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Nonlinear signal-correction observer and
application to UAV navigation

Xinhua Wang, Weicheng Wang

Abstract—A nonlinear signal-correction observer (N-
SCO) is presented for signals correction and estimation,
which not only can reject the position measurement error,
but also the unknown velocity can be estimated, in spite
of the existence of large position measurement error and
intense stochastic non-Gaussian noise. For this method,
the position signal is not required to be bounded. The N-
SCO is developed for position/acceleration integration, and
it is applied to an unmanned aerial vehicle (UAV) navigation:
Based on the NSCO, the position and flying velocity of
quadrotor UAV are estimated. An experiment is conducted
to demonstrate the effectiveness of the proposed method.

Index Terms—Large position measurement error, nonlin-
ear signal-correction observer (NSCO), UAV.

I. INTRODUCTION

POSITION and velocity play the key roles for system
navigation and control. For position recognition, global

positioning system (GPS) is usually adopted and supplemented
by some sensors [1,2,3]. On the one hand, GPS can provide
the instantaneous large-error position of device, and the posi-
tion signal is usually contaminated by the circumstances [2].
Velocity is also necessary for navigation and control, and the
velocity of device can be estimated by the optical flow sensors
(OFS) [4]. Nevertheless, they are sensible to lighting changes.
The state observers [5,6,7] are popular to estimate velocity
from position measurement. In [5], a full-order observer was
designed for the state estimation of the systems with unknown
inputs. However, the above observers are not suitable to
the systems with large position measurement errors. On the
other hand, an inertial navigation systems (INS) with the
integrators [8,9] can provide position and velocity information,
but it usually suffers from signal drifts over time. Several
observer-based INS methods were used to estimate the position
and velocity [10,11,12]. In [11], a dynamic observer was
designed to estimate position. However, the position trajectory
is required to be bounded in a constraint range, and it is not
suitable to large-range navigation.

The integration of GPS and INS can limit the shortcomings
of the individual systems [13,14,15], and the integration can
improve the accuracy of GPS outputs. The present GPS/INS
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integrations are mostly based on Kalman filter (KF): KF for
linear systems [16], and extended Kalman filter (EKF) for the
first order approximation to nonlinear systems [17]. KF (or
EKF) can separate the probabilistic noise and can estimate
position and velocity based on the optimization of a recursive
least mean square error. However, in GPS/INS integration, the
KF and EKF algorithms have several limitations: i) Noise
is assumed to be zero-mean Gaussian distributed, and the
process noise covariance is uncorrelated to the estimation
error. As stochastic non-Gaussian noise exists in signal, the
inaccurate noise information may lead to the position and
velocity drifts. ii) The accurate priori information of the
covariance matrices of the noises is needed. However, the noise
levels may change in different applications and circumstances.
iii) System linearization may cause filter divergence, and the
derivation of the Jacobian matrices are nontrivial.

Considering the problems above, in this paper, a NSCO is
designed to integrate the measurement signals, to reject the
large position measurement error, and to estimate the unknown
velocity. Inspired by the finite-time stability and robustness of
autonomous systems [18,19] and singular perturbations [20],
the NSCO is developed, which can minimize the position
sensor error, and can estimate the unknown velocity in spite of
the existence of stochastic non-Gaussian noise. The parameters
selection of NSCO is satisfied with the Routh-Hurwitz Sta-
bility Criterion. Moreover, the performances of the proposed
NSCO are compared with those of the EKF.

As an example of application, the proposed NSCO is applied
to the navigation of a quadrotor UAV, and an experiment is
presented to observe the performance. In recently decades,
navigation and control of aircrafts attract the investigations
of many researchers [21,22,23,24]. Because of the great ma-
noeuvrability and simple mechanical structure, the quadrotor
UAVs can be used in exploration, security and surveillance
tasks, etc. The GPS/INS navigation methods of the UAVs
are usually based on KF or EKF with some supplemented
sensors [25], and the noise is assumed to be be zero-mean
Gaussian distributed. Some navigation tools of the UAVs adopt
vision systems [26,27]. The complex environments or adverse
light effects can make vision systems difficult to recognize the
position and velocity. In this paper, the following scenario of
quadrotor UAV navigation is considered: large measurement
error exists in position signal; stochastic non-Gaussian noise
exists in the acceleration and position; the flying velocity is
unknown. In this UAV navigation system, the proposed NSCO
is adopted to estimate the position and velocity. Finally, two
simple controllers based on the NSCO are designed to stabilize
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the flight dynamics.

II. CONFIGURATION OF NSCO

The goal of the NSCO design is to reject the position
measurement error, and to estimate the unknown velocity
through the signals integration.

A. Case of position/acceleration integration

We consider the following case of system navigation:
1) GPS provides the large-error position a1(t) = a01(t) +

d1(t), where a01(t) is real position, d1(t) is the large mea-
surement error, and supt∈[0,∞) |d1(t)| ≤ L1 <∞;

2) INS gives the acceleration a3(t) = a03(t)+d3(t), where
a03(t) is real acceleration, d3(t) is the measurement error,
supt∈[0,∞) |d3(t)| ≤ L3 <∞, and L3 ≪ L1;

3) The velocity a02(t) is unknown.
For the real position a01(t), velocity a02(t) and acceleration

a03(t), the relations a01(t) =
∫ t
0

∫ υ
0
a03 (σ1) dσ1dσ2 and

a02(t) =
∫ t
0
a03(σ)dσ hold.

Question: How to estimate the real position a01(t) and
the velocity a02(t) of device from the measurements of the
position a1(t) = a01(t) + d1(t) and the acceleration a3(t) =
a03(t) + d3(t), in spite of the existence of the large position
measurement error and stochastic non-Gaussian noise?

B. Definition of NSCO

The usual observers, for instance, sliding mode observers,
can estimate the unknown states based on the small-error
position measurement a1(t). For the following sliding mode
observer (See Theorem 6 in [28])

ẋ1 = x2 − λ1 |x1 − a1(t)|
2
3 sign(x1 − a1(t))

ẋ2 = x3 − λ2 |x1 − a1(t)|
1
3 sign(x1 − a1(t))

ẋ3 = −λ3sign(x1 − a1(t)) (1)

if the sensor error exists in the measurement signal a1(t), i.e.,
a1(t) = a01(t) + d1(t), where a01(t) is real position, d1(t)
is the small position measurement error, supt∈[0,∞) |d1(t)| ≤
L1 < ∞, then there exist µ > 0 and ts > 0, such that, for
t ≥ ts,

|xi − a0i (t)| ≤ µL
4−i
3

1 , i = 1, 2, 3 (2)

The observer is suitable to estimate velocity a02 (t) and
acceleration a03 (t) from the small-error position measurement
a1(t) = a01(t)+d1(t). However, they cannot reject sufficiently
the effect of large position error d1(t): if the large error d1(t)
exists in the measurement signal a1(t) = a01(t) + d1(t),
the up-boundness L

4−i
3

1 of the estimation errors is also large.
Therefore, the usual observers are not suitable to the systems
with large position measurement errors.

Actually, the measurements for the usual navigation systems
include the large-error position measurement by GPS and
the small-error acceleration measurement by INS. For system
navigation, the accurate position and velocity are needed.

Definition 1 (NSCO): For the large-error position measure-
ment a1(t) = a01(t)+d1(t) and small-error acceleration mea-
surement a3(t) = a03(t)+d3(t), where, d1(t) and d3(t) are the
unknown large and small measurement errors, respectively, a
nonlinear signal-correction observer (NSCO) is designed, such
that the large position measurement error can be rejected and
the unknown velocity is estimated.

The configuration of a NSCO is described by

ẋ1 = x2; ẋ2 = x3;

ẋ3 = f(x1 − a1(t), x2, x3 − a3(t)) (3)

with the conclusions:

x1 → a01(t), x2 → a02(t), x3 → a03(t) (4)

In the above NSCO configuration, the system inputs include
the position measurement a1(t) and acceleration measurement
a3(t). The states x1, x2 and x3 estimate the real position
a01(t), velocity a02(t) and acceleration a03(t), respectively.
Importantly, the large sensor error d1(t) in position measure-
ment a1(t) will be rejected sufficiently, and the position and
velocity drifts will be avoided even non-Gaussian noise exists.

III. DESIGN OF NSCO
In the following, considering the large position sensor error

and stochastic non-Gaussian noise, a NSCO is designed to
to reject the position measurement error and to estimate the
velocity. The position is not required to be bounded. One
theorem is presented as follows.

A. NSCO for position/acceleration integration
Theorem 1: Considering Case A in Section II, for system

ẋ1 = x2; ẋ2 = x3;

ε4ẋ3 = −k1 |ε(x1 − a1(t))|α1 sign (x1 − a1(t))

−k2
∣∣ε2x2∣∣α2 sign (x2)

−k3 |(x3 − a3 (t))|α3 sign (x3 − a3 (t)) (5)

where ε ∈ (0, 1) is the perturbation parameter;

k1 > 0, k3 > 0, k2 > ε3α3
k1
k3

(6)

and α1, α2, α3 satisfy

α3 ∈ (0, 1), α2 =
α3

2− α3
, α1 =

α3

3− 2α3
(7)

1) if the sensor errors exist in the measurement signals a1(t)
and a3(t), i.e., a1(t) = a01(t) + d1(t) and a3(t) = a03(t) +
d3(t), where a01(t) is real position, d1(t) is the large position
measurement error, supt∈[0,∞) |d1(t)| ≤ L1 < ∞, a03(t) is
real acceleration, d3(t) is the acceleration measurement error,
supt∈[0,∞) |d3(t)| ≤ L3 < ∞, and L3 ≪ L1, then there exist
L > 0, γ > 4

α1
and Γ > 0, such that, for t ≥ εΓ (Ξ(ε)e (0)),

|xi − a0i (t)| ≤ L(δdi)
γ , i = 1, 2, 3 (8)
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where, δdi = εα1− i
γ +

21−α3k3L
α3
3

δ0
ε−

i
γ ∈ (0, 1), i = 1, 2, 3;

δ0 =
2∑
i=1

21−αikiL
αi
i + La; supt∈[0,∞) |ȧ03(t)| ≤ La < ∞;

γ = (1−β)/β, β ∈ (0, α1/(α1+4)); Ξ(ε) = diag{ε, ε2, ε3},
and ei = xi − a0i (t), i = 1, 2, 3; e = [ e1 e2 e3 ]T .

2) Furthermore, assume there is no sensor error in signal
a3 (t), i.e., a3 (t) = a03 (t), then, even large sensor error exists
in signal a1(t), for t ≥ εΓ (Ξ(ε)e (0)),

|xi − a0i (t)| ≤ Lεα1γ−i, i = 1, 2, 3 (9)

The proof of Theorem 1 is presented in Appendix.

B. Robustness analysis in frequency domain
In practice, high-frequency noises exist in measurements

a1(t) and a3(t). For the NSCO, frequency-sweep method [29]
can be used to approximately analyse the nonlinear behaviors
of the NSCO, and the Bode plots are adopted to describe the
system frequency characteristics. By frequency-sweep method,
we can find that the NSCO leads to perform precise estimation
and strong rejection of high-frequency noise.

The test of frequency characteristic can be implemented by
Bode plot fitting. The input signals are selected as: acceleration
a3(t) = Am sin(ωt), and position a1(t) = −Am

ω2 sin(ωt),
where Am and ω are the amplitude and angular frequency of
the input signal a3(t), respectively. The outputs are x3, x2 and
x1. Equivalently, a3(t) can be taken as the unique input signal,
and a1(t) is the double integral of a3(t). The Bode plots of
the relations a3(t) → x3, a3(t) → x2 and a3(t) → x1 will
be sketched, respectively. In fact, for the above input-output
relations, the ideal operators are 1, 1/s and 1/s2, respectively.

For the NSCO, the parameters are selected as follows:
k1 = 0.5, k2 = 0.2, k3 = 10; α3 = α = 0.8, 0.5, 0.3;
ε = 0.6, 0.4, 0.25, respectively. The Bode plots with different
selections of ε and α3 are described in Fig.1: Figs.1(a)-
(c) present the frequency characteristics of the acceleration,
velocity and position estimations, respectively.

Comparing with ideal operators 1/s and 1/s2, not only the
NSCO can obtain their estimations of velocity and position
precisely, but also the high-frequency noise is rejected suffi-
ciently: as ω → ∞, the magnitude tends −∞.

Parameter ε affects the low-pass frequency bandwidth: De-
creasing the perturbation parameter ε, the low-pass frequency
bandwidth becomes larger, and the estimation speed becomes
fast; on the other hand, increasing perturbation parameter ε,
the low-pass frequency bandwidth becomes smaller, and much
noise can be rejected sufficiently (See the cases of ε = 0.6,
ε = 0.4 and ε = 0.25 in Figs.1 (a)-(c), respectively).
Parameter α3 ∈ (0, 1) affects the decay speed of frequency
characteristic curves near the cut-off frequency (See the cases
of α3 = α = 0.8, 0.5, 0.3 in Fig.1, respectively): smaller
α3 ∈ (0, 1) can obtain more precise estimations; on the other
hand, larger α3 ∈ (0, 1) can reduce much noise, however, a
bit estimation delay happens.

Remark 1 (Analysis of NSCO):
1) Stability and robustness of NSCO: In NSCO (5), xi

estimates the desired values a0i(t), i = 1, 2, 3, respectively. In
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Fig. 1. Frequency characteristics with changes of ε and α for NSCO. (a)
Acceleration estimate. (b) Velocity estimate. (c) Position estimate.
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the estimation error (9), due to ε ∈ (0, 1) and α1γ−i≫ 1, the
up-boundness of estimation error Lεα1γ−i (where, i = 1, 2, 3)
is sufficiently small. Therefore, the NSCO leads to perform
strong rejection of persistent sensor errors and disturbances,
and high-precision signal estimations are achieved. Further-
more, from the frequency-domain analysis (See Fig. 1), the
NSCO can reject the high-frequency noise.

2) Large position error rejection and velocity estimation: In
the NSCO (5), the position is not required to be bounded. The
large sensor error d1(t) (where, supt∈[0,∞) |d1(t)| ≤ L1 <∞)
in the position measurement a1(t) = a01(t) + d1(t) can be
rejected sufficiently. In fact, based on the singular perturbation
technique and nonlinear contraction mapping theory, from (30)
in the proof of Theorem 1, the effect of the sensor error
d1(t) is compressed into 21−α1k1L

α1
1 εα1 . Furthermore, in the

estimation error (9), due to ε ∈ (0, 1), the up-boundness of
the position estimate error Lεα1γ−1 is sufficiently small, and
Lεα1γ−1 ≪ L1. Therefore, the measurement error in position
signal can be rejected sufficiently.

In the estimate error (9), due to ε ∈ (0, 1), the up-boundness
of the velocity estimate error Lεα1γ−2 is small enough.

3) No drift phenomenon: From (8), in spite of the existence
of the large sensor error and non-Gaussian noise, the estimate
errors are bounded, and their up-boundnesses are unrelated to
time after t ≥ εΓ (Ξ(ε)e (0)). Therefore, even for unbounded
position navigation, no drift phenomenon happens.

Remark 2 (The rules of NSCO parameters selection):
For the NSCO, there are several rules on the parameters

selection:
1) Basic stability condition: The parameters (k1, k2, k3) and

(α1, α2, α3) are satisfied with Eqs. (6) and (7), respectively.
2) For rejecting the measurement error in position: When

the measurement error d1(t) in position signal a1(t) increases,
i.e., L1 increases, in order to decrease the error effect k1Lα1

1 of

δ0 =
2∑
i=1

21−αikiL
αi
i +La in (30), parameter k1 > 0 decreases

to improve the estimate precisions. Furthermore, in order to
decrease Lα1

1 , α1 ∈ (0, 1) should decrease to improve the
estimate precisions.

3) For low-pass filtering: In order to increase the estimation
speed, ε ∈ (0, 1) should decrease to make the low-pass
frequency bandwidth larger, or α3 ∈ (0, 1) decreases. If much
noise exists, ε should increase, or α3 ∈ (0, 1) increases. Thus,
the low-pass frequency bandwidth becomes smaller, and the
noise can be rejected sufficiently (See Fig. 1).

IV. UAV NAVIGATION BASED ON NSCO

A quadrotor UAV navigation is studied. In this scenario, the
large-error position measurement of UAV is considered. The
forces and torques of quadrotor UAV are described in Fig. 2.
The UAV is controlled by the thrust forces Fi (i = 1, 2, 3, 4)
which are generated by four propellers.

A. Quadrotor UAV dynamics
Let Ξg = (Ex, Ey, Ez) and Ξb =

(
Ebx, E

b
y, E

b
z

)
denote

the inertial and fuselage frames, respectively; ψ, θ and ϕ are
the Euler angles expressed in the yaw, pitch and roll angles,
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Fig. 2. Forces and torques of quadrotor UAV.

respectively; The symbols cθ and sθ are used for cos θ and
sin θ, respectively. Fi = bω2

i is the thrust force by rotor i, and
the reactive torque generated by rotor i is written as Qi = kω2

i .
Therefore, Qi = k

bFi holds. The total thrust by the four rotors

is given by F =
4∑
i=1

Fi. The motion equations of the UAV in

the coordinate (x, y, z) are then

mẍ = (cψsθcϕ + sψsϕ)F − kxẋ+∆x

mÿ = (sψsθcϕ − cψsϕ)F − ky ẏ +∆y

mz̈ = cθcϕF −mg − kz ż +∆z (10)

Jψψ̈ = uψ − kψψ̇ +∆ψ

Jθ θ̈ = uθ − lkθ θ̇ +∆θ

Jϕϕ̈ = uϕ − lkϕϕ̇+∆ϕ (11)

where, kx, ky , kz , kψ , kθ and kϕ are the drag coefficients;
(∆x,∆y,∆z) and (∆ψ,∆θ,∆ϕ) are the bounded uncertain-
ties in position and attitude dynamics, respectively; J =
diag{Jψ, Jθ, Jϕ} is the matrix of the three-axis moment of
inertias; and

uψ =
k

b

4∑
i=1

(−1)i+1Fi, uθ = (F3 − F1)l,

uϕ = (F2 − F4)l (12)

The attitude information (ψ, θ, ϕ, ψ̇, θ̇, ϕ̇) is measured by an
IMU. The triaxial acceleration vector Ẍb =

[
ẍb ÿb z̈b

]T
in body frame Ξb is obtained by the triaxial accelerome-
ter in the IMU. Therefore, the acceleration vector Ẍ =[
ẍ ÿ z̈

]T
in inertial frame Ξg can be written as Ẍ =

RbgẌb +
[
0 0 g

]T
.

For the UAV, we are interested in using the NSCO to
estimate (x, y, z, ẋ, ẏ, ż) from the acceleration and large-
error position measurements.

B. Controller design

In this section, the control laws are designed for trajectory
tracking and attitude stabilization. For the reference trajectory
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(xd, yd, zd), the error system of position dynamics (10) can be
given by

ëp = m−1(up + Ξp + δp) (13)

where, e1 = x− xd, e2 = ẋ− ẋd, e3 = y − yd, e4 = ẏ − ẏd,
e5 = z − zd, e6 = ż − żd; and

ep =

 e1
e3
e5

 , up =
 cψsθcϕ + sψsϕ
sψsθcϕ − cψsϕ

cθcϕ

F,
Ξp =

 −mẍd
−mÿd

−mz̈d −mg

 , δp =
 ∆x − kxẋ

∆y − ky ẏ
∆z − kz ż

 (14)

For the reference attitude (ψd, θd, ϕd), the error system of
attitude dynamics (11) is written as

ëa = J−1(ua + Ξa + δa) (15)

where, e7 = ψ−ψd, e8 = ψ̇− ψ̇d, e9 = θ− θd, e10 = θ̇− θ̇d,
e11 = ϕ− ϕd, e12 = ϕ̇− ϕ̇d;

ea =

 e7
e9
e11

 , Ξa =

 −Jψψ̈d
−Jθ θ̈d
−Jϕϕ̈d

 ,
ua =

 uψ
uθ
uϕ

 , δa =

 ∆ψ − kψψ̇

∆θ − lkθ θ̇

∆ϕ − lkϕϕ̇

 (16)

1) Position dynamics controller: Based on the NSCO
(5), for position dynamics (10), to track reference trajectory
(xd, yd, zd), a controller is selected as

up = −Ξp − δ̂p −m(kp1êp + kp2̂̇ep) (17)

where, kp1, kp2 > 0. Therefore, position error system (13)
by controller (17) converges to the origin asymptotically, i.e.,
ep → 0 and ėp → 0 as t → ∞, where the variables ê1 =
x̂− xd, ê2 = ̂̇x− ẋd, ê3 = ŷ − yd, ê4 = ̂̇y − ẏd, ê5 = ẑ − zd
and ê6 = ̂̇z − żd are estimated by NSCO (5); and

êp =

 ê1
ê3
ê5

 , ̂̇ep =
 ê2
ê4
ê6

 , δ̂p = mẌ − up (18)

From (14) and (17), we deduce the total thrust

F =
∥∥∥−Ξp − δ̂p −m(kp1êp + kp2̂̇ep)∥∥∥

2
(19)

2) Attitude dynamics controller: Firstly, a small change is
operated for the continuous differentiator in [30] to become the
following extended observer, and to estimate the uncertainty
δa =

[
∆ψ ∆θ ∆ϕ

]T in the attitude dynamics (11):

ẋ1∗ = x2∗ − λ1∗ |x1∗ − ω∗|
1+α∗

2 sign(x1∗ − ω∗) + Ω∗

ẋ2∗ = −λ2∗ |x1∗ − ω∗|α∗ sign(x1∗ − ω∗) (20)

with ∗ = {ψ, θ, ϕ}, then, from Theorem 1 in [30], there exist
a finite time ts > 0 such that, for t ≥ ts,

x1∗ = ω∗, x2∗ = ∆∗/J∗ (21)

where λ1∗, λ2∗ > 0, α∗ ∈ (0, 1), ω∗ is the angular velocity
measurement, and

Ωψ =
k

bJz

4∑
i=1

(−1)i+1Fi − kψψ̇/Jz

Ωθ = (F3 − F1)l/Jy − lkθ θ̇/Jy

Ωϕ = (F2 − F4)l/Jx − lkϕϕ̇/Jx (22)

From (21) and (16), we obtain

δ̂a =
[
Jψx2ψ Jθx2θ Jϕx2ϕ

]T (23)

The continuous observer can provide continuous, accurate
and smooth estimations, reducing high frequency vibrations
and improving overall control performance.

For attitude dynamics (11), to track reference attitude
(ψd, θd, ϕd), a controller can be selected as

ua = −Ξa − δ̂a − J(ka1ea + ka2ėa) (24)

where, ka1, ka2 > 0, then attitude error system (15) by
controller (24) converges to the origin asymptotically, i.e.,
ea → 0 and ėa → 0 as t→ ∞.

V. EXPERIMENT ON UAV NAVIGATION

In this section, the experimental results are given to illustrate
the performance of the proposed scheme. The platform of
quadrotor UAV navigation and control is shown in Fig. 3, and
the UAV parameters are given in Table I. The flight control
system implementation on the hardware is shown in Fig.4. The
implementation of the navigation strategy based on NSCO is
done in the platform setup, whose components are: Arduino
Mega 2560 (sampling frequency: 16MHz) → (CPU clock rate
(or speed)): 16MHz. Gumstix microcomputer and an Arduino
Mega 2560 are taken as the driven boards, which have multiple
PWM output channels. An IMU (XsensMTI AHRS) is used
to measure the attitude, whose sampling frequency is 10 kHz.
Also, the triaxial acceleration vector in body frame is obtained
by the triaxial accelerometer in the IMU. The control update
time is 5ms.

Real position for comparison: The Vicon system (i.e.,
indoor motion capture system) is an indoor positioning system
with a sub-millimeter precision. Therefore, the position from
the Vicon system can be taken as the real position of UAV,
and it will be compared with the estimation from the NSCO
based on the large-error position measurement.

Large-error position measurement: Because the GPS signal
cannot be obtained in the room of lab, we use the output of
the Vicon system plus the prior GPS error signal as the large-
error position measurement (See Fig. 4). Here, the GPS error
signal was obtained through an outdoor GPS positioning test:
Using a GPS receiver, the position signal of a static object at
the origin was recorded in 100 seconds. In order to get the
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Fig. 3. Platform of quadrotor UAV system.
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Fig. 4. Flight control system implementation on the hardware.

TABLE I
UAV PARAMETERS

Symbol Quantity Value

m mass of UAV 2.01kg

g gravity 9.81m/s2

l distance between rotor and gravity center 0.2m

Jϕ moment of inertia about roll 1.25kg ·m2

Jθ moment of inertia about pitch 1.25kg ·m2

Jψ moment of inertia about yaw 2.5kg ·m2

b rotor force coefficient 2.923× 10−3

k Rotor torque coefficient 5× 10−4

much larger measurement error, the recorded signal magnified
3 times. Then, we obtained the GPS error signal.

Real velocity for comparison: A XZN Optical flow sensor
(OFS) board (up to 6400 fps update rate, 30x30 pixel resolu-
tion) is used to measure the velocity, and the value is compared
with the estimation from the NSCO. It is noted that this OFS
is more suitable to use indoor because it is sensible to lighting
changes. Therefore, we can regulate the indoor light to obtain
the ideal OFS measurement.

Reference trajectory: Tracking desired position trajectory is
studied. The desired trajectory consists of takeoff and a circle
with the radius 5m, velocity 1m/s and altitude 3m, which is
shown in Fig. 5.

The NSCO (5) estimates the position and velocity from
the contaminated position and acceleration measurements.
Controllers (17) and (24) are adopted to drive the UAV to
track the reference trajectory. The parameters of NSCOs are:
αi,3 = 0.5, ki,1 = 0.5, ki,2 = 0.2, ki,3 = 10, 1/εi = 4,
i = 1, 2, 3. The controller gains are: kp1 = 3.2, kp2 = 5,
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Fig. 5. UAV navigation based on NSCO. (a) Navigation trajectories. (b)
Position estimate. (c) Velocity estimate.
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ka1 = 2.6, ka2 = 3.5.
The NSCO provides the estimations of the position and

velocity, which are replaced into the controller. Now, the N-
SCO performance is studied through the behavior of estimated
position and velocity, and compared with the estimations by
the EKF given in [17]. The estimations of the states by the
EKF consider the same conditions.

Fig. 5(a) displays the estimated trajectories by the NSCO
and EKF. In addition, the estimation comparisons of the three-
direction positions are shown in Fig. 5(b): The sensor errors of
position measurements are 20m. The errors by the NSCO are
less than 1m, while the up-boundness of the estimate errors by
the EKF is 6m for all the positions. The large measurement
errors and stochastic noises are rejected sufficiently by the
NSCO. Importantly, even in the long-time flight (1000s),
no drift phenomenon happened. However, comparing to the
NSCO, the larger position estimation errors exist by the EKF,
and the EKF can’t restrain efficiently the effect of stochastic
non-Gaussian noise. Fig. 5(c) illustrates the comparison of
velocity estimations between the NSCO and the EKF, where
the velocity estimations from the NSCO showed the smaller
error estimations.

Importantly, we found that the rules of NSCO parameters
selection (Remark 2) are confirmed by tuning parameters of
NSCO in the experiment: 1) For the parameter ε ∈ (0, 1): on
the one hand, if ε decreases, the estimation speed will increase,
and the low-pass frequency bandwidth will become larger; on
the other hand, ε increases, much noise will be rejected. 2)
The smaller k1 > 0 can reduce the adverse effect of the larger
position measurement error, and the estimate precisions will be
improved. 3) The selection of smaller α3 ∈ (0, 1) can improve
the estimate precisions, and relatively large α3 can reject much
high-frequency noise.

VI. CONCLUSION

A NSCO has been developed. It can reject the large sensor
error in position and also can estimate the unknown velocity
in spite of the existence of stochastic non-Gaussian noise.
The proposed scheme demonstrated by experiment, that it
succeeded in rejecting the large measurement error in position,
and in estimating the unknown flying velocity. The merits of
the presented NSCO include its synchronous signal estimation
and measurement error reduction, sufficient stochastic non-
Gaussian noise rejection and no drift phenomenon.

APPENDIX

Proof of Theorem 1: The error system between the NSCO
(5) and the derivatives of a01(t) is given by:

ė1 = e2; ė2 = e3;

ε4ė3 = −k1 |ε(e1 − d1(t))|α1 sign (e1 − d1(t))

−k2
∣∣ε2(e2 + a02(t))

∣∣α2 sign (e2 + a02(t))

−k3 |e3 − d3(t)|α3 sign (e3 − d3(t))

−ε4ȧ03(t) (25)

Eq. (25) can be rewritten as

dεe1
dt/ε

= ε2e2;
dε2e2
dt/ε

= ε3e2

dε3e3
dt/ε

= −k1 |εe1 − εd1(t)|α1 sign (e1 − d1(t))

−k2
∣∣ε2e2 + ε2a02(t)

∣∣α2 sign (e2 + a02(t))

− k3
ε3α3

∣∣ε3e3 − ε3d3(t)
∣∣α3 sign (e3 − d3(t))

−ε4ȧ03(t) (26)

Selecting the coordinate transform

τ = t/ε; zi(τ) = εiei; z =
[
z1 z2 z3

]T
;

di (τ) = εidi (t) , i = 1, 3; d2 (τ) = ε2a02 (t) ;

d4 (τ) = ε4ȧ03(t) (27)

we obtain z = Ξ(ε)e, and Eq. (26) can be written as

dz1
dτ

= z2;
dz2
dτ

= z3;

dz3
dτ

= −
2∑
i=1

ki |zi|αi sign (zi)

− k3
ε3α3

|(z3)|α3 sign (z3) + g(τ, z(τ)) (28)

where

g(τ, z(τ))

= −k1
{∣∣z1 − d1(τ)

∣∣α1 sign
(
z1 − d1(τ)

)
− |z1|α1 sign (z1)}
−k2

{∣∣z2 + d2(τ)
∣∣α2 sign

(
z2 + d2(τ)

)
− |z2|α2 sign (z2)} − d4(τ)

− k3
ε3α3

{∣∣z3 − d3(τ)
∣∣α3 sign

(
z3 − d3(τ)

)
− |z3|α3 sign (z3)} (29)

Since the nonlinear contraction mapping |xρi − xρi | ≤
21−ρi |x− x|ρi , ρi ∈ (0, 1], we obtain

δ = sup
(τ,z)∈R4

|g(τ, z(τ))|

≤
2∑
i=1

21−αikiL
αi
i ε

iαi + ε4La + 21−α3k3L
α3
3

≤ ερδ0 + 21−α3k3L
α3
3 (30)

where, δ0 =
2∑
i=1

21−αikiL
αi
i + La, and ρ =

mini∈{1,2,3} {min{4, iαi}} = α1.
From Proposition 8.1 in [18], Theorem 5.2 in [19] and Eq.

(30), for system (28), there exist positive constants µ and
Γ (z (0)), such that, for ∀τ ∈ [Γ (z (0)) ,∞),

∥z (τ)∥ ≤ µδγ ≤ µ(εα1δ0 + 21−α3k3L
α3
3 )γ (31)
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where µ is a constant defined in Theorem 5.2 [19]. Therefore,
from coordinate transformation (27), we obtain

∥ εe1 ε2e2 ε3e3 ∥ ≤ µ(εα1δ0 + 21−α3k3L
α3
3 )γ (32)

for ∀t ∈ [εΓ (Ξ(ε)e (0)) ,∞). Thus, the following inequality
holds:

|ei| ≤ L(δdi)
γ , i = 1, 2, 3, ∀t ∈ [εΓ (Ξ(ε)e (0)) ,∞) (33)

where L = µδγ0 ; δdi = εα1− i
γ +

21−α3k3L
α3
3

δ0
ε−

i
γ , i = 1, 2, 3.

If ε ∈ (0, 1) and L3 <
(

1−εα1

21−α3k3
δ0

) 1
α3 , then

0 < εα1 +
21−α3

δ0
k3L

α3
3 < 1 (34)

Furthermore, from Theorems 4.3 and 5.2 in [19], γ can be
chosen to be arbitrarily large. Hence, the requirement that γ
lies on

γ > max

{
4 log ε

log(εα1 + 21−α3

δ0
k3L

α3
3 )

, 1

}
(35)

is not restrictive. Therefore,

γ log(εα1 +
21−α3

δ0
k3L

α3
3 ) < 4 log ε (36)

i.e.,

εα1 +
21−α3

δ0
k3L

α3
3 < ε

4
γ (37)

From Eq. (35), γ > 4 holds. Therefore, from ε ∈ (0, 1), we
can obtain ε

4
γ < ε

i
γ , i = 1, 2, 3. Then

δdi = εα1− i
γ +

21−α3

δ0
k3L

α3
3 ε−

i
γ < 1 (38)

where i = 1, 2, 3. The choice of γ leads to γ > 1 in (33)
which implies that for δdi ∈ (0, 1), the ultimate bound (33)
on the estimation error is of higher order than the perturba-
tion. Consequently, the NSCO leads to perform rejection of
persistent disturbances.

Furthermore, assume there is no sensor error in signal a3(t),
i.e, a3 (t) = a03 (t) or L3 = 0, then (33) can be written as

|ei| ≤ Lεα1γ−i, i = 1, 2, 3, ∀t ∈ [εΓ (Ξ(ε)e (0)) ,∞) (39)

We know that α1γ − i > 1, i = 1, 2, 3. In fact, from
Theorems 4.3 and 5.2 in [19], γ can be chosen to be arbitrarily
large, and

γ > max

{
4

α1
, 1

}
=

4

α1
(40)

is not restrictive. Accordingly, for i = 1, 2, 3, we can obtain

α1γ − i > 1 (41)

It implies that, for ε ∈ (0, 1), the ultimate bound (39) on
the estimation error is of higher order than the perturbation.

For arbitrary ε ∈ (0, 1), from the Routh-Hurwitz Stability
Criterion, s3+ k3

ε3α3
s2+k2s+k1 is Hurwitz if k1 > 0, k3 > 0,

k2 > ε3α3k1/k3. This concludes the proof. �
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