n(1− βn)A((1− βn)−1) = O(1) then:

R̂g,βn(Xa;ψn)

Rg,βn
(Xa)

− 1
P−→ 0.

(ii) Pick distortion functions g1, . . . , gd and a1, . . . , ad > 0, and assume that
for some η > 0, we have

∀j ∈ {1, . . . , d},
∫ 1

0

s−ajγ−1/2−ηdgj(s) <∞,

and
√
n(1− tn)

(
1− tn
1− βn

)ε
→ 0,

for some ε ∈ (0,min(1/2, η)). If furthermore√
n(1− βn)A((1− βn)−1)→ λ ∈ R,

then: √
n(1− βn)

(
R̂gj ,βn

(Xaj ;ψn)

Rgj ,βn(Xaj )
− 1

)
1≤j≤d

d−→ N (0, V ),

with V being the d× d matrix whose (i, j)−th entry is

Vi,j = aiajγ
2

∫
[0,1]2

min(s, t)s−aiγ−1t−ajγ−1dgi(s)dgj(t)∫ 1

0
s−aiγdgi(s)

∫ 1

0
t−ajγdgj(t)

.

A particularly appealing consequence of Theorem 1 is the consistency of the
estimators R̂g,βn

(Xa;ψn) under mild conditions. Especially, the integrability

condition
∫ 1

0
s−aγ−ηdg(s) < ∞ needed to ensure consistency is weaker than

the integrability condition
∫ 1

0
s−aγ−1/2−ηdg(s) <∞ required in El Methni and

Stupfler (2017). Broadly speaking, the former condition is essentially the one
required for the existence of the Wang DRM Rg,βn

(Xa) to be estimated, while
the latter is needed to write a weak approximation of the estimator by an
integral of a standard Brownian motion. We may in fact choose tn = 1, for
which the consistency of the PL estimator of El Methni and Stupfler (2017),
which is not shown therein, is obtained; let us point out that the proof of
Theorem 1(i) consists of two steps, the first one being to prove that any estimator

R̂g,βn(Xa;ψn) is asymptotically equivalent to another estimator in this class for
which n(1 − tn) ≥ 1, and the second one being to show the consistency of the
latter estimator. In particular, the consistency of proper trimmed/winsorised
estimators can be used together with an approximation argument to obtain the
consistency of the estimator using all the data above a high threshold.

A second property of the estimators R̂g,βn
(Xa;ψn) is that they share the same

limiting Gaussian distribution under the classical bias condition√
n(1− βn)A((1− βn)−1)→ λ ∈ R,
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and provided hypothesis
√
n(1− tn)[(1− tn)/(1− βn)]ε → 0, relating the order

tn to the intermediate level βn, holds true. This condition implies that tn should
converge to 1 quickly enough, or, in other words, that not too many values should
be deleted from the sample for asymptotic unbiasedness to hold. The necessity
of such a condition appears in the earlier works of Csörgő et al. (1986a) and
Csörgő et al. (1986b) in the context of mean estimation by the trimmed sample
mean: in the former paper, it is shown that discarding a fixed number of order
statistics does not create asymptotic bias, while the latter paper states that this
may not be true for more severe trimmings. It should be noted that the present
assumption is clearly satisfied for tn = 1− c/n, with c being a fixed nonnegative
integer, corresponding to the case when the top c order statistics are discarded
and the trimming/winsorising percentage across the whole sample is 100c/n%.
Finally, taking tn = 1 in Theorem 1(ii) yields the original asymptotic normality
result for the PL estimator in El Methni and Stupfler (2017).

As noted therein, the integrability conditions of Theorem 1 can be difficult to
grasp. They are, however, determined by the behaviour of g in a neighbourhood
of 0, which motivates the introduction of the classes of functions

Eb[0, 1] :=

{
g : [0, 1]→ R | g′ continuous on (0, 1) and lim sup

s↓0
s−b|g′(s)| <∞

}
.

The classes Eb[0, 1], b > −1 can be considered as the spaces of those continuously
differentiable functions g on (0, 1) whose first derivative behaves like a power
of s in a neighbourhood of 0. Especially, any polynomial function belongs to
E0[0, 1], and the Proportional Hazard (Wang, 1995) distortion function g(s) =
sα, α ∈ (0, 1) belongs to Eα−1[0, 1]. The next result sums up what can be said
when g belongs to such a space.

Corollary 1. Assume that U satisfies condition C2(γ, ρ,A). Assume further
that (ψn) is a sequence of functions such that for all n, ψn ∈ F(βn, tn), with
0 < βn < tn ≤ 1, βn → 1, n(1− βn)→∞ and (1− tn)/(1− βn)→ 0.

(i) Pick a distortion function g and a > 0. Assume that g belongs to some
Eb[0, 1] with b > −1. If γ < (b+1)/a and

√
n(1− βn)A((1−βn)−1) = O(1)

then:
R̂g,βn

(Xa;ψn)

Rg,βn
(Xa)

− 1
P−→ 0.

(ii) Pick distortion functions g1, . . . , gd and a1, . . . , ad > 0. Assume there
are b1, . . . , bd > −1 such that gj ∈ Ebj [0, 1] for all j ∈ {1, . . . , d}. If
γ < (2bj + 1)/(2aj) for all j ∈ {1, . . . , d} and

√
n(1− βn)A((1− βn)−1)→ λ ∈ R and

√
n(1− tn)

(
1− tn
1− βn

)ε
→ 0,
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for some ε ∈ (0,min(0, b1 − a1γ, . . . , bd − adγ) + 1/2) then:

√
n(1− βn)

(
R̂gj ,βn

(Xaj ;ψn)

Rgj ,βn(Xaj )
− 1

)
1≤j≤d

d−→ N (0, V ),

with V as in Theorem 1.

As previously noted, the integrability condition for the asymptotic normality
of our class of estimators is that of El Methni and Stupfler (2017), which was
already obtained by El Methni et al. (2014) in the case of the CTM of order a
(for which b = 0). In this case, Corollary 1 shows that the condition γ < 1/a,
which is exactly the condition needed to ensure that the CTM of order a exists,
is sufficient to make sure that the estimator R̂g,βn

(Xa;ψn) is consistent. For
instance, in the case a = 1, corresponding to the estimation of the extreme
Tail-Value-at-Risk, this condition is γ < 1, which is exactly the condition re-
quired for the existence of a finite mean, instead of the more restrictive condition
γ < 1/2 which would be required for the existence of a finite second moment.
By contrast, El Methni et al. (2014), working in a model with random covari-
ates, always require γ < 1/(2a) in their asymptotic results. They do, however,
only assume that a first-order condition holds instead of second-order condition
C2(γ, ρ,A), which is made possible since their CTM estimator can be written as
a sum of independent and identically distributed random variables and is thus
much easier to handle than the generalised L-statistic R̂g,βn

(Xa;ψn).

3.3. Second step of improvement: finite-sample bias correction

The estimators introduced above have been shown to be asymptotically normal
estimators of Wang DRMs. It should be noted that on finite-sample situations,
such estimators can be expected to carry some (negative) bias, all the more
so as the trimming/winsorising order tn increases. An intuitive justification

for this behaviour is that the estimator R̂g,βn
(Xa;ψn) is actually the empirical

counterpart of Rg,βn
(Xa;ψn), which is in general different from, and especially

less than, the target DRM Rg,βn(Xa). For instance, in the case of extreme
Tail-Value-at-Risk estimation for the Pareto distribution with tail index γ, then
the Tail-Value-at-Risk of X in the worst 100(1− βn)% cases is

Rg,βn
(X) =

(1− βn)−γ

1− γ
,

see Section 3.1. By contrast, the trimmed Tail-Value-at-Risk given that X lies
between levels q(βn) and q(tn) is obtained for ψn(s) = tn − (tn − βn)s and is

RTrim
g,βn,tn(X) =

∫ 1

0

q(tn − (tn − βn)s)dg(s) =

∫ 1

0

[1− tn + (tn − βn)s]−γds

=
(1− βn)1−γ − (1− tn)1−γ

(1− γ)(tn − βn)
.
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Rewriting this as

RTrim
g,βn,tn(X) = Rg,βn

(X)

{
(1− βn)1−γ − (1− tn)1−γ

(1− βn)−γ(tn − βn)

}
,

results in an expression of RTrim
g,βn,tn

(X) as Rg,βn
(X) multiplied by a quantity

depending on βn, tn and γ and smaller than 1. In the case n = 1000, βn = 0.9,
tn = 0.99 and γ = 1/2, namely the top 100 observations are selected and
the top 10 observations among them are eliminated, the reduction factor is
actually 0.760, i.e. the expected relative bias is −0.240. When the number of
observations removed is halved (tn = 0.995) this factor becomes 0.817 for an
expected relative bias of −0.183. The smallest trimming percentage, obtained
when tn = 0.999, for removal of the sample maximum only, results in a reduction
factor of 0.909, which is still an expected relative bias of −0.091.

To retain the reduction in variability brought by the estimator R̂g,βn
(X;ψn)

and at the same time obtain an estimator with acceptable finite-sample bias,
we design a new estimator based on the previous calculation. More precisely, in
the case of Tail-Value-at-Risk estimation, estimating γ by a consistent estimator
γ̂n and plugging in the previous estimator R̂g,βn(X;ψn) = R̂Trim

g,βn,tn
(X) in the

left-hand side of the above equality gives the corrected estimator

R̃g,βn
(X;ψn) = R̂g,βn

(X;ψn)

{
(1− βn)1−γ̂n − (1− tn)1−γ̂n

(1− βn)−γ̂n(tn − βn)

}−1
.

Note that the correction factor is in fact{
(1− βn)1−γ̂n − (1− tn)1−γ̂n

(1− βn)−γ̂n(tn − βn)

}−1
=

Rg,βn(Yγ̂n)

Rg,βn
(Yγ̂n ;ψn)

,

where Yγ has a Pareto distribution with tail index γ. There is an abundant
literature on consistent estimation of the parameter γ: we refer, among others,
to the very popular Hill estimator (Hill, 1975), the Pickands estimator (Pickands,
1975), the maximum likelihood estimator (Smith, 1987 and Drees et al., 2004)
and probability-weighted moment estimators (Hosking et al., 1985 and Diebolt
et al., 2007). A comprehensive review is contained in Section 5 of Gomes and
Guillou (2015).

Of course, in practice the underlying distribution of X is not known, but in
many cases the Pareto distribution (or a multiple of it) still provides a decent
approximation for X in its right tail. It can thus be expected that in a wide
range of situations and for n large enough,

Rg,βn
(Xa) = Rg,βn

(Xa;ψn)
Rg,βn

(Xa)

Rg,βn(Xa;ψn)
≈ Rg,βn

(Xa;ψn)
Rg,βn

(Yaγ)

Rg,βn(Yaγ ;ψn)
.
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This motivates the following class of corrected estimators:

R̃g,βn
(Xa;ψn) = R̂g,βn

(Xa;ψn)
Rg,βn(Yaγ̂n)

Rg,βn
(Yaγ̂n ;ψn)

= R̂g,βn
(Xa;ψn)

∫ 1

0
[(1− βn)s]−aγ̂ndg(s)∫ 1

0
[1− ψn(s)]−aγ̂ndg(s)

.

This estimator should be seen as the result of a two-stage procedure:

• first, compute an estimator of the target extreme Wang DRM using a
trimmed/winsorised sample, thus reducing variability;

• then, use what can be found on the tail behaviour of the sample to shift
the previous estimate back to an essentially bias-neutral position.

Let us emphasise that this bias-correction procedure is a simple one, much
closer in spirit to the construction of the corrected sample variance estimator
when the population mean is unknown than to bias-reduction methods based
on asymptotic results in a second-order extreme value framework, of which
an excellent summary is Section 5.3 in Gomes and Guillou (2015) again. In
particular, the multiplicative correction factor introduced here only depends on
the tail index γ, but not on the second-order parameter ρ. Finally, note that
the correction factor might depend on the top values in the sample, but can
only actually do so through the estimator γ̂n. For instance, the Hill estimator
of γ,

γ̂βn =
1

dn(1− βn)e

dn(1−βn)e∑
i=1

log (Xn−i+1,n)− log
(
Xn−dn(1−βn)e,n

)
,

of which a bias-reduced version is considered in the simulation study below,
depends on the top values only through their logarithms, which sharply reduces
their contribution to the variability of our final estimator.

The next result shows that any member of this new class of corrected estimators
shares the asymptotic properties of its uncorrected version. Our preference shall
thus be driven by finite-sample considerations.

Theorem 2. Assume that U satisfies condition C2(γ, ρ,A). Assume further
that (ψn) is a sequence of functions such that for all n, ψn ∈ F(βn, tn), with
0 < βn < tn ≤ 1, βn → 1, n(1− βn)→∞ and (1− tn)/(1− βn)→ 0.

(i) Pick a distortion function g and a > 0, and assume that for some η > 0,
we have ∫ 1

0

s−aγ−ηdg(s) <∞.
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If furthermore
√
n(1− βn)A((1 − βn)−1) = O(1) then, provided γ̂n is a

consistent estimator of γ, it holds that:

R̃g,βn(Xa;ψn)

R̂g,βn
(Xa;ψn)

− 1 and therefore
R̃g,βn(Xa;ψn)

Rg,βn
(Xa)

− 1
P−→ 0.

(ii) Pick distortion functions g1, . . . , gd and a1, . . . , ad > 0, and assume that
for some η > 0, we have

∀j ∈ {1, . . . , d},
∫ 1

0

s−ajγ−1/2−ηdgj(s) <∞,

and
√
n(1− tn)

(
1− tn
1− βn

)ε
→ 0,

for some ε ∈ (0,min(1/2, η)). If furthermore√
n(1− βn)A((1− βn)−1)→ λ ∈ R and

√
n(1− βn)(γ̂n − γ) = OP(1),

then:

∀j ∈ {1, . . . , d},
√
n(1− βn)

(
R̃gj ,βn

(Xaj ;ψn)

R̂gj ,βn
(Xaj ;ψn)

− 1

)
P−→ 0,

and therefore

√
n(1− βn)

(
R̃gj ,βn(Xaj ;ψn)

Rgj ,βn
(Xaj )

− 1

)
1≤j≤d

d−→ N (0, V ),

with V as in Theorem 1.

It should be noted here that the requirement
√
n(1− βn)(γ̂n − γ) = OP(1) is

hardly a restrictive one, for all the aforementioned tail index estimators sat-
isfy such a property in their respective domains of validity under second-order
condition C2(γ, ρ,A), see Sections 3 and 4 in de Haan and Ferreira (2006).

As we mentioned at the end of Section 2, the empirical estimators developed
so far only work provided βn is an intermediate level, namely n(1 − βn) → ∞.
The next and final step is to design an estimator working for arbitrarily extreme
levels as well.

3.4. Final step: estimation in the extreme case

A consistent estimator of an arbitrarily extreme risk measure is now designed
by using an extrapolation property of the tail quantile function U . Let (δn) be
a sequence converging to 1 such that (1 − δn)/(1 − βn) converges to a positive
and finite limit, and remark that for any s ∈ (0, 1) and a > 0 it holds that:

[q(1− (1− δn)s)]a =

(
1− βn
1− δn

)aγ
[q(1− (1− βn)s)]a(1 + o(1)),

18



as n → ∞, as a consequence of the regular variation property of U(y) = q(1 −
y−1). Integrating the above relationship with respect to the distortion measure
dg yields:

Rg,δn(Xa) =

(
1− βn
1− δn

)aγ
Rg,βn

(Xa)(1 + o(1)).

To put it differently, the extreme risk measure Rg,δn(Xa) is essentially obtained
by multiplying the intermediate risk measure Rg,βn

(Xa) by an extrapolation
factor depending on the unknown tail index γ. To estimate the left-hand side,
suppose then that n(1 − δn) → c < ∞, take a sequence (βn) such that n(1 −
βn)→∞ and define

R̃Wg,δn(Xa;ψn) :=

(
1− βn
1− δn

)aγ̂n
R̃g,βn(Xa;ψn),

where γ̂n is the consistent estimator of γ appearing in R̃g,βn
(Xa;ψn). This is a

Weissman-type estimator of Rg,δn(Xa) (see Weissman, 1978, for the estimation
of extreme quantiles). Weissman’s estimator is actually recovered for a = 1,
tn = 1 and g(s) = 0 if s < 1, and the extrapolated PL estimator of El Methni
and Stupfler (2017) is obtained for tn = 1.

The third and final main result examines the asymptotic distribution of this
class of extrapolated estimators.

Theorem 3. Assume that U satisfies condition C2(γ, ρ,A), with ρ < 0. Assume
further that (ψn) is a sequence of functions such that for all n, ψn ∈ F(βn, tn),
with 0 < βn < tn ≤ 1, βn → 1, n(1 − βn) → ∞ and (1 − tn)/(1 − βn) → 0;
let finally a sequence δn → 1 be such that (1 − δn)/(1 − βn) → 0 and log[(1 −
βn)/(1 − δn)]/

√
n(1− βn) → 0. Pick now distortion functions g1, . . . , gd and

a1, . . . , ad > 0, and assume that for some η > 0, we have

∀j ∈ {1, . . . , d},
∫ 1

0

s−ajγ−1/2−ηdgj(s) <∞ and
√
n(1− tn)

(
1− tn
1− βn

)ε
→ 0,

for some ε ∈ (0,min(1/2, η)). If furthermore√
n(1− βn)A((1− βn)−1)→ λ ∈ R and

√
n(1− βn)(γ̂n − γ)

d−→ ξ,

then: √
n(1− βn)

log([1− βn]/[1− δn])

(
R̃Wgj ,δn(Xaj ;ψn)

Rgj ,δn(Xaj )
− 1

)
1≤j≤d

d−→

 a1ξ
...
adξ

 .

Again, in the case tn = 1, we recover the asymptotic normality result of
El Methni and Stupfler (2017) for the class of extrapolated PL estimators. Our
robust extreme risk measure estimators have therefore got the same asymptotic
distribution as the original PL estimator, under the same technical conditions.
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It can thus be concluded that considering trimmed/winsorised estimators results
in a generalisation of the existing theory of estimators of extreme Wang DRMs.
The next section shall show that this also results in improved finite-sample
performance when the underlying distribution has a very heavy tail.

4. Simulation study

The finite-sample performance of our estimators is illustrated on the following
simulation study, where a pair of heavy-tailed distributions and three distortion
functions g are considered. The distributions studied are:

• the Fréchet distribution: F (x) = exp(−x−1/γ), x > 0;

• the Burr distribution: F (x) = 1− (1 + x−ρ/γ)1/ρ, x > 0 (here ρ < 0).

These distributions have tail index γ; meanwhile, their respective second-order
parameters are −1 and ρ, see e.g. Beirlant et al. (2004). We can therefore get an
idea of the influence of the parameters γ and ρ on the finite-sample behaviour of
an estimator using these two distributions. In the case of the Burr distribution,
we shall take ρ ∈ {−2,−2/3}.

The following distortion functions are considered:

• the Tail-Value-at-Risk (TVaR) function g(x) = x which weights all quan-
tiles equally;

• the Dual Power (DP) function g(x) = 1− (1−x)1/α with α ∈ (0, 1), which
gives higher weight to large quantiles. When c := 1/α is a positive integer,
the related DRM is the expectation of max(X1, . . . , Xc) for independent
copies X1, . . . , Xc of X;

• the Proportional Hazard (PH) transform function g(x) = xα with α ∈
(0, 1), which gives higher weight to large quantiles and is such that g′(s) ↑
∞ as s ↓ 0. When c := 1/α is a positive integer, the related DRM is the
expectation of a random variable Y whose distribution is such that X has
the same distribution as min(Y1, . . . , Yc) for independent copies Y1, . . . , Yc
of Y . See also Cherny and Madan (2009).

Each risk measure is estimated, at an extreme level δn, using the extrapolated
estimator R̃Wg,δn(X;ψn). The following choices of ψn are considered:

• ψn(s) = 1− (1− βn)s, corresponding to the PL estimator;

• ψn(s) = tn−(tn−βn)s, corresponding to the corrected Trim-PL estimator,
which we denote by CTrim-PL;

• ψn(s) = min(tn, 1 − (1 − βn)s), corresponding to the corrected Wins-PL
estimator, which we denote by CWins-PL.
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Because any of the studied estimators uses a preliminary estimation at level βn
where (βn) is some intermediate sequence, we first discuss the choice of this level.
As noted numerous times in the extreme value literature, this is a crucial step:
a value of βn too close to 1 increases the variance of the estimator dramatically,
while a value of βn too far from 1 results in biased estimates. An overview of
possible techniques is given in Section 5.4 of Gomes and Guillou (2015). Here
a data-driven criterion, based on the search for a stable part of the plot of a
tail index estimator and similar to that of El Methni and Stupfler (2017), is
used; see also Stupfler (2013), Gardes and Stupfler (2014) and Stupfler (2016)
for other implementations. We work with a bias-reduced version γ̂βn

of the Hill
estimator (Hill, 1975) suggested by Caeiro et al. (2005) (see also Gomes et al.,
2016), which shall also be ultimately used to estimate the parameter γ:

γ̂βn
= Hn(dn(1− βn)e)

(
1− B̂

1− ρ̂

(
n

dn(1− βn)e

)−ρ̂)
,

with Hn(k) =
1

k

k∑
i=1

log (Xn−i+1,n)− log (Xn−k,n) .

Here B̂ is an estimator of the parameter B such that the left-continuous inverse
U of 1/(1− F ) satisfies

U(z) = Czγ
(

1 +
γ

ρ
Bzρ + o(zρ)

)
as z →∞,

and ρ̂ is an estimator of the second-order parameter ρ. In particular, the ver-
sion of γ̂βn used in the present simulation study is the one implemented in the
function mop of the R package evt0 and discussed in Gomes et al. (2016). The
idea is now to detect the last stability region in the plot β 7→ γ̂β . Specifically:

• choose β0 > 0 and a window parameter h1 > 1/n;

• for β0 < β < 1 − h1, let I(β) = [β, β + h1] and compute the standard
deviation σ(β) of the set of estimates {γ̂b, b ∈ I(β)};

• if β 7→ σ(β) is monotonic, let βlm be β0 if it is increasing and 1− h1 if it
is decreasing;

• otherwise, denote by βlm the last value of β such that σ(β) is locally
minimal and its value is less than the average value of the function β 7→
σ(β);

• choose β∗ such that γ̂β∗ is the median of {γ̂b, b ∈ I(βlm)}. In particular,
our estimate of γ is γ̂β∗ .

Here this choice procedure is conducted with β0 = 0.5 and h1 = 0.1. Once
the parameter βn has been chosen as β∗, we can compute the extrapolated PL
estimator R̃Wg,δn(X|β∗) described in El Methni and Stupfler (2017).
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In order to compute the extrapolated CTrim-PL and CWins-PL estimators, the
truncation/winsorisation level tn should also be chosen, and this is done by a
stability region argument as well, which this time revolves around these extreme
risk measure estimators. Here, the dependence of ψ upon β and t is emphasised
by denoting it by ψ(β, t). The suggested choice procedure for t, given a function
ψ and the tuning parameter β∗, is the following:

• choose t0 > 0 and a window parameter h2 > 1/n;

• for t0 < t < 1 − h2, let J(t) = [t, t + h2] and compute the standard

deviation Σ(t) of the set of estimates {R̃Wg,δn(X;ψn(β∗, θ)), θ ∈ J(t)};

• if t 7→ Σ(t) is monotonic, let tlm be t0 if it is increasing and 1− h2 if it is
decreasing;

• otherwise, denote by tlm the last value of t such that Σ(t) is locally minimal
and its value is less than the average value of the function t 7→ Σ(t);

• choose t∗ such that R̃Wg,δn(X;ψn(β∗, t∗)) is the median of

{R̃Wg,δn(X;ψn(β∗, θ)), θ ∈ J(tlm)}.

In the present simulation study, this choice procedure is conducted with t0 =
0.95 and h2 = 0.01.

The idea is now to compare the performance of the PL estimator of El Methni
and Stupfler (2017) to that of the CTrim-PL and CWins-PL estimators, first
in the case of moderately heavy tails, when the PL estimator is known to have
reasonable theoretical and finite-sample properties, and then in the case of very
heavy tails, in order to illustrate the advantages of using the proposed tech-
nique. It will in particular be shown that, compared to the PL estimator which
uses all the data above a high threshold, the corrected trimmed or winsorised
estimators resist fairly well to the presence of heavier tails and atypically high
observations. It will also be of interest to compare the performance of the
CTrim-PL and CWins-PL estimators, and in particular to assess whether one
of them is preferable to the other in terms of bias: recall that before correc-
tion, the trimmed estimator should be expected to have worse finite-sample
performance that the winsorised estimator.

4.1. Case 1: Moderately heavy tails

We first consider the case of moderately heavy tails. More precisely, the parame-
ter γ is chosen in order to ensure that Theorem 2 (ii) applies to the intermediate
versions of all three estimators, and is therefore such that the extrapolated esti-
mators satisfy Theorem 3. This range of values of γ is considered in El Methni
and Stupfler (2017), and it is shown there that the extrapolated PL estimator
performs reasonably well when γ is moderate. We will, however, consider a
range of values of γ containing the highest values of γ for which Theorem 3
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applies, in order to assess the behaviour of all three estimators on the full range
of moderately heavy tails and particularly in the most difficult situations in this
range. The following examples are considered:

• the TVaR and DP(1/3) risk measures. In this case, Theorem 3 applies in
the range γ ∈ (0, 1/2). We therefore make γ vary in the interval [0.25, 0.49]
for both our tested distributions.

• the PH(1/2) risk measure. Here, Theorem 3 applies in the range γ ∈
(0, 1/4). We therefore choose to have γ vary in the interval [0.1, 0.24].

In each case, the computations are carried out onN = 5000 independent samples
of n = 1000 independent copies of X; a similar simulation study, whose results
are deferred to Appendix C in the supplementary material document, examines
the case of the lower sample size n = 100. Relative biases and relative mean
squared errors (MSEs) are recorded:

Bias
(
R̃Wg,δ

)
=

1

N

N∑
j=1

R̃Wg,δ(X;ψ∗j )

Rg,δ(X)
− 1,

and MSE
(
R̃Wg,δ

)
=

1

N

N∑
j=1

(
R̃Wg,δ(X;ψ∗j )

Rg,δ(X)
− 1

)2

,

at δ = 0.999 = 1 − n−1 (here ψ∗j is the chosen function ψ for the j−th sample
and for a given estimator), so as to be able to assess both bias and variability
of all the compared techniques.

Results are reported in Figures 1 and 2. Results for the extreme DP risk mea-
sure were qualitatively very similar to those obtained for the extreme TVaR and
are therefore not reported here. As regards the estimation of the extreme TVaR,
it appears on these examples that the proposed CTrim-PL and CWins-PL esti-
mators perform slightly worse in terms of bias than the original PL estimator.
This is not surprising: the correction method, based on an approximation of
the upper tails of the underlying distribution by a purely Pareto tail, cannot be
expected to recover all the information the (highly variable) top order statistics
carry about the extremes of the sample. By contrast, our estimators perform
essentially comparably to or better than the standard empirical extreme Wang
DRM estimator in terms of MSE; for values of γ close to but less than 1/2,
the improvement is close to up to 40%, in the case of the Fréchet distribu-
tion. Surprisingly, for |ρ| ≥ 1, the CTrim-PL and CWins-PL estimators seem
to provide a much improved technique for the estimation of the extreme PH
risk measure, both in terms of bias and MSE, especially when γ is large. Let
us also mention that in all cases, results deteriorate when γ increases: this is
likely a consequence of the fact that, by Theorem 3, the asymptotic distribution
of our estimator is essentially that of γ̂βn

− γ, which is a Gaussian distribu-
tion with variance proportional to γ2 (see Theorem 3.2 in Caeiro et al., 2005).
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Similarly the results, be it with respect to bias or MSE, also improve when
|ρ| increases, which is not surprising either since the larger is |ρ|, the smaller
is the bias in the estimation and, more generally, the closer is the tail of the
underlying distribution to a purely Pareto tail. This is especially critical for the
CTrim-PL and CWins-PL estimators, in which the correction step is based on
an approximation of the right tail of the underlying distribution by the right tail
of (a multiple of) a Pareto distribution. Combined with the stronger emphasis
the PH risk measure puts on higher quantiles of the underlying distribution,
this explains the deterioration, in terms of finite-sample performance, that the
CTrim-PL and CWins-PL estimators suffer from in the case of the Burr distri-
bution with ρ = −2/3 relatively to the PL estimator and compared to the other
cases considered here.

It should finally be underlined that, on these examples and for smaller values of
γ (e.g. in the case of TVaR estimation, γ = 1/4, corresponding essentially to the
existence of a finite fourth moment) the extrapolated PL, CTrim-PL and CWins-
PL estimators have virtually indistinguishable finite-sample performance. There
seems, therefore, to be no loss in efficiency when using the proposed estimators
for small values of γ, while they display an appreciably lower variability for an
arguably small potential price in terms of bias when γ is larger and |ρ| is not too
small. It also appears that on these examples, for moderately heavy tails, the
CTrim-PL and CWins-PL estimators have very similar finite-sample behaviours,
so there is on average no clear advantage in using one of these methods over the
other.
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ré

ch
et

d
is

tr
ib

u
ti

o
n

,
m

id
d

le
:

ca
se

o
f

th
e

B
u

rr
d

is
tr

ib
u

ti
o
n

w
it

h
ρ

=
−

2
,

ri
g
h
t:

ca
se

o
f

th
e

B
u

rr
d

is
tr

ib
u

ti
o
n

w
it

h
ρ

=
−

2
/
3
.

F
u

ll
li
n

e:
P

L
es

ti
m

a
to

r,
d

o
tt

ed
li
n

e:
C

T
ri

m
-P

L
es

ti
m

a
to

r,
d

a
sh

ed
li
n

e:
C

W
in

s-
P

L
es

ti
m

a
to

r.

26



4.2. Case 2: Very heavy tails

We now consider the case of heavier tails, when Theorem 3 fails to hold. Study-
ing such cases will make it possible to understand the behaviour of the tested
estimators on more challenging situations. Specifically, the following cases are
examined:

• the TVaR and DP(1/3) risk measures, with γ varying in the interval
[0.5, 0.75] for both our tested distributions.

• the PH(1/2) risk measure, with γ belonging to the interval [0.25, 0.35].

In those cases, sample relative MSEs can still be computed but will not converge
anymore, because γ is so large that the relative MSE of our estimators at an
intermediate level is infinite:

E

(
R̃g,βn

(X;ψn)

Rg,βn(X)
− 1

)2

= +∞.

In order to assess both bias and variability here, we therefore look at two dif-
ferent situations:

(i) In the first one, N = 5000 independent samples of n = 1000 independent
copies of X are generated and relative biases are recorded for all three
estimators.

(ii) In the second one, N = 5000 independent samples of n = 1000 indepen-
dent copies of X given that the sample maximum Xn,n exceeds the large
value 2Rg,δ(X), with δ = 0.999, are generated. Again, relative biases are
recorded for all three estimators.

The idea here is to first use (i) to assess to which extent the correction factor
for the trimmed/winsorised estimators manages to eliminate the bias introduced
by the trimming/winsorising scheme, and then to evaluate the advantages, in
terms of variability, of using the proposed techniques in challenging cases using
(ii). It should be mentioned that although the cases examined in (ii) are in
some sense atypical, they are not at all infrequent: for instance, in the case of
the Tail-Value-at-Risk for the Fréchet distribution with parameter γ = 1/2 and
δ = 0.999, then Rg,δ(X) ≈ 63.25 and

P(Xn,n > 2Rg,δ(X)) = 1− [P(X ≤ 2Rg,δ(X))]n ≈ 0.0606,

with n = 1000. In other words, 6% of samples of size 1000 feature the difficulty
considered here, which we believe makes it well worth studying.

As in the previous section, the extreme level of interest is δ = 0.999 = 1− n−1.
Again, a similar simulation study, whose results are deferred to Appendix C in
the supplementary material document, considers the case n = 100.

Results are reported in Figures 3 and 4, the top panels representing biases
recorded in non-conditioned cases and the bottom panels representing biases
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obtained in the difficult conditioned cases. As in the previous study on moderate
tails, results for the extreme DP risk measure were qualitatively very similar to
those obtained for the extreme TVaR and are therefore not reported here. When
estimating the extreme TVaR in standard cases, the CTrim-PL and CWins-
PL estimators perform slightly better, in terms of bias, than the original PL
estimator when |ρ| ≥ 1, although the PL estimator outperforms the CTrim-PL
and CWins-PL estimators when |ρ| takes the smaller value 2/3. By contrast,
a real improvement is found using the suggested methods on atypical cases: in
this context, the CTrim-PL and CWins-PL estimators more than halve the bias
overall in the case of the Fréchet distribution, can reduce it by up to 90% in
the case of the Burr distribution with ρ = −2, and improve it by up to 50% for
very large γ when ρ = −2/3. As regards the estimation of the extreme PH risk
measure, the surprising conclusion reached when discussing the performance of
our estimators with moderately heavy tails is still valid: for |ρ| ≥ 1, the CTrim-
PL and CWins-PL estimators appear to have a much lower bias than the PL
estimator in general, all the more so for larger values of γ. There is again a
marked improvement in terms of bias in atypical cases, the bias being halved
overall in the Fréchet case and in the Burr case with ρ = −2/3, the reduction
in bias being even more substantial in the Burr case with ρ = −2.

As a conclusion, it appears on these heavier-tailed examples that the CTrim-
PL and CWins-PL have generally comparable performance to that of the PL
estimator in the case of extreme TVaR and DP estimation, while they often
provide a significant improvement when estimating the extreme PH risk mea-
sure. Moreover, in the most difficult cases with respect to the behaviour of the
top order statistics in the sample, the two introduced methods represent overall
a great improvement over the PL estimator. It should be pointed out that in
these atypical cases, the deterioration of the finite-sample performance of our
estimators relatively to that of the PL estimator when |ρ| decreases is much
less severe than in the case when the right tail of the underlying distribution is
moderately heavy. An explanation is that while the correction factor applied to
the Trim-PL or Wins-PL estimator might have a disappointing behaviour when
|ρ| is small, the action of deleting unreasonably high top values in the sample
and then correcting at least partially for the resulting bias is already enough to
obtain a much-improved technique. We would therefore argue that the CTrim-
PL and CWins-PL estimators have indeed a good potential for practical use in
such a setup, and this was the main goal of our work. Finally, on these ex-
amples and similarly to the moderate tails case, the CTrim-PL and CWins-PL
estimators exhibit similar finite-sample behaviours, so that there is no obvious
reason to choose one over the other in general. Which one of these estimators
should actually be chosen has to be decided case by case, and an instance of
such a choice is presented in a real data example below.
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5. Real data application

We consider data on n = 1098 commercial fire losses recorded between 1 Jan-
uary 1995 and 31 December 1996 by the FFSA (an acronym for the Fédération
Française des Sociétés d’Assurance), available from the R package CASdatasets
by prompting data(frecomfire). The data, originally recorded in French
francs, is converted into euros, and denoted by (X1, . . . , Xn). The analysis
of this kind of data set from an extreme value point of view is useful to insurers,
especially in view of the Solvency II directive: in order to be able to compute
their capital requirements so as to survive the upcoming calendar year with a
probability not less than 0.995, insurance companies have to take into account
extremely high losses. It is also crucial for insurance companies to estimate the
capital requirement as accurately as possible: an underestimation of this quan-
tity can threaten the company’s survival, while an overestimation may, among
others, lead to the insurer asking for higher premiums on policies, thus reducing
the company’s competitiveness on the market.

The first step is to estimate the tail index γ. To this end, the procedure outlined
in Section 4 is used: the sample fraction chosen to compute the tail index is
then 1 − β∗ ≈ 0.120, for an estimate γ̂β∗ ≈ 0.697. This suggests a very heavy
tail, in the sense that γ̂β∗ > 1/2 and therefore the underlying distribution seems
to have an infinite variance. In particular, we know from the simulation study
that this may adversely affect the PL estimator of the extreme TVaR and of
the extreme DP risk measure, which justifies comparing the PL estimates to
those obtained using our CTrim-PL and CWins-PL estimators. Note that the
extreme PH(1/2) risk measure cannot be estimated here since this would require
the estimate of γ to be less than 1/2.

We then compute, at the extreme level δ = 0.999 ≈ 1−n−1, the PL, CTrim-PL
and CWins-PL estimators of the extreme TVaR and DP(1/3) risk measures,
using the procedure of Section 4. Results are summarised in Table 1. It is not
clear, from these results, which estimator should be chosen, especially since it
was seen in the simulation study that the CTrim-PL and CWins-PL estimators
have essentially identical statistical properties.

Our goal is now to offer some insight into this choice, using the mean excess plot
of the n(1 − β∗) = 132 data points used in the present analysis. The rationale
behind the use of the mean excess plot, i.e. the plot of the function

u 7→
∑n
i=1(Xi − u)I{Xi>u}∑n

i=1 I{Xi>u}
,

is that its empirical counterpart u 7→ E(X − u|X > u) is linearly increasing
when 0 < γ < 1 and X has a Generalised Pareto distribution (see Davison and
Smith, 1990). Therefore, since X can be, above a high level u, approximated by
a Generalised Pareto distribution (see e.g. equation (3.1.2) p.65 in de Haan and
Ferreira, 2006), the extremes of the data set should be indicated by a roughly
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linear part at the right of the mean excess plot. This plot can be tricky to use
though: apart from the choice of the lower threshold u above which the mean
excess function is computed (which is here chosen to be Xnβ∗,n), it has been
observed that the mean excess function has very often a non-linear behaviour
at the right end of the mean excess plot (see Ghosh and Resnick, 2010). This
is again because the top order statistics in the sample suffer from a very high
variability, and as a consequence the mean excess function is, in its right end,
averaging over just a few high-variance values. In other words, the intermediate,
roughly linear part of the plot indicates which ones among the top data points
can be trusted from the points of view of both bias and variability, and the
unstable part at the right end of the mean excess plot represents those highly
variable values that may be cut from the analysis using the CTrim-PL and
CWins-PL estimators.

We then plot on Figure 5 copies of the mean excess plot above the value u =
Xnβ∗,n where the values cut from the analysis by the CTrim-PL and CWins-PL
estimators are highlighted. The least squares line related to the data points
kept for the analysis is also represented. It can be seen on these plots that there
is indeed an unstable part at the right end of the plot, which suggests to use
either the CTrim-PL or CWins-PL estimator in order to gain some stability. The
linear adjustment for the selected data points is also reasonable in all cases. It
is arguable though that the CTrim-PL estimator is too conservative in the sense
that the number of data points it discards is high: in the DP case in particular,
the estimator trims 37 top order statistics, which is 29% of the available data
above the selected threshold Xnβ∗,n. The CWins-PL estimator discards much
less data points (less than half of what the CTrim-PL estimator discards, see also
Table 1), and therefore does not have to compensate for the loss of information
this entails as much as the CTrim-PL has to, while the linear adjustment of the
least squares line is still perfectly acceptable. It can be argued then that the
CWins-PL estimator is preferable here, both for extreme TVaR and DP risk
measure estimation. The estimates it yields are appreciably lower (roughly 10%
less) than the standard PL estimates, and this makes us think that the extreme
TVaR and DP risk measure are actually overestimated by the PL estimator.
The conclusion is that, using the CWins-PL estimator, the average loss in the
worst 0.1% of cases is estimated to be 208.5 million euros, and the average value
of the maximal loss recorded after three extreme fires (i.e. each belonging to
the worst 0.1% of fires) to be 404.5 million euros.
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6. Discussion and forthcoming studies

In this paper we studied, empirically and theoretically, corrected versions of the
trimmed/winsorised empirical plug-in estimators of extreme Wang DRMs. The
value of such estimators lies in the fact that on average, they can be expected
to be less variable than the full empirical plug-in estimator thanks to the trim-
ming/winsorising scheme. The proposed method is also implemented on a real
actuarial data set, and it is shown how to choose between the corrected trimmed
estimator and its corrected winsorised analogue.

Let us reiterate here that the present correction step is a simple one, based on
an asymptotic equivalent of the ratio of a trimmed/winsorised extreme Wang
DRM and of its full counterpart. Especially, this correction method should not,
in our view, be seen as related to bias-correction techniques based on asymptotic
results developed in second-order extreme value frameworks, which have been
the subject of much interest in extreme value theory in the past twenty years. An
essential difference between the two approaches is that the proposed correction
step does not take into account second-order information: namely, it uses an
estimator of the tail index γ but no estimator of the second-order parameter ρ.

This is why the CTrim-PL and CWins-PL methods should not be expected to
show an improved finite-sample performance compared to that of the basic em-
pirical plug-in estimator when ρ is close to 0. Actually, because the expression of
the correction factor is based on the asymptotic approximation of the underlying
distribution by a multiple of a Pareto distribution, which is known to be poor
for ρ close to 0, the CTrim-PL and CWins-PL methods should only be expected
to work well when |ρ| is not too small. This is confirmed in the simulation
study, by noting that in typical cases the CTrim-PL and CWins-PL estimators
do on average suffer from a deterioration in performance, relatively to the PL
estimator, when |ρ| decreases towards 0. It should be repeated though that
simulation results give a strong indication that the CTrim-PL and CWins-PL
estimators very often bring an important improvement, including in cases when
|ρ| is small, upon the PL estimator in challenging cases when the top values in
the sample are extremely high, and that was the main goal of this paper.

It would be very interesting to design another correction factor taking into
account second-order information, in order to close the gap between the finite-
sample performance of the proposed technique and that of the full PL estimator
in standard cases with low |ρ|, and retain or even improve its finite-sample
performance further in difficult cases. Two reasons why this is a difficult problem
are that:

• estimators of ρ typically have a rate of convergence
√
kA(n/k), with the

notation of condition C2(γ, ρ,A), which, in conjunction with the bias con-
ditions they have to satisfy, makes their rate of convergence lower than
that of typical tail index estimators, see e.g. p.298 in Gomes et al. (2009)
and p.2638 in Goegebeur et al. (2010). This suggests that estimators of
the second-order parameter are in general quite volatile;
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• tail index estimators tend to have a poor finite-sample behaviour for low
|ρ|, be it because of their bias if they are not bias-corrected, or of their
increased asymptotic variance if they are bias-corrected.

Multiplying the Trim-PL or Wins-PL estimators by a correction factor adapted
to low values of |ρ| might therefore entail multiplying by a highly variable quan-
tity and ultimately wipe out part of or all that was gained in terms of variabil-
ity from using the trimming/winsorising scheme. The problem of constructing
a second-order-adapted correction factor is therefore a challenging one and is
definitely part of future research on this topic.
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