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The correspondence between mathematical structures and experimental systems is the basis of the

generalizability of results found with specific systems and is the basis of the predictive power of

theoretical physics. While physicists have confidence in this correspondence, it is less recognized in

cellular biophysics. On the one hand, the complex organization of cellular dynamics involving a

plethora of interacting molecules and the basic observation of cell variability seem to question its

possibility. The practical difficulties of deriving the equations describing cellular behaviour from first

principles support these doubts. On the other hand, ignoring such a correspondence would severely

limit the possibility of predictive quantitative theory in biophysics. Additionally, the existence of

functional modules (like pathways) across cell types suggests also the existence of mathematical

structures with comparable universality. Only a few cellular systems have been sufficiently

investigated in a variety of cell types to follow up these basic questions. IP3 induced Ca2þsignalling

is one of them, and the mathematical structure corresponding to it is subject of ongoing discussion.

We review the system’s general properties observed in a variety of cell types. They are captured by a

reaction diffusion system. We discuss the phase space structure of its local dynamics. The spiking

regime corresponds to noisy excitability. Models focussing on different aspects can be derived

starting from this phase space structure. We discuss how the initial assumptions on the set of

stochastic variables and phase space structure shape the predictions of parameter dependencies of the

mathematical models resulting from the derivation. VC 2018 Author(s). All article content, except
where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5021073

IP3 induced Ca2þ signalling is one of the most versatile

and universal cellular signalling systems and a popular

model system in non-linear dynamics for pattern forma-

tion in noisy systems. We discuss the experimental evi-

dence allowing for identification of the mathematical

structure to which it corresponds, and a variety of con-

cepts for deriving simplified models from it.

I. INTRODUCTION

In spring 1995, I (MF) joined John (Jack) L. Hudson’s

lab in Charlottesville, Virginia, to work with him on dynamic

clustering of globally coupled non-linear oscillators or a topic

from pattern formation far from thermodynamic equilibrium.

James D. Lechleiter and Patricia Camacho were in

Charlottesville at this time, too. James had just published his

results on the effect of energizing mitochondria on Ca2þ

waves in Xenopus oocytes,1 which had several aspects very

interesting for the theory of pattern formation. According to

that theory, free ends of waves in excitable systems should

either form a spiral or recede. The free ends of Ca2þ waves

with energized mitochondria neither formed spirals nor

receded but showed different dynamics. Jack suggested work-

ing on these patterns. This was my first biophysical project

and it redirected my career. Jack worked experimentally and

developed also the mathematical models explaining his

experiments. His high standards and expectations towards

theory close to experiments substantially influenced all of my

later scientific and educational work.

The first years of this biophysical research led to results

on spiral instabilities, spiral pattern regimes, and generation

and annihilation dynamics,2 but could not explain Lechleiter’s

experiments. The underlying mathematical structure of the

model did not correspond to the experimental system. When
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we replaced the model with a direct transition from excit-

ability to an oscillatory regime by a model with a direct

transition from excitability to bistability,3 it explained not

only the mitochondria experiments4 but also experiments

which were not taken into account when it was developed.5

This exemplifies how the basic mathematical structure of a

non-linear dynamical system defined by its set of bifurca-

tions and their relation, often called the bifurcation diagram

and phase space structure, is essential for the predictive

power of a theoretical description.

In physics, the fundamental equations like Newton’s first

law, the variational principles of classical mechanics, or the

Schr€odinger equation of quantum mechanics have been devel-

oped with simple examples. Nonetheless, they are stunningly

predictive far beyond the systems used in their formulation.

This predictive power originates from a correspondence

between the experimental objects and mathematical structures.

The mechanics of macroscopic objects corresponds to varia-

tional principles and differential equations, and the behaviour

of microscopic objects corresponds to operator theory in

Hilbert spaces. The identification of the correct mathematical

structure corresponding to an observation provides predictive

power to a mathematical theory in science. Mathematical mod-

els formulated within mathematical structures not correspond-

ing to the observations still may reproduce the measurements

used for their development but rarely are predictive beyond

them as illustrated by the history of atom models.

In general, the biophysics of cells has to obey the basic

laws of physics—the first principles. But cells consist of

many components and interactions and therefore specifying

the fundamental equations of physics to a living cell is close

to impracticable. The approach of theoretical biophysics is

consequently to consider the components and interactions

assumed to be most relevant for a specific process of interest

and to verify the assumptions retrospectively by contrasting

model predictions with experimental results. But does the

lack of models derived from first principles for cellular

behavior also mean that the correspondence of mathematical

structures to observations has no meaning in cellular biophys-

ics? The predictive power growing out of it makes it worth to

follow up on this only seemingly philosophical question.

Only a few cellular dynamical systems are currently

characterized well enough for identifying the mathematical

structure corresponding to them. Intracellular Ca2þ dynamics

is one of them. The Ca2þ pathway translates extracellular

signals into intracellular responses by increasing the cyto-

solic Ca2þ concentration in a stimulus dependent pattern.6–8

The concentration increase can be caused either by Ca2þ

entry from the extracellular medium through plasma mem-

brane channels or by Ca2þ release from internal storage

compartments. In the following, we will focus on inositol

1,4,5-trisphosphate (IP3)-induced Ca2þ release from the

endoplasmic reticulum (ER), which is the predominant Ca2þ

release mechanism in many cell types. IP3 sensitizes Ca2þ

channels (IP3Rs) on the ER membrane for Ca2þ binding,

such that Ca2þ released from the ER through one channel

increases the open probability of neighboring channels. This

positive feedback of Ca2þ on its own release channel is

called Ca2þ-induced-Ca2þ-release (CICR). Opening of an

IP3R triggers a Ca2þ flux into the cytosol due to the large con-

centration differences between the two compartments, which

is in the range of 3–4 orders of magnitude. The released Ca2þ

is removed from the cytosol either by sarco-endoplasmic

reticulum Ca2þ ATPases (SERCAs) into the ER or by plasma

membrane Ca2þ ATPases into the extracellular space.

IP3Rs are spatially organized into clusters of up to about

fifteen channels. These clusters are scattered across the ER

membrane with distances of 1–7 lm.9–13 CICR and Ca2þ dif-

fusion couple the state dynamics of the channels. Given that

the diffusion length of free Ca2þ is less than 2 lm due to the

presence of Ca2þ binding molecules in the cytoplasm and

SERCAs, the coupling between channels in a cluster is much

stronger than the coupling between adjacent clusters.14 The

structural hierarchy of IP3Rs from the single channel to clus-

ters shown in Fig. 1 is also reflected in the dynamic responses

of the intracellular Ca2þ concentration as revealed through

fluorescence microscopy and simulations.9,15–17 Openings of

single IP3Rs (blips) may trigger collective openings of IP3R

within a cluster (puffs), while Ca2þ diffusing from a puff site

can then activate neighboring clusters, eventually leading to a

global, i.e., cell wide, Ca2þ spike.13,16,18,19 Repetitive sequen-

ces of these Ca2þ spikes encode information that is used to

regulate many processes in various cell types.6,20,21

Ca2þ exerts also a negative feedback on the channel

open probability, which acts on a slower time scale than the

positive feedback, and has a higher half maximum value than

CICR.9,15,18,22–24 This Ca2þ-dependent negative feedback

helps terminating puffs, and therefore the puff probability

FIG. 1. Hierarchical organization of IP3 induced Ca2þ signalling with con-

centration signals of the corresponding structural level. The elementary build-

ing block is the IP3R channel (bottom). It opens and closes stochastically. An

open channel entails Ca2þ release into the cytosol due to the large concentra-

tion difference between the ER and the cytosol. Since channels are clustered,

opening of a single channel, which is called a blip, leads to activation of other

channels in the cluster, i.e., a puff (middle). The cluster corresponds to a

region with Ca2þ release with a radius Rcl that is fixed by the number of open

channels. The stochastic local events are orchestrated by diffusion and CICR

into cell wide Ca2þ waves, which form the spikes on cell level (top).

Reprinted with permission from A. Skupin, H. Kettenmann, and M. Falcke,

PLoS Comput. Biol. 6, e1000870 (2010). Copyright 2010 ICSB.36
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immediately after a puff is smaller than the stationary value

but typically not 0. Channel clusters recover within a few sec-

onds to the stationary puff probability.9,15,18,22–24

The negative feedback terminating release spikes causes

an absolute refractory period Tmin as part of the interspike

intervals (ISIs) lasting tens of seconds.25–27 The molecular

mechanism of this feedback is pathway and cell type specific

and not always known although a negative feedback on the

IP3 concentration might be involved.28,29 Hence, the nega-

tive feedback that determines the time scale of interspike

intervals is different from the feedback contributing to inter-

puff intervals and requires global (whole cell) release events.

At very strong stimulation, cells exhibit a raised Ca2þ

concentration of much longer duration than spikes which

may oscillate,30,31 burst,32,33 or is rather constant.1,34,35

Typically, the amplitude of these oscillations is smaller than

the spike amplitude. In the following, we review our current

understanding of experimental results on Ca2þ signaling and

how it illustrates the relation between mathematical structures

and observations in biophysics.

II. EXPERIMENTAL RESULTS ON THE PHASE SPACE
STRUCTURE AND DYNAMICAL PROPERTIES OF IP3

INDUCED Ca21 RELEASE

The pathway exhibits local Ca2þ release through individ-

ual channel clusters at low [IP3], spiking at intermediate [IP3]

and an elevated cytosolic [Ca2þ]i at high [IP3]. A basic obser-

vation in all experiments is that cell-to-cell variability with

respect to Ca2þ spiking behavior is large but not completely

arbitrary. It obeys some preserved characteristics, which have

been confirmed for all cell types in which they have been

investigated. We will focus on these general characteristics

since they obviously reflect essential system properties.

It is convenient for the presentation of experimental

results to introduce also a few mathematical concepts. In math-

ematical terms, intracellular Ca2þ dynamics are described by

reaction-diffusion equations like

@X

@t
¼ DDX þ FðX;~r; t; pÞ; (1)

where X is a vector of concentrations, t is time,~r is the space

coordinate, D is a diagonal diffusion matrix, D the Laplace

operator, Fð�Þ is a non-linear function describing the local

dynamics, and p is a vector of parameters. X comprises free

cytosolic Ca2þ, Ca2þ bound to Ca2þ-binding molecules, IP3,

and free and bound Ca2þ in the lumen of the ER and mito-

chondria in a rather general formulation of the dynamics.

In general, non-linear dynamics reaches asymptotically

attractors in phase space which may be stationary states or

manifolds of higher dimension. Attractors with higher

dimension like limit cycles, tori, or even chaotic attractors

potentially describe the Ca2þ spiking behaviour. They may

be caused by the dynamics of spatial modes [eigenfunctions

of the linearized rhs of Eq. (1)] or by the local dynamics,37

i.e., may occur with DX � 0 also. Spatial modes have been

observed with the Ca2þ dynamics of excitation contraction

coupling in cardiac myocytes,38,39 which is a driven system

in terms of dynamical systems theory. However, there is no

experimental evidence for attractors of the autonomous and/

or IP3 induced intracellular Ca2þ dynamics caused by spatial

modes, and hence we can focus on properties of the local

dynamics.

The local dynamics of Eq. (1) are the behaviour of the

IP3R clusters. The majority of the modelling literature

assumes oscillatory local dynamics in the spiking regime

since measured spikes are repetitive. Indeed, spike sequences

even with a CV of 0.3–0.4 of the ISI appear surprisingly reg-

ular in visual inspection. However, a closer look could not

confirm this assumption.24,40

Clusters are dynamically coupled by Ca2þ diffusion,

which needs to be reduced for investigations focussing on the

local dynamics. Such an uncoupling can be achieved by high

intracellular concentrations of the Ca2þ buffer EGTA. The

elemental event of the local dynamics is the stochastic open-

ing of channels in a cluster. The first open channel entails

with some probability opening of more channels in the cluster

causing a puff. Puffs last typically a few tens of ms but with

large scatter.13,41 The probability of triggering calcium puffs

is linearly related to the number of IP3R in a cluster.42 Puff

sequences at a given cluster exhibit some correlation between

amplitude and subsequent interpuff intervals, a weak correla-

tion between interpuff intervals and subsequent amplitude,

but no detectable correlation between consecutive ampli-

tudes.41 Both puff amplitude and frequency increase and satu-

rate with increasing stimulation of cells.42

Typical interpuff intervals last a few seconds,13,24,41,42

and interspike intervals are in the range from about 20 s to

a few minutes. If the local dynamics were oscillatory and

caused the sequence of spikes, the time scale of the ISI should

be detectable as a temporal modulation of properties of the

puff sequence at a given site. That has not been found.24 A

modulation of puff sequences on the ISI time scale could not

be detected and no evidence of an oscillatory regime of the

local dynamics has been observed.24 The ISI time scale has

only been observed on cell level. Consequently, spikes are

a collective phenomenon requiring coupling of clusters.

Another set of experiments demonstrated that indeed the aver-

age ISI depends sensitively on the intracellular buffer concen-

tration modulating the strength of spatial coupling.40 This

confirms the results of the analysis of the local dynamics.

These experimental results are supported by theoretical

investigations. The Ca2þ concentration at closed clusters is the

resting concentration in the range of �100 nM. Detailed simu-

lations of the concentration dynamics in the immediate vicinity

of channels14 showed that concentrations at open channels are

high (>20 lM). The dynamic range of the regulatory binding

sites for both the positive and negative feedback of Ca2þ to the

open probability ranges from a few hundred nM to micromolar

values below 10 lM.43–45 Oscillatory dynamics require con-

centration values in the dynamic range. However, with these

large concentration changes, the system essentially never is in

this dynamic range and the regime of the deterministic limit of

the cluster dynamics is either excitable or bistable (except tiny

parameter ranges).17

If channels are sufficiently sensitized for Ca2þ binding,

puffs may cooperate to set off a global release spike spread-

ing from the initiating site into the cell in a wave like

045115-3 Falcke et al. Chaos 28, 045115 (2018)



manner. Waves occur if a critical number of releasing clusters

is reached.16,46,47 The randomness of puffs causes randomness

of spike timing with a linear relation between the standard

deviation r of interspike intervals and the average Tav

r ¼ a Tav � Tminð Þ (2)

as shown in Fig. 2 and further for 8 cell types and 10 condi-

tions27,40,48–50 (see also Ref. 51). The slope a of this relation

between SD and average is the same for all cells of the same

type stimulated with the same agonist27,40,48,49,52 and robust

against changes in stimulation strength,27 pharmacological

perturbations,27 changes in buffering conditions,40 and the

large cell variability. It has been verified even in cells not

exhibiting clustering of channels and puffs.49 Values of a
are, for example, about 0.2 for hepatocytes stimulated with

vasopressin, 0.25 for human embryonic kidney (HEK) cells

stimulated with carbamyl choline (CCh), 0.37 for hepatocytes

stimulated with phenylephrine,27 0.7 for processed lipoaspirate

(PLA) cells,52 and close to 1 for spontaneously spiking astro-

cytes.40 Consequently, the standard deviation is of the same

order of magnitude as the average ISI.

The standard deviation of ISI of oscillatory systems

moving on a limit cycle in phase space and perturbed by

noise is typically smaller than the values measured for Ca2þ

spiking,53 and/or the cumulant relation may exhibit a nega-

tive slope.53 Varying parameter values across the range cov-

ered by cell variability and the perturbations applied in two

studies27,40 cause loss of a unique relation between r and

Tav
53 with these oscillatory systems since the period and the

noise causing the standard deviation are determined by dif-

ferent processes. Thus the robustness of a against cell vari-

ability and perturbations can hardly be reconciled with an

oscillatory dynamics since all these parameter variations

against which a is robust would need to affect the processes

setting the average and the processes setting the SD in exactly

the way conserving the CV. But since spike generation is sto-

chastic, the parameters control only the spike generation

probability, and the type of stochastic process—e.g., inhomo-

geneous Poisson—fixes the relation between Tav and r.54

The second parameter of Eq. (2), the absolute refractory

period Tmin, was also found to be the same for all individual

cells of the same type stimulated with the same agonist.27,40

When Tmin has passed, the puff probability recovers from 0

gradually to its asymptotic value. This slow recovery delays

initiation of the next spike. That spike may occur during

recovery, if the asymptotic spike generation probability is

large compared to the recovery rate, or after recovery in the

opposite case. The contribution of this stochastic part of the

ISI to the total average ISI has been thoroughly investigated

and is well known. It contributes typically 40%–70% to the

total average ISI, and the measured range is from 8% to 95%

contribution.27,40,48–50 The recovery reduces also the SD (of

the stochastic part) of the ISI.27,40,48–50 The slower the recov-

ery, the smaller is the ratio of SD to average ISI (coefficient

of variation CV).54

The wave-nucleation like generation of global release

spikes as well as the ISI statistics strongly suggests excitabil-

ity as the dynamic regime of IP3 induced Ca2þ spiking in

agreement with the analysis of the local dynamics. Excitable

systems exhibit a stationary state which is stable against

small perturbations. Perturbations above the excitation

threshold are amplified to a transition to the excited state.

The stochastic behavior of channel clusters causes incidental

local transitions to the excited state, which then spreads with

some probability into the whole cell. The resulting large

fraction of open clusters—i.e., a release spike—causing a

high Ca2þ concentration and high open probability are the

excited state of Ca2þ dynamics. This state is terminated by

negative feedback acting on a slower time scale than the

excitation. The probability for generating this supercritical

local excitation fixes the average stochastic part Tav�Tmin

and the standard deviation r.

The complete distribution of ISI cannot be easily deter-

mined from experimental data since measured spike trains

are not longer than about 60 ISI. Fusion of ISI sequences

normalised by Tav have been used as a surrogate data set

and led to skewed distributions with an absolute refractory

period.55 More sophisticated methods based on the time

rescaling theorem and Kolmogorov-Smirnov tests for com-

parison of measured and hypothetical distributions identified

an inhomogeneous Gamma distribution as the most likely

experimental ISI distribution with time dependent stimu-

lus.56 Distributions of ISI obtained with these methods and

constant stimulation are shown in Fig. 3.

The response of the average ISI to stimulation with

extracellular agonists has features applying to all of the four

plasma membrane receptors for which it has been investi-

gated.27 On that basis, we assume them also to be general

features of the system. Tmin is not affected by stimulation, as

we have learned from the robustness properties of Eq. (2),

already. Stimulation controls the average stochastic part

Tav�Tmin of the ISI. The concentration response has been

FIG. 2. Variability in Ca2þ signals. (a) The transient cytosolic Ca2þ concen-

tration of an astrocyte stimulated with 10 lM adenosintriphosphat (ATP)

(upper panel) exhibits some variability as indicated by the variable individual

ISIs (lower panel). (b) An astrocyte of the same experiments shows slower and

more irregular spiking illustrating cell-to-cell variability. (c) The systematic

analysis of the standard deviation r of ISI versus the average ISI Tav for HeLa

cells stimulated with 100lM histamine reveals a linear dependence in accor-

dance with the moment relation (2) where each data point corresponds to the

characteristic of an individual cell. (d) The r-Tav relation of astrocytes stimu-

lated with 10 lM ATP exhibits also a linear dependence with a different slope

than HeLa cells. Tav � Tmin is the average stochastic part of the ISI.
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established by applying steps in the concentration a of the

stimulating agonist.27 The change of the average stochastic

part of the ISI due to this concentration step is proportional

to the average stochastic part at the lower agonist concentra-

tion Tav1 (Ref. 27)

DTav ¼ b Tav1 � Tminð Þ: (3)

Analysis of measurements revealed that b does not depend

on the agonist concentration,27 which entails an exponential

dependency on a

Tav ¼ Tref
st e�c a�arefð Þ þ Tmin: (4)

Tref
st is the average stochastic part measured at the reference

concentration aref. This prefactor of the exponential is cell

specific and picks up all the cell variability. The constant c
in the exponent is the same for all cells of a given cell type

stimulated with the same agonist. Equation (4) does not bear

directly information on the dynamic regime of IP3 induced

Ca2þ spiking, but it defines clear constraints to its theory.

III. BASIC REQUIREMENTS AND CONCEPTS FOR
MODELLING OF IP3 INDUCED INTRACELLULAR
Ca21 DYNAMICS

A comprehensive monograph reviewing modelling of

intracellular Ca2þ dynamics has recently been published.57

Here, we would like to fill a void in the literature by a critical

reflection on the framework of model derivation and the

approximations coming with modelling concepts used in the

biophysical literature.

The essence of the system is defined by its general prop-

erties, which are also the basic requirements models should

meet:

• The sequence of dynamic regimes with increasing stimula-

tion: puffs, spikes, permanently elevated Ca2þ. Pathway

dependent also a bursting regime may follow or replace

the spiking regime.
• The dynamics of individual clusters are not oscillatory on

the time scale of ISI.
• Cell-to-cell variability of average ISI is large.

• The spiking regime obeys Eqs. (2), (3), and (4) with Tmin,

a, and c being cell type and pathway specific but not sub-

jected to cell variability.58

• ISIs depend sensitively on parameters of spatial coupling.

The high stimulation regime is not in this list since the

behavior is cell type dependent—it might be stationary or

oscillatory.

The hierarchical organization of CICR carries the ran-

domness of individual channels onto the level of cell-wide

spikes via the stochastic puff dynamics of clusters (Fig. 1).

The random channel state changes are the source of noise.

Consequently, the master equation for the probability of the

microscopic states of the system is the starting point for an

exact theory. In the most general case, that would comprise

the position and number of Ca2þ ions and Ca2þ binding mol-

ecules and the state of the channels and pumps. While the

master equation as the starting point for a theory defines con-

cepts and methods to be used, solving it is not practical in

the end. Hence, probabilistic theories usually start from for-

mulations of the state dynamics eligible for simulating tra-

jectories in phase space.

A. Simulations

The diffusion coefficients of Ca2þ and Ca2þ binding

molecules are sufficiently large to establish the deterministic

concentration profile on the time scale of typical channel

state changes due to the frequent sampling of space by ther-

mal motion. The number of SERCA molecules is orders of

magnitude larger than the number of Ca2þ channels. Hence,

we can describe diffusion, the reactions involving cytosolic

Ca2þ binding molecules, and the SERCA flux by reaction-

diffusion equations like Eq. (1). The random opening and

closing of channels causes time dependent source terms in

the partial differential equation for the Ca2þ concentration.

We illustrate that with a simple model comprising cytosolic

Ca2þc, one Ca2þ buffer b (Ca2þ bound form), and the ER

Ca2þ concentration e

@c

@t
¼ DcDcþ

XN

i¼1

X1
j¼1

Ai;j c; eð Þd t� ti;jð Þd ~r �~rið Þ

�Vp
c2

K2 þ c2
þ Plðe� cÞ � kþðbt � bÞcþ k�b; (5)

@e

@t
¼ DeDe� �

XNp

i¼1

X1
j¼1

Ai;j c; eð Þd t� ti;jð Þd ~r �~rið Þ

2
4

þVp
c2

K2 þ c2
� Plðe� cÞ

3
5; (6)

@b

@t
¼ DbDbþ kþðbt � bÞc� k�b: (7)

Here, bt denotes the total buffer concentration, kþ and k– the

binding and dissociation rate, Vp is the maximum SERCA

pump flux, and � the ratio of cytosol to ER volume. We have

approximated the shape of a channel mouth by a spatial

d-function and the time course of a single opening by a

FIG. 3. ISI distributions P(ISI) for two spike trains measured with HEK cells

stimulated with 100 lM CCh. The differences between the distributions

illustrate cell variability. The experimental data are from the experiments

published in Ref. 27, and the fitting method is explained in Ref. 56.

045115-5 Falcke et al. Chaos 28, 045115 (2018)



temporal d-function. N is the number of channels, ~ri is the

location of the ith channel, and ti;jf g the sequence of its open-

ings before time t. The sequence of time points of openings is

determined by Markov chain Monte Carlo simulations for the

state of each individual channel. The simulations are based

on state schemes; an example is shown in Fig. 4. Such an

approach has been used both for single clusters as well as

cell-wide cluster arrays.19,53,59–64

This type of simulations is well suited to investigate

channel state schemes in cellular context, the role of particu-

lar pathway components, or spatial aspects.19,53,59,62–64

B. Distributions and their moments

Probability distributions for stochastic variables are the

natural way to characterize stochastic systems. They are the

solutions of the master equation. However, we need to sim-

plify the system to obtain equations we can solve. These sim-

plified systems can be informed by the general properties

listed above. We know about the ISI distribution that it

should exhibit an absolute refractory period and a linear rela-

tion between standard deviation and average.

The formulation of the problem in terms of Eq. (5) and

Markov chains can also serve as starting point for analytical

calculations or derivation of simplified models. The robust-

ness of spike generation with respect to cell variability and

perturbations demonstrates that it cannot depend on very

specific parameter values or other details. Hence, simplifica-

tions should not destroy the basic characteristics of the sys-

tem. At the same time, the large cell variability entails

requirements on the theory. With each experiment compris-

ing a population of cells, we sample a phase space volume

large enough for accommodating this cell variability. Hence,

the qualitative properties of IP3 induced Ca2þ dynamics

listed above must not depend sensitively on the value of

parameters distinguishing individual cells. These parameters

comprise protein concentrations,65 the number of clusters,

their spatial arrangement, diffusion properties, and more.13

A suggestion for calculating the ISI distribution has been

made in this spirit.54 It starts from the wave nucleation char-

acter of spike generation. All clusters are closed at the end of

a spike. Each opening cluster entails a sphere of increased

Ca2þ concentration around it. We indicate that by the orange

spheres in the red round cells above scheme (8). The local

rise in Ca2þ increases the open probability of the open clus-

ter’s neighbours. A spike occurs when a critical number Ncr

of open clusters is reached via one of many possible paths of

cluster openings. Hence, the ISI calculation can be formu-

lated as a first passage problem from 0 to Ncr open clusters.

The first passage time distribution corresponds to the ISI dis-

tribution for stationary spike trains. This approach radically

simplifies the system into a state space defined by the number

of open clusters only.54 That implies averaging over all Npath

possible paths from 0 to Ncr open clusters.54

(8)

The transition probabilities from k to kþ 1 open clusters are

determined by the probability that k open clusters open

another one, and from k to k� 1 that a cluster closes. The

transition probabilities Wi;k in state scheme (8) can be

directly calculated from interpuff interval and puff duration

distributions.54 Such an approach is able to explain the

cumulant relation Eq. (2).54

A lot remains to be done even with such a simple

approach. The dependency of the transition probability on the

numbers of open clusters and the parameters of spatial cou-

pling has not been worked out analytically, yet. Also, the

effect of the recovery from the negative feedback terminating

spikes has not yet been described analytically in this approach

but with phenomenological Ans€atze or stochastic simulations

only.40,53,55,66 A new approach to this problem has been sug-

gested recently but has not been specified to Ca2þ spiking,

yet.67 Derivation of the concentration response relation Eq.

(4) with this approach has neither been attempted, yet.

C. Rate equations

Rate equations for lumped variables might be desirable for

simplified models and have been successfully used for investi-

gating specific aspects of pathways or the dynamics.3,28,57,70–74

The derivation of rate equations implies averaging over the

state distribution dynamics defined by the master equation. The

FIG. 4. This state scheme of the IP3R originally published by Siekmann

et al.68 is comprised of two modes. One is the drive mode containing three

closed states C1, C2, C3 and one open state O6. The other is the park mode

which includes one closed state C4 and one open state O5. The rates of state-

transitions within each mode are constants. a and b are the rates connecting

the two modes and depend on Ca2þ in a highly dynamic manner. Reprinted

with permission from P. Cao, M. Falcke, and J. Sneyd, Biophys. J. 112,

2138–2146 (2017). Copyright 2018 Elsevier.69
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spatial character of spike initiation renders the averaging diffi-

cult. Another (related) conceptual problem arises from the fact

that the dynamics on cell level is still noisy. In contrast, the

more frequent situation in the derivation of cellular dynamics

encounters noise on the molecular level only. The population

average carried out in the master equation of such systems dur-

ing the derivation of rate equations is an average over the mole-

cules in a single cell. The large number limit guaranteeing the

validity of deterministic rate equations applies to the cell level.

With IP3 induced Ca2þ spiking, this limit does not apply to the

cell level since cell behavior is noisy. The average needs to be

carried out across an ensemble of identical cells.

Consequences of these considerations can be illustrated

by a comparison to existing rate equation models. We pre-

pare this comparison by reconsidering the rate equation deri-

vation of the most simple stochastic process—radioactive

decay of atoms. The stochastic variable is the number Na of

atoms. We denote the probability per unit time for decay of a

single atom with k. The atom number Na obeys for large ini-

tial numbers Ni the exponential function Na ¼ Nie
�kt. Each

decaying atom is in a stationary state till it decays, and there

is no process setting the time point of its decay. However, if

we ask for the time tr required till a specific number of atoms

Nr remains in the deterministic limit, it is set by Ni, Nr and k
(tr ¼ k�1lnðNi=NrÞ). The process setting the time scale is the

continuous decrease in Na down to Nr.

Rate equation models derived by averaging on the

molecular level and assuming deterministic behavior on cell

level usually require specific processes to set the time scale

of ISIs. That might be a rising fraction of channels recovered

from inhibition, an approach to a critical Ca2þ concentration

or the rise of receptor sensitization.57,74 However, the noisy

behavior of Ca2þ spiking entails different determinants of

the average ISI. Figure 5 illustrates some differences

between the rate equations obtained by assuming determinis-

tic cell behavior and noisy behavior on cell level. The time

courses were obtained from simulations of a purely deter-

ministic model75 (black) and a noisy excitable version of it53

(red). Both systems respond with a spike to the perturbation.

The noisy system generates subsequent spikes some time

after the stimulated one [red line in Fig. 5(a)]. The determin-

istic rate equation model stays in a stationary state after the

initial perturbation without generating a second spike [black

line in Fig. 5(a)]. During the time Tdiv, the dynamics is

completely noise dominated. This illustrates that completely

analogous to radioactive decay, there is no deterministic pro-

cess on the level of the individual cell setting its ISI after

recovery from the previous spike.

Spiking is lost in the rate equations since Tdiv diverges

due to averaging on the molecular level. Thus also the

dependency of the ISI on the parameters characterizing the

noise and spatial coupling is lost. Most rate equation models

tune parameters to an oscillatory regime to establish spiking

[Fig. 5(b)]. The interspike interval is then dominated by the

time required to reach the threshold for CICR. This entails

parameter dependencies of the ISI different from the ones of

noise driven dynamics.

The sketch of Tdiv for the excitable model in Fig. 5(a)

applies when the asymptotic spike generation probability

reached after recovery is smaller than the recovery rate from

negative feedback. The medium and long ISI data in

Xenopus oocytes18 and spontaneously spiking astrocytes

and microglia cells40,66 are experimental realizations. Their

recovery phase from negative feedback is substantially

shorter (a � 1) than the average ISI.40,66 The effect of noise

on time scales and parameter dependencies is also substantial

if the recovery phase and the average ISI are of comparable

length.27,40,66

In summary, averaging on the single cell level across

molecules and clusters eliminates the noise generating the

spike. The rate equations for this average do not reflect the

spike generating mechanism since usually an oscillatory

regime is then used to “rescue” spiking. However, averaging

over a stochastic ensemble of cells defined by a cellular

spike generation probability distribution allows for including

the average of the noise generated time scale and its parame-

ter dependencies, and can thus reflect the spike generation

mechanism.

Deriving rate equations in a way reflecting the spike

generation mechanism is an open problem and has not been

attempted, yet. Suitable concepts might be inspired by the

integrate-and-fire models of neuronal dynamics starting from

an expression for the spike generation probability on cell

level. Investigations on globally coupled noisy excitable

systems might be specified to Ca2þ dynamics.76 Another

very promising approach includes higher moments in the

derivation.77

Parameter dependencies and the mathematical structure

of models can also be restricted by Eqs. (3) and (4). Stochastic

simulations of the excitable regime of the frequently used

DeYoung-Keizer-model reproduced Eq. (3) but not Eq. (4).

FIG. 5. Time scales set by noise are not captured by current deterministic

rate equations. (a) Caricature of a Ca2þ time course as produced by deter-

ministic rate equations (black) and by a corresponding noisy system (red)

after an initial perturbation (arrow) based on model simulations.53,75 The

noisy system generates subsequent spikes some time after the previous one.

During the time Tdiv, the deterministic rate equations are in a stationary state

without generating a second spike. (b) The interspike interval is dominated

by the time required to reach the threshold of CICR (blue) in the oscillatory

regime of deterministic rate equation models. The dependency of the ISI on

the parameters characterizing the noise is lost.
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Hence, a comprehensive theoretical understanding of the con-

centration response is still lacking.

IV. CONCLUSION

While detailed multiscale simulations can mimic experi-

mental observations in a rather flexible manner,19,53,59–64

neither the current state of the stochastic theory nor the rate

equation models live up to the request for predicting experi-

mental outcome beyond the examples used for model deriva-

tion. This indicates that we have not yet understood how to

derive the appropriate models. Based on the accordance of

experimental and multiscale simulation results, we come to

the conclusion that a reaction diffusion system with a local

dynamics in a noisy excitable regime must be the starting

point of the derivation of predictive models since it is the

mathematical structure corresponding to the observations.

IP3 induced Ca2þ dynamics is a classic of biological

applications of non-linear dynamics.57,78–80 On the basis of

early interpretations of experimental results, it became one

of the prototypical cellular limit cycle oscillators. The recent

experimental results reviewed in this study revealed that the

repetition of spikes is caused by noise instead of a limit cycle

or torus in phase space. Derivation of predictive and simple

models starting from this noisy spatially extended excitable

system is a task reaching beyond the specific biological sys-

tem. Hence, this classic still poses theoretical problems inter-

esting and challenging for the whole field of nonlinear

dynamics.
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