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Abstract 13 

Neisseria meningitidis is normally a human nasopharyngeal commensal but is also capable of 14 

causing life-threatening sepsis and meningitis. N. meningitidis secretes several virulence-15 

associated proteins including Neisserial autotransporter lipoprotein (NalP), an immunogenic, 16 

type Va autotransporter harboring an S8-family serine endopeptidase domain. NalP has been 17 

previously characterized as a cell-surface maturation protease which processes other 18 

virulence-associated meningococcal surface proteins, and as a factor contributing to the 19 

survival of meningococci in human serum due to its ability to cleave complement factor C3. 20 

Here, recombinant NalP (rNalP) fragments were purified and used to investigate the 21 

interaction of NalP with host cells. Flow cytometry and confocal microscopy demonstrated 22 

binding and uptake of rNalP into different human cell types. High-resolution microscopy 23 

confirmed that internalized rNalP predominantly localized to the perinuclear region of cells. 24 

Abolition of rNalP protease activity using site-directed mutagenesis did not influence uptake 25 

or sub-cellular localization, but inactive rNalP (rNalPS426A) was unable to induce an increase 26 

in human brain microvascular endothelial cell metabolic activity provoked by proteolytically-27 

active rNalP. Our data suggests a more complex and multifaceted role for NalP in 28 

meningococcal pathogenesis than was previously understood which includes novel intra-host 29 

cell functions.  30 

 31 

Highlights: 32 

 Recombinant NalP is internalized by a variety of human cell types 33 

 Internalized NalP is localized predominantly to the perinuclear region of cells 34 

 Exposure to NalP provokes increases in cell metabolic activity  35 

 Effects on cell metabolic activity are dependent on NalP proteolytic activity 36 

 37 
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 40 

1. Introduction 41 

Neisseria meningitidis is an encapsulated Gram-negative diplococcus commonly 42 

carried in the human nasopharynx. Carriers usually remain asymptomatic, but rarely 43 

meningococci can reach the bloodstream which may lead to sepsis, and the cerebral-spinal 44 

fluid (CSF) which can result in meningitis [1]. N. meningitidis elaborates numerous virulence 45 

factors that facilitate colonization and virulence [2]. One important class, which are also 46 

found in many other Gram-negative bacteria, are the autotransporter (or type V-secreted) 47 

proteins [3]. These comprise an N-terminal signal peptide and C-terminal β-domain, which 48 

facilitate export of a central functional passenger domain across the Gram-negative inner and 49 

outer membranes, respectively. Following export, the passenger domain may be cleaved and 50 

released, either auto-catalytically or via a second protease, cleaved but remain non-covalently 51 

bound to the translocator domain, or remain uncleaved and displayed at the cell surface [4]. 52 

Autotransporter passenger domains undertake a range of virulence-associated functions 53 

including proteolytic, cytotoxic or adhesive activities [5].  54 

The functional passenger domain of Neisserial autotransporter lipoprotein (NalP), also 55 

termed autotransporter serine protease A (AspA), harbors an S8-family peptidase (subtilisin) 56 

domain [6, 7]. Additionally, NalP expression is phase-variable via slipped strand mispairing, 57 

a process mediated by a poly-cytosine tract within the protein-coding sequence [7, 8]. Auto-58 

catalytic proteolytic cleavage results in the release of a ca. 68-70 kDa passenger domain into 59 

the external environment [6, 7]. However, a proportion of the cleaved passenger domains 60 

remain, at least temporarily, anchored on the cell surface by an N-terminal lipid moiety [9]. 61 

This delayed or partial release facilitates the NalP-dependent proteolytic release of fragments 62 
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of other meningococcal surface proteins including: IgA1 protease; MspA (meningococcal 63 

serine protease A); App (adhesion and penetration protein); LbpB (lactoferrin-binding 64 

protein); and NHBA (Neisserial heparin binding antigen) [7, 10-14]. The consequences of the 65 

NalP-mediated release of meningococcal surface protein fragments on pathogenesis are 66 

beginning to be elucidated. For example, NalP-mediated release of NHBA abrogates 67 

extracellular DNA-mediated biofilm formation [15]. Furthermore, the NHBA-derived C2 68 

fragment released following cleavage by NalP alters endothelial integrity by producing 69 

reactive oxygen species resulting in the internalization of the VE-cadherin adherens junction 70 

protein [16].  71 

In addition to meningococcal targets, NalP has also been shown to cleave the host 72 

serum protein complement 3 (C3) [17]. NalP-mediated cleavage generates a functionally 73 

inactive C3a-like molecule, with the corresponding C3b-like fragment being rapidly 74 

inactivated by host serum factors resulting in the inhibition of C3b deposition on the bacterial 75 

surface and enhanced meningococcal serum resistance [17]. We hypothesized that, in 76 

addition to previously identified roles, NalP, like several other meningococcal autotransporter 77 

proteases [18-20], may also interact with host cells. Here we show uptake of NalP into 78 

various human cell types, and an increase in human brain microvascular endothelial cell 79 

metabolic activity which is dependent on NalP proteolytic activity.  80 

 81 

2. Materials and Methods 82 

2.1. Bacterial strains and culture conditions 83 

Escherichia coli strain JM109 (Promega) was used for expression of recombinant 84 

His6-tagged NalP passenger domain fragments. E. coli strain XL10-Gold (Agilent 85 

Technologies) was used for mutagenic plasmid construction. Strains were cultured at 37°C in 86 

Lysogeny broth (LB) or on LB agar supplemented with ampicillin (100 µg ml-1). N. 87 
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meningitidis strain MC58 (ATCC® BAA335™) was cultured at 37°C, in an atmosphere of 88 

air plus 5% CO2, on Columbia agar with chocolated horse blood (Oxoid). 89 

 90 

2.2. Construction of plasmids encoding recombinant NalP proteins 91 

Primers NalPF1 (CGCGGATCCCTGCATACCGGAGACTTTCC) and NalPR1 92 

(CGCGGATCCGGCGAGACTGTTGAAGATGCG) were used to amplify a fragment of ca. 2 kb 93 

encoding amino acids 101L to 784A from N. meningitidis MC58 nalP. After digestion with 94 

BamHI, the PCR product was ligated into BamHI-digested pQE30 to yield plasmid pOD1. A 95 

single-nucleotide mutation (T to G) at nucleotide position 1276 of nalP was introduced into 96 

pOD1 using the QuikChange Lightning site-directed mutagenesis kit (Agilent Technologies) 97 

for expression of rNalPS426A. The mutagenic reaction was undertaken following the 98 

manufacturer’s instructions and utilized primers t1276g S426A 99 

(CCGATTCAAATTGCCGGAACAGCCTTTTCCGCACC) and t1276g_antisense 100 

(GGTGCGGAAAAGGCTGTTCCGGCAATTTGAATCGG) to yield pOD1S426A. 101 

 102 

2.3. Protein expression and purification  103 

 rNalP and rNalPS426A were expressed in E. coli JM109 harboring pOD1, or 104 

pOD1S426A, respectively, and purified under non-denaturing conditions. Briefly, E. coli 105 

JM109 strains were grown to OD600 0.5 before being induced with 1 mM IPTG and incubated 106 

at 37°C for 3 h. Cells were harvested by centrifugation (4,200 × g for 10 min) and 107 

resuspended in 30 ml lysis buffer (50 mM Na2PO4, 300 mM NaCl and 20 mM imidazole, pH 108 

7.4) followed by sonication using a MSE SoniPrep 150 sonicator for 8 cycles (30s on, 30s 109 

off) on ice. The cell lysate was centrifuged at 4,200 × g for 15 min and the cleared lysate 110 

loaded onto a 1 ml Nickel-charged HisTrap FF column connected to a ÄKTAprime plus 111 

liquid chromatography system (GE Healthcare Lifesciences) equilibrated with 10 column 112 
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volumes of wash buffer (50 mM Na2PO4, 300 mM NaCl and 40 mM imidazole, pH 7.4). 113 

Proteins were eluted by step elution with appropriate buffer (50 mM Na2PO4, 300 mM NaCl 114 

and 300 mM imidazole, pH 7.4). A HiTrap column pre-packed with five milliliters of 115 

Sephadex G-25 Superfine (GE Healthcare Lifesciences) equilibrated with 5 column volumes 116 

of phosphate buffered saline (PBS) was used for buffer exchange. His6-tagged recombinant 117 

E. coli trigger factor protein (rTF), encoded by the plasmid pCold TF (Takara Bio), was 118 

purified as previously described [18]. Protein concentration was measured using the Pierce 119 

BCA protein assay kit (Thermo Fisher Scientific) following endotoxin removal using Pierce 120 

High Capacity Endotoxin removal spin columns (Thermo Fisher Scientific).  121 

 122 

2.4. SDS-PAGE and immunoblot analysis 123 

Proteins electrophoretically separated using polyacrylamide mini gels (Mini-Protean 124 

III; Bio-Rad) were stained with SimplyBlue™ SafeStain (Thermo Fisher Scientific) for 1 h. 125 

Alternatively proteins were transferred to nitrocellulose membranes and probed with rabbit 126 

polyclonal anti-NalP [6] or mouse anti-pentahistidine antibody (Qiagen) diluted 1:5,000 or 127 

1:2,000, respectively, in blocking buffer (5% [w/v] non-fat dry milk, 0.1% [v/v] Tween 20 in 128 

1 × PBS) and incubated for 2 h. Following washing in PBS with 0.1% Tween 20 (PBST), 129 

membranes were incubated for 2 h with goat anti-rabbit (or anti-mouse) IgG-alkaline 130 

phosphatase conjugate (Sigma) at a dilution of 1:30,000 in blocking solution. After washing 131 

with PBST, blots were developed using BCIP/NBT-Blue liquid substrate (Sigma). 132 

 133 

2.5. Cell culture 134 

All cells were maintained at 37°C in a humidified atmosphere of 5% CO2. Cell culture 135 

reagents were purchased from ScienCell unless otherwise stated. Human brain microvascular 136 

endothelial cells (HBMECs-ATCC) were cultured on human fibronectin-coated flasks (BD 137 
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Biosciences) in basal endothelial cell medium, supplemented with 5% (v/v) heat-inactivated 138 

fetal bovine albumin (FBS), 1 × endothelial cell growth supplement and 1% (v/v) antibiotic / 139 

anti-mycotic solution. Dendritic cells were generated as previously [18], and subsequently 140 

grown in RPMI (Sigma) supplemented with 10% FBS and 1% antibiotic / anti-mycotic. 141 

Human brain (cerebral cortex) astrocytes (ScienCell) were cultured in astrocyte growth 142 

medium supplemented with 5% FBS, 1 × astrocyte growth supplement and 1% antibiotic / 143 

anti-mycotic. Hep-2 cells were cultured in DMEM (Sigma) supplemented with 10% FBS, 1 × 144 

non-essential amino acids (Sigma) and 1% antibiotic / anti-mycotic.   145 

 146 

2.6. Flow cytometry 147 

HBMECs were cultured on fibronectin-coated 24-well plates for 16 h from a seeding 148 

density of 5 × 104 cells ml-1. rNalP was atto488-labelled using the Lightning-Link 149 

conjugation kit (Innova Biosciences) according to the manufacturer’s instructions. Cells were 150 

treated with atto488 alone, atto488-labelled rNalP or unlabeled rNalP (250 nM final 151 

concentration dissolved in media) for 8 h. Cells were washed with PBS, fixed with 2% 152 

paraformaldehyde for 10 min, and washed again with PBS before being detached using 153 

trypsin-EDTA (Sigma). Harvested cells were washed twice with PBS and finally resuspended 154 

in 500 µl of PBS. Samples were run on a FC500 flow cytometer (Beckman Coulter). 100,000 155 

events were recorded, and acquired data was analyzed using Kaluza v1.3 software. 156 

 157 

2.7. Cell internalization assays 158 

Proteins were Cy5-labelled using the Lightning-Link conjugation kit (Innova 159 

Biosciences) according to the manufacturer’s instructions. Cells were seeded onto acid-160 

etched 12 mm glass coverslips (pre-coated with 0.1% human fibronectin for HBMECs) in 24-161 

well plates at a seeding density of 5 × 104 cells per well and incubated for 16 h. Cells were 162 
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treated with labelled rNalP or rTF (250 nM final concentration dissolved in media) for 45 163 

min, 2 h, 4 h or 8 h. After treatment, cells were washed thrice with PBS, fixed in 4% 164 

paraformaldehyde for 10 min, and rinsed thrice in PBS. Cells were mounted using proLong 165 

Gold anti-fade with DAPI (Life Technologies) to stain cell nuclei. Confocal imaging was 166 

performed using a Zeiss LSM 700 confocal laser-scanning microscope using a Plan-167 

Apochromat 63×/1.40 Oil DIC M27 objective with ZEN 2009 operating software, and 168 

equipped with lasers at 633 and 405 nm for excitation of Cy5 and DAPI, respectively. The 169 

images collected in the two channels were later merged and analyzed using Zeiss LSM and 170 

ImageJ software. Structured illumination microscopy (SIM) images were captured on a Zeiss 171 

Elyra PS.1 microscope using an Objective alpha Plan-Apochromat 100×/1.46 Oil DIC M27 172 

objective with ZEN 2012 acquisition and processing software. Samples were excited using 173 

the 642 and 405 nm laser lines and fluorescence was detected using the LP 655 filter set. 3D 174 

reconstruction was carried out using ZEN 2012 Black software. 30,000 images were 175 

processed where single molecule events were identified with the peak intensity to noise value 176 

set to ten.  177 

 178 

2.8. Human Complement 3 (C3) protein cleavage assay 179 

This was performed as previously described [17] with minor modifications. Briefly, 180 

40 nM recombinant protein was mixed with 250 ng human complement 3 (C3; Sigma) in 181 

PBS and incubated at 37°C with shaking for 16 h. C3 cleavage was determined by 182 

immunoblot analysis using goat anti-human C3 antibody (diluted 1:5000; Sigma) and rabbit 183 

anti-goat IgG alkaline phosphatase conjugate (diluted 1:30000; Sigma). 184 

 185 
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2.9. XTT assay 186 

HBMECs were seeded in 96-well plates (1 × 104 cells well-1) and grown overnight as 187 

outlined in section 2.5. Cells were supplied with serum-free media and incubated at 37°C 188 

with 5% CO2 for 1 h before the addition of recombinant protein (40 nM final concentration) 189 

and XTT detection solution (Cell Signaling Technologies). Cells were incubated for 37°C 190 

with 5% CO2 for 750 min and absorbance measurements (450 nm) taken using a Spark 191 

microplate plate reader. Each test was performed in triplicate wells and on a least three 192 

independent occasions. GraphPad Prism v7 was used to analyze the data using two-way 193 

ANOVA and Tukey’s multiple comparison test. A p value < 0.05 was considered statistically 194 

significant. 195 

 196 

2.10. Histone clipping 197 

Recombinant core histones (New England Biolabs; 200 μg ml-1 final concentration) and 198 

purified recombinant protein (40nM final concentration) were mixed in a total volume of 40 199 

µl PBS, and incubated at 37°C for 16 h. Reactions were stopped by the addition of 5 × 200 

sample buffer (0.62 M Tris-HCl [pH 6.8], 5% SDS, 25% glycerol, 12.5% β-mercaptoethanol, 201 

0.25 M DTT, 0.002% bromophenol blue), followed by immediate boiling for 5 min. Aliquots 202 

of cleavage products were subjected to SDS-PAGE, and gels strained with SimplyBlue™ 203 

SafeStain (Thermo Fisher Scientific).  204 

 205 

3. Results 206 

3.1. NalP is internalized by human cells 207 

The passenger domain of the group B meningococcal strain MC58 NalP protein was 208 

expressed in E. coli and purified under non-denaturing conditions to yield rNalP. Co-209 

incubation with human brain microvascular endothelial cells (HBMECs) followed by 210 
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examination by flow cytometry showing a clear shift in fluorescence signal in HBMECs 211 

treated with fluorescently labelled rNalP compared with HBMECs treated with label alone or 212 

with unlabeled rNalP, suggesting the direct interaction of rNalP with host cells (Fig. 1). 213 

Confocal laser scanning microscopy was subsequently used to visualize rNalP following co-214 

incubation with HBMECs (Fig. 2). From 2 h co-incubation, internalized rNalP was primarily 215 

apparent in crescent-like perinuclear accumulations (Fig. 2). In contrast, an unrelated His6-216 

tagged recombinant protein (E. coli trigger factor; rTF), which was purified using the same 217 

methodology as rNalP, was not internalized, demonstrating cellular specificity for rNalP 218 

uptake (Fig. 2). Localization of internalized rNalP predominantly to the perinuclear region of 219 

HBMECs was confirmed using high-resolution microscopy (Fig. S1). Examination by 220 

confocal microscopy of other human cell types, including dendritic cells (DCs), epithelial 221 

cells (Hep-2) and neural cells (astrocytes) showed that rNalP was also taken up by these cell 222 

types and similarly localized to the cytoplasmic and/or perinuclear regions (Fig. S2).  223 

 224 

3.2. Uptake of proteolytically-active rNalP promotes an increase in HBMEC metabolic 225 

activity 226 

Site-directed mutagenesis was used to replace the catalytic serine residue of rNalP 227 

with alanine to generate rNalPS426A. The abolition of proteolytic activity was confirmed by 228 

the inability of rNalPS426A to generate a ca. 100-kDa α-chain fragment following incubation 229 

with the NalP target human complement factor C3 [17] (Fig. S3). Examination by confocal 230 

microscopy showed no apparent differences in the localization of rNalPS426A or rNalP in 231 

HBMECs after co-incubation of cells with these proteins, showing that rNalP proteolytic 232 

activity was not required for uptake or subsequent sub-cellular localization (Fig. 3).  233 

 To examine the cellular response to NalP, HBMECs were monitored post-exposure to 234 

rNalP or rNalPS426A using the XTT assay, which measures the ability of metabolically active 235 
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cells to reduce tetrazolium salt. From 270 min onwards, cells exposed to rNalP exhibited a 236 

statistically significant increase in absorbance compared to untreated cells (Fig. 4). In 237 

contrast, at no time point did HBMECs exposed to rNalPS426A or rTF show significantly 238 

different absorbance to untreated cells. As expected, cells exposed to the known apoptosis-239 

inducing agent staurosporine, which would be expected to reduce cellular metabolic activity, 240 

had a significantly reduced absorbance evident from 120 min post-exposure. These data show 241 

that rNalP can induce an increase in HBMEC metabolic activity and this effect is mediated 242 

via the proteolytic activity of rNalP.  243 

 We previously showed that the meningococcal autotransporter proteins App and 244 

MspA are capable of clipping the histone H3 [18]. To investigate potential cellular targets for 245 

rNalP proteolytic activity, we examined the ability of rNalP and rNalPS426A to cleave human 246 

histones (H2A, H2B, H3.1 and H4) but the absence of rNalP-specific cleavage products 247 

confirmed a lack of histone clipping activity (Fig. S4).  248 

 249 

4. Discussion 250 

 NalP is an autotransporter protease which cleaves itself, and several other 251 

meningococcal proteins, on the outer surface of the bacterium [7, 10-14]. Additionally, NalP 252 

cleaves human C3, which contributes to meningococcal survival in human serum [17]. Here 253 

we provide evidence that NalP is internalized by human cells and induces alterations in host 254 

cell biology. This is reminiscent of findings from previous studies on the IgA1P, App and 255 

MspA meningococcal serine protease autotransporters [18, 20, 21]. Following cellular uptake 256 

and trafficking, IgA1P cleaves the p65/RelA component of NF-kB in the nucleus, thus 257 

silencing the expression of several NF-kB-responsive genes, ultimately leading to sustained 258 

activation of c-Jun N-terminal kinase and apoptosis [20]. App and MspA are also internalized 259 

and induce apoptosis but, in contrast to IgA1P, MspA/App-mediated apoptosis occurs via 260 
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cleavage of histones [18]. The receptor of IgA1P uptake is unknown, whilst uptake of App 261 

and MspA requires the cooperative activity of the mannose and transferrin receptors [18]. 262 

The wide range of cell types able to mediate NalP internalization (including immune, 263 

epithelial, endothelial and neural cells) suggests shared receptor and internalization 264 

machineries, but this will require further experimentation. Additional work is also required to 265 

define the region(s) of NalP which are involved, although our data shows that uptake is not 266 

dependent on the proteolytic ability of NalP.  267 

The contribution of NalP to pathogenesis remains incompletely understood, in part 268 

because of its low abundance in culture supernatants, which has impeded the purification of 269 

experimentally useful amounts of active NalP directly from meningococcal cultures. 270 

Consequently, previous studies have utilized E. coli-derived recombinant NalP fragments 271 

purified under denaturing conditions (i.e. non-proteolytically active) or concentrated 272 

secretome preparations derived from N. meningitidis, which although containing active NalP, 273 

lacked purity. Furthermore, wild-type and nalP mutant-derived secretomes are difficult to 274 

compare directly given the complex alterations in secreted protein profile that are NalP-275 

expression dependent [7, 9-14, 20]. The ability of our rNalP preparation, which was purified 276 

under non-denaturing conditions, to cleave human C3, confirmed the findings of Del Tordello 277 

et al., [17], demonstrated that the recombinant protein was catalytically active, and 278 

importantly provided the opportunity to specifically address the influence of NalP and its 279 

proteolytic activity in inducing changes in host cell biology. This was determined using the 280 

XTT assay – an assay based on the ability of dehydrogenase enzymes produced by 281 

metabolically-active cells to reduce XTT to an orange formazan dye [22]. Significant 282 

alterations in the ability to reduce XTT usually result from changes in cell viability following 283 

exposure to a treatment. Additional work is required to investigate if the positive effect 284 

mediated by rNalP occurs in other human cell types, whether it results from increased 285 
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proliferation, and to define the mechanism by which the effect occurs. Our data confirm, 286 

however, that the observed effect is not mediated via NalP-mediated histone clipping.    287 

In summary, the use of proteolytically-active recombinant NalP has generated new 288 

insights into the multifaceted role of NalP in the complex interaction between the 289 

meningococcus and its obligate host by revealing that NalP is internalized by host cells and 290 

that NalP proteolytic activity results in an increase in cell metabolic activity.  291 
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 368 

Fig. 1. Flow cytometric analysis showing the binding of rNalP to human brain 369 

microvascular endothelial cells (HBMECs). HBMECs treated with atto488 alone (red) 370 

were compared with HBMECs treated with atto488-rNalP (green) and unlabeled rNalP 371 

(yellow). Data was acquired on a Beckman Coulter FC500 flow cytometer and is displayed as 372 

a histogram. The histogram area in D represents the population of fluorescently labelled 373 

HBMECs.  374 
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 375 

Fig. 2. Cellular uptake of rNalP into human brain microvascular endothelial cells 376 

(HBMECs). HBMECs were left untreated or co-incubated with Cy5-labelled rTF or rNalP 377 

for 45 min (A), 2 h (B), 4 h (C) or 8 h (D). Cell nuclei were stained with DAPI. Cells were 378 

washed and fixed before analysis by confocal laser microscopy. All images were scanned at a 379 

resolution of 1024 × 1024 pixels, using the same laser and gains settings. The cells are 380 

representative of cells observed from three independent experiments. Scale bars = 20 µm.  381 
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 382 

 383 

Fig. 3. rNalP proteolytic activity is not required for cellular uptake and perinuclear 384 

localization by HBMECs. HBMECs were treated with Cy5-labelled rNalPS426A (A) or rNalP 385 

(B) for 8 h. Cell nuclei were stained with DAPI, washed and fixed before scanning using 386 

confocal laser microscope. All images were scanned at a resolution of 1024 × 1024 pixels, 387 

using the same laser and gains settings. The cells are representative of cells observed from 388 

multiple experiments. Scale bars = 20 µm.  389 
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 390 

 391 

Fig. 4. Exposure of HBMECs to rNalP induces an increase in cell metabolic activity. 392 

HBMECs were treated with medium alone, rTF, rNalP, rNalPS426A or staurosporine in 393 

triplicate. Cell metabolic activity was assessed using the XTT assay kit via absorbance 394 

readings at 450 nm over 750 min. Values shown are the mean ± SE from three independent 395 

experiments and were analyzed by two-way ANOVA and Tukey’s multiple comparison test. 396 

Significant increases in absorbance were induced by rNalP (p<0.05 from 270 min; p<0.005 397 

from 600 min). rNalPS426A and rTF induced no significant difference compared to media 398 

alone at any time point, whilst staurosporine induced a significant reduction in absorbance 399 

compared to treatment with media alone (p<0.01 from 120 min; p<0.001 from 150 min; 400 

p<0.0001 from 180 min).  401 
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