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Abstract: 5 

In this study, a methodology to model and predict the life-cycle performance of building 6 

façades based on Stochastic Petri Nets is proposed. The proposed model evaluates the 7 

performance of rendered façades over time, evaluating the uncertainty of the future 8 

performance of these coatings. The performance of rendered façades is evaluated based 9 

on a discrete qualitative scale composed of five condition levels, established according to 10 

the physical and visual degradation of these elements. In this study, the deterioration is 11 

modelled considering that the transition times between these condition states can be 12 

modelled as a random variable with different distributions. For that purpose, a Stochastic 13 

Petri Nets model is used, as a formal framework to describe this problem. The model’s 14 

validation is based on probabilistic indicators of performance, computed using Monte-15 

Carlo simulation and the probability distribution parameters leading to better fit are 16 

defined as those maximizing the likelihood, computed using Genetic Algorithm. In this 17 

study, a sample of 99 rendered façades, located in Portugal, is analysed, and the 18 

degradation condition of each case study is evaluated through in-situ visual inspections. 19 

The model proposed allows evaluating: i) the transition rate between degradation 20 

conditions; ii) the probability of belonging to a given degradation condition over time; 21 

and iii) the mean time of permanence in each degradation condition. The use of Petri Nets 22 

shows to be more accurate than a more traditional approach based on Markov Chains, but 23 
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also allows developing future research to consider different environmental conditions, 24 

maintenance actions or inspections, amongst other aspects of life-cycle analysis of 25 

existing assets. 26 

 27 
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1. Introduction 29 

According to Jensen and Rozenberg (2012), the net theory can be seen as “a system 30 

theory that aims at understanding systems whose structure and behaviour are determined 31 

by a combinatorial nature of their states and changes”. The first proposal of nets of places 32 

and transitions, proposed by C. A. Petri (Petri, 1962), allows developing a non-idealizing 33 

methodology to concurrency and information flow, in organizational systems (Genrich 34 

and Lautenbach, 1981). Petri nets are considered a mathematical and graphical tool for the 35 

formal description of systems whose dynamics are characterized as being concurrent, 36 

asynchronous, distributed, parallel, nondeterministic, and/or stochastic, mutual exclusive, 37 

and conflicting, which are typical features of distributed environments (Murata, 1989). 38 

Therefore, Petri nets allow capturing the static and the dynamic nature of a real system, 39 

thus characterizing the rate of transition between states or conditions (Marsan et al., 40 

1994). 41 

Due to their characteristics, Petri nets have been successfully applied in different fields 42 

of knowledge, namely in robotics (Al-Ahmari, 2016), in the optimization of 43 

manufacturing systems (Chen et al., 2014; Uzam et al., 2015), business process 44 

management (van der Aalst, 2002), human computer interaction (Tang et al., 2008), 45 

among others. Petri nets are not widely used in the construction industry, and 46 

particularly in building asset modelling. Nevertheless, there are various works (Li, 47 

1998; Cheng et al., 2011; Molinero and Núñez, 2011; Cheng et al., 2013; Rinke et al., 48 

2017) that use Petri nets to manage resources, to estimate equipment availability and 49 

scheduling of tasks on the site-work during the building design process. On the other 50 

hand, recent work has been published on the use of Petri Nets to model the deterioration 51 

of other civil engineering infrastructures (Andrews, 2013; Rama and Andrews, 2013; Le 52 

and Andrews, 2015; Le and Andrews, 2016; Leigh and Dunnett, 2016; Yianni et al., 53 



2017; Zhang et al., 2017). In the last decades, various authors proposed several 54 

extensions and adaptations of ordinary Petri nets; all of them based on the basic Petri 55 

net formalism, but presenting very different characteristics and assumptions, in order to 56 

adapt themselves to the phenomena under analysis. Consequently, there is a reasonable 57 

expertise in the application of Petri nets to different application domains, thus allowing 58 

transferring knowledge and methodologies from one field to another (Girault and Valk, 59 

2002). 60 

This study intends to evaluate the suitability and advantages of the use of Stochastic 61 

Petri Nets (SPN) as deterioration models in building asset management. The main 62 

advantages of SPN are their graphical representation, allowing a better and more 63 

intuitive understanding of the modelling principles, and their versatility, allowing the 64 

modelling complex stochastic processes. In the particular case of deterioration 65 

modelling, and compared to the more traditional Markov Chains, SPN allow the 66 

seamless use of different probabilistic distributions. Furthermore, their versatility allow 67 

modelling, in a common framework, multiple aspects of asset management, including 68 

deterioration, maintenance, inspection, and decision-making. In this study, a model to 69 

predict the life-cycle performance of building façades based on stochastic Petri nets is 70 

proposed. To analyse the degradation condition of rendered façades over time, a set of 71 

Petri net models considering different probabilistic distributions are used to estimate the 72 

transitions times between condition levels. Since there are no closed form expressions 73 

for the probability distribution of the condition state at a certain time, Monte Carlo 74 

simulation is used to compute the likelihood of each model. However, the errors 75 

introduced by Monte Carlo simulation require the use of gradient-independent 76 

optimization methods, like Genetic Algorithms, to identify the optimal parameters of 77 

the probability distributions. 78 



The sample analysed in this study comprises 99 renderings, located in Portugal, for which 79 

degradation condition was evaluated through in situ visual inspections. The classification 80 

system adopted in this study to evaluate the deterioration state of rendered façades is a 81 

discrete qualitative scale divided in five condition levels, proposed by Gaspar and de Brito 82 

(2008, 2011), ranging between “no visible degradation” (condition A) and “generalised 83 

degradation” (condition E), which requires an immediate rehabilitation or maintenance 84 

action. 85 

In the first part of this study, a traditional method, based on Markov chains is applied, in 86 

order to define a benchmark model. The benchmark model and the Petri net model with 87 

transition times exponentially distributed are used to validate the methodology 88 

proposed. The comparison of the models is possible since the stochastic Petri net with 89 

transitions exponentially distributed is equivalent to a finite Markov chain. After that, a 90 

set of probabilistic distributions are used to analyse the degradation condition of 91 

rendered façades over time. The information obtained from the Petri net models allows 92 

the identification of the degradation rate of rendered façades, characterizing the pattern 93 

that characterizes the loss of performance of these claddings over time. This information 94 

is crucial to identify the future need for interventions, optimizing the maintenance 95 

needs, and thus avoiding unnecessary cost associated with urgent interventions. 96 

The outline of this paper is as follows: Section 2 provides a literature review concerning 97 

the classification system and modelling techniques used to model the evolution of the 98 

degradation in rendered façades; Section 3 introduces the concept of Petri nets, as well 99 

as the procedure used to predict the life-cycle performance of renderings. Finally, the 100 

discussion of the results is presented in Section 4 and conclusions are drawn in Section 101 

5. 102 



2. Literature review 103 

The façades can be seen as the skin of the building, i.e. they can be considered the first 104 

layer of protection against the deterioration agents (Silva et al., 2015), thus being the 105 

element more prone to degradation. According to Flores-Colen and de Brito (2010) the 106 

claddings’ degradation level can influence the quality of the urban environment, since it 107 

affects the architectural appearance of buildings, which has a considerable effect on the 108 

physical comfort of inhabitants of larger cities (Korjenic et al., 2016). Rendered façades 109 

are the most common type of cladding in Portugal (Census, 2001). In the present 110 

context of societies aiming at achieving a more sustainable use of resources, it is 111 

increasingly important to define rational maintenance strategies so as to avoid 112 

unnecessary costs (Wang and Xie, 2002; Arain and Pheng, 2006; Wong and Li, 2009). 113 

For that purpose, it is essential to develop new and versatile tools to support the 114 

decision-making process regarding the instant in which maintenance actions must be 115 

performed, knowing the degree of uncertainty associated with the estimates (Frangopol, 116 

2011). To achieve this, the present work focuses on the use of probabilistic based 117 

methods for modelling performance, including Stochastic Petri Nets and Markov 118 

Chains. 119 

The definition of maintenance strategies is, in general, related with the users’ demands, 120 

i.e. more demanding users may demand a high level of performance, requiring that the 121 

cladding be replaced as soon as it starts to deteriorate; on the other hand, some users 122 

may accept a lower level of performance, thus minimizing the maintenance costs 123 

(Shohet et al., 1999). Consequently, the definition of maintenance strategies requires the 124 

condition assessment of rendered façades and the knowledge of their expected service 125 

life. According to Hertlein (1999), condition-based maintenance by inspection planning 126 

can be a useful tool to reduce the life cycle costs, achieving a more rational and efficient 127 



way to manage maintenance budgets (Flores et al., 2011). 128 

In the last decades, different studies (Shohet et al., 2002; Shohet and Paciuk, 2004; 129 

Gaspar and de Brito, 2008; Paulo et al., 2014; Paulo et al., 2016) propose visual and 130 

physical scales to characterize the type, extension and severity of defects observed in 131 

rendered façades. Gaspar and de Brito (2008) and Silva et al. (2014) proposed a discrete 132 

scale to evaluate the degradation condition of rendered façades (Table 1). 133 

This qualitative scale, based on the evaluation of the physical and visual degradation of 134 

rendered façades analysed during a comprehensive fieldwork, can be associated with a 135 

quantitative index that portrays the global performance of the façades. This numerical 136 

index, initially proposed by Gaspar and de Brito (2008, 2011), expresses the global 137 

degradation of façade coatings through the ratio between the degraded area weighted as 138 

a function of its condition and a reference area, equivalent to the whole and having the 139 

maximum degradation level possible - equation (1). 140 
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141 

Where Sw is the degradation severity of the coating, expressed as a percentage; kn is the 142 

multiplying factor of anomaly n, as a function of their degradation level, within the 143 

range K = {0, 1, 2, 3, 4}; ka,n is a weighting factor corresponding to the relative weight 144 

of the anomaly detected (ka,n Є R+); ka,n = 1 by default; An is the area of coating affected 145 

by an anomaly n; A is the façade area; and k is the multiplying factor corresponding to 146 

the highest degradation level of a coating of area A. 147 

In this study, the anomalies that occur in rendered façades are grouped in three 148 

categories: stains; cracking; and detachment. The coefficient ka,n  allows establishing a 149 

relative weight between these groups of anomalies, based on the cost of repair of each 150 



anomaly, its aesthetic impact, the influence on the renderings’ service life, the 151 

fulfilment of performance requirements (e.g. watertightness) and its propensity to 152 

generate new anomalies. In this study, the following ka,n  values are adopted for the 153 

different groups of anomalies: 1.0 for cracking; 1.5 for detachment; and 0.25 for stains 154 

in condition B and 0.67 for stains in more serious condition levels (C, D and E). 155 

Figure 1 shows the correlation between the condition of some façades inspected and the 156 

numerical index, illustrating the visual conditions of rendering in each degradation 157 

condition. 158 

2.1 Application of Markov chains to model the evolution of the degradation of 159 

rendered façades 160 

Markov chains are widely used by researchers in several fields of civil engineering (Wang 161 

and Zaniewski, 1996; Hawk and Small, 1998; Thompson et al., 1998; McDulling, 2006; 162 

Ortiz-García et al., 2006). Particularly, continuous-time Markov chains are commonly 163 

used in modelling the deterioration of civil engineering assets (Kallen and van Noortwijk, 164 

2006). This modelling technique is considered an intuitive, simple and computationally 165 

inexpensive stochastic process, since analytical solutions exist and the memoryless 166 

property allows estimating the future performance only based on the current performance, 167 

becoming particularly relevant when limited information is available. 168 

Silva et al. (2015) used continuous-time Markov chains to evaluate the degradation 169 

process of external render over time, based on the visual inspections of characteristics and 170 

condition of façades located in Portugal. In this work, it is assumed that the progression of 171 

damage is continuous and, over a small time interval, the condition of the façade can only 172 

remain constant or deteriorate to the next condition state. The intensity matrix defines the 173 

rate of transitions between states (Kalbfleisch and Lawless, 1985) as: 174 
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 175 

The estimation of the optimal intensity matrix, leading to the best fit between the model 176 

and the observed condition, was based on the concept of maximum likelihood described 177 

by Kalbfleisch and Lawless (1985). Likelihood is defined as the predicted probability of 178 

occurrence of the observed transitions: 179 

          
 
   

 
    (3) 180 

Where   is the condition level in the initial instant,   is the condition level in the final 181 

instant,   is the number of elements,   is the number of intervals between inspections, 182 

and     is the probability of transition from condition level   to condition level  ,       183 

entry of the transition probability matrix,  , given by: 184 

            (4) 185 

Where    is the time interval between inspections. 186 

The optimization of the intensity matrix,  , was performed using the active set algorithm 187 

implemented in MATLAB
®
. The aim of the optimization algorithm is to find the 188 

parameters of the intensity matrix,  , which maximize the fitness function,      189 

             , while keeping all terms of matrix   positive,           where 190 

         . This optimization algorithm is a reasonable tool for problems that use 191 

analytical expressions. In situations where analytical expressions are not available, the 192 

numerical estimation of the functions can lead to convergence problems and lack of 193 

robustness of the solution. 194 

3. Petri nets 195 



3.1 Conventional Petri nets 196 

The concept of Petri nets was originally present by Carl A. Petri, who in his doctoral 197 

thesis developed a new model of information flow and control in systems (Petri, 1962). 198 

Petri nets are a graphical and mathematical modelling tool, suitable for characterizing 199 

concurrent, asynchronous, distributed, parallel, nondeterministic, and/or stochastic 200 

systems (Murata, 1989). 201 

An ordinary Petri net is considered a directed, weighted, bipartite graph with an initial 202 

state called the initial marking,    (Murata, 1989; Schneeweiss, 2004). It is called a 203 

bipartite graph because nodes are divided into two different types: places, usually 204 

represented by circles, and transitions, usually represented by rectangles. Both nodes are 205 

linked by directed arcs, from places to transitions (input arcs) and from transitions to 206 

places (output arcs) (Peterson, 1977; Murata, 1989; Schneeweiss, 2004). The third 207 

element of a Petri nets are tokens, usually represented by black dots, which represent the 208 

elements in the system (Peterson, 1977; Murata, 1989). Figure 2 shows a simple Petri net 209 

model. Transition    has two input places (   and   ) and one output place (  ). The 210 

arcs that connect the input places to the transition and the transition to the output place 211 

represent the pre- and post-conditions of the transition, respectively. When all input 212 

places are occupied by a token the transition is said to be enabled. At this point, the 213 

transition fires, the tokens are removed from the input places, and new tokens are created 214 

in the output places. In this example, transition    is not enabled because the pre-215 

conditions of the transition are not complied with, i.e. there is a token in place   , but no 216 

token at place P2. Once tokens exist in both P1 and P2, transition T1 will fire, tokens 217 

from places P1 and P2 will be removed and a token will be placed in place P3. 218 

In the context of this study, places represent resources or conditions while transitions can 219 

represent actions or events that cause the system to change (Murata, 1989). Tokens are 220 



stored in places representing the present state of the system and transitions allow the 221 

tokens to move between two places modelling, in this way, the dynamic behaviour of the 222 

system. 223 

When analysing a PN, conflicts might occur when two or more transitions are enabled 224 

from a common place and the firing of one transition disables the other transitions 225 

(Bowden, 2000). In the literature, there are several proposals for solving conflicts, either 226 

deterministically, for example through the introduction of a priority transition by the 227 

user, or probabilistically, by assigning probabilistic properties to the conflicting 228 

transitions (David and Alla, 2010; Wang, 2012). However, in timed Petri nets, the most 229 

common way to solve conflicts is through firing times, assuming that the transition with 230 

the shortest delay will fire first (Murata, 1989). 231 

3.2 Stochastic Petri net 232 

In the original definition of Petri nets, the concept of time is not explicitly included (Murata, 233 

1989). However, many applications are time dependent and the introduction of time delays 234 

has to be considered. The notion of time in Petri nets was initially introduced by 235 

Ramamoorthy and Ho (1980) and Zuberek (1980). In these two works, deterministic time 236 

intervals are used for each transition, creating a delay between the instant the transition 237 

becomes enabled and the firing instant. Molly (1982) introduced the concept of stochastic 238 

Petri net by assigning an exponentially distributed firing rate to each transition for 239 

continuous time systems. After that, several classes of stochastic Petri nets have been 240 

proposed for performance and reliability analysis of systems, the more relevant of which 241 

are: the generalized stochastic Petri net (Marsan et al., 1984), the extended stochastic Petri 242 

net (Dugan et al., 1984), and the deterministic and stochastic Petri net (Marsan and Chiola, 243 

1987). 244 



The model employed in this work considers Petri nets with transitions times defined as 245 

a random variable, as proposed by Molly (1982). However, the results obtained showed 246 

that the exponential distribution for the firing times, proposed by Molly (1982), were 247 

not always adequate. To overcome this limitation, the proposal of Dugan et al. (1984), 248 

allowing any probability distribution to be used to model the firing rate was used. 249 

Mathematically, the theory behind the stochastic Petri net is the same as the Petri net; 250 

their mode of operation is identical, applying the same firing rules. The only difference 251 

is the random time interval between the transition becoming enabled and firing. 252 

3.3 Deterioration Petri net model 253 

Deterioration can be modelled with Petri nets by considering that each place is a 254 

condition state of the classification system adapted, tokens indicate the current 255 

condition of an element, and timed transitions define the movement between condition 256 

states (Le, 2014, Yianni et al., 2016, 2017). In this work, a five condition levels Petri net 257 

scheme is defined. Since maintenance actions are not considered, the condition level of 258 

the infrastructure deteriorates continuously over time until it reaches the worst condition 259 

level defined in the performance scale. 260 

The time dependent nature of the problem is included by defining timed transitions. The 261 

time specified by each transition represents the sojourn time in the condition level, i.e., the 262 

time that infrastructure spends in condition level   before moving to condition level    . 263 

The timed transitions are modeled by probability distributions. 264 

3.4 Parameter estimation 265 

The probability distribution that best describes the deterioration process of an 266 

infrastructure is that resulting in higher probabilities of occurrence of observed transitions. 267 



In order to identify the parameters of the probability distribution that provide a best fit, 268 

parameter estimation is required. The parameters of the probability distribution are fitted 269 

to historical data through the maximum likelihood method proposed by Kalbfleisch and 270 

Lawless (1985) and shown in equation (3). To simplify the computations and improve 271 

robustness, the logarithm of the likelihood is maximized. 272 

3.4.1 Monte Carlo simulation 273 

The probability of occurrence of the observed transition,    , is estimated by Monte Carlo 274 

simulation. This is a helpful approach to compute numerical approximations in situations 275 

where it is not feasible to obtain analytical solutions and can be used to consider the 276 

propagation of uncertainties during the lifetime of the infrastructure. This method allows 277 

generating random sojourn times to each condition level from the inverse CDF 278 

(cumulative distribution function) of probability distribution. 279 

The proposed procedure for computing the probability of occurrence of the observed 280 

transition,    , is illustrated in Figure 4. The procedure depicted is repeated for each 281 

transition observed in the historical database. The input for the algorithm includes the 282 

information about each observed transition: time interval between observations,   , 283 

condition level in the initial instant,  , and condition level in the final instant,  . The 284 

condition level in the initial instant,  , is used to define the initial marking,   , of the Petri 285 

net, the time interval between observations,   , is the time horizon of the analysis, and the 286 

condition level in the final instant,  , is used to compute the probability of occurrence at 287 

the end of the procedure. The first transition to fire is identified by checking which 288 

transitions are enabled. When more than one transition is enabled, the transition with less 289 

time delay is the first to fire. However, since the Petri net defined for the deterioration 290 

model is arranged in sequential manner and there is only one token in the Petri net, i.e. 291 



conflicts do not need to be considered. In the next analysis step, the sojourn time in the 292 

initial condition level is computed, and the Petri net and time are updated. The process is 293 

repeated until    is reached. The output of the procedure is the condition index at the time 294 

horizon for each sample. Using Monte-Carlo simulation the distribution of the final 295 

condition can be computed and the probability of the observed transition occurring can be 296 

calculated. 297 

3.4.2 Optimization 298 

The optimization of the parameters of the probability distributions is performed using 299 

Genetic Algorithms (GA), which were selected for being widely available, robust and 300 

efficient for objective functions computed using Monte-Carlo simulation. In fact, by 301 

using only information on the objective function, not requiring the computation of 302 

gradients, GA avoid the potential consequences of numerical errors, significantly 303 

simplifying the problem (Man et al, 1999; Morcous and Lounis, 2005). 304 

The GA used for optimization of the parameters of the probability distributions is 305 

simply depicted in Figure 5. The optimization procedure begins with the definition of 306 

optimization variables, objective function, and constraints. The objective function is 307 

used to measure the degree of “goodness” of each individual of the population (Man et 308 

al, 1999; Morcous and Lounis, 2005). All parameters of the probability distributions are 309 

defined as problem parameters, and the Monte-Carlo procedure described above is used 310 

to compute the objective function. 311 

In the following step, the initial population is randomly generated. A population is 312 

composed by a set of individuals, where each individual is a potential solution of the 313 

problem. All individuals of the initial population are evaluated through the objective 314 

function, where the best individual is the one with the highest value of the likelihood. At 315 



each step of the optimization process, the GA uses the best individual of the current 316 

population to create the offspring generation (MatLab, 2016), using the crossover and 317 

mutation procedures. The new population generated is then evaluated using the objective 318 

function and used as a new parent population. This process is repeated iteratively until a 319 

predefined stopping criteria is satisfied. 320 

In this study, the optimization of the parameters of the probability distributions was 321 

performed using the GA available in MATLAB
® 

(MatLab, 2016). The parameters used in 322 

the GA are the following: 323 

 Size of the population: 50 individuals when the number of optimization 324 

variables is less than or equal to 5; and 200 individuals otherwise; 325 

 Stopping criteria: the algorithm stops if the average relative change in the best 326 

fitness function value over 50 generations (minimum number of generations) is 327 

less than or equal to 10
-6

; 328 

 Mutation procedure was performed using the Gaussian algorithm implemented 329 

in MATLAB®. 330 

In the extension of Petri nets proposed by Molly (1982), the stochastic sojourn time is 331 

modelled as an exponentially distributed random variable. In this case, a stochastic Petri 332 

net is isomorphic to a finite Markov chain. 333 

4. APPLICATION TO RENDERED FAÇADES 334 

The deterioration Petri net model for façades is illustrated in Figure 3. It is composed of five 335 

places C1 to C5 each representing one of the five discrete states that characterize the 336 

degradation condition of external render façades defined in section 2. Level A means there 337 

is no visible degradation and Level E indicates the presence of extensive damage in the 338 

render façade. The transitions T1 to T4 represent the time interval required for the façades to 339 



progress to a more deteriorated state. 340 

Since Markov chains are widely used to evaluate the condition level over time and taking 341 

into account the isomorphism between Markov chains and stochastic Petri nets, the Petri 342 

net model proposed can be validated by comparison with the Markov chains model 343 

proposed by Silva et al. (2015). In this manner, the efficiency of the numerical procedure 344 

and the optimization algorithm described in section 3.4 can be evaluated. 345 

The data presented by Silva et al. (2015) is therefore used to calibrate both the Markov 346 

chain model and the Petri net models. The database is composed of 99 visual inspection 347 

records of external render façades located in Portugal. For each façade, only the initial 348 

condition level (assuming that at time zero the render is in Level A) and final condition, 349 

corresponding to the inspection date, are known. 350 

4.1 Validation of the Petri net model 351 

In Table 2 the optimal transition rates considering a Markov chain model, implemented 352 

using analytical expressions, and a Petri Net model with exponentially distributed sojourn 353 

times, are compared. The values of the parameters for each condition level are quite 354 

similar as expected. The differences obtained are due to sampling errors associated with 355 

the Monte-Carlo simulation used in conjunction with the Petri Net model (Figure 6). 356 

Table 3 shows the number of observed and predicted façade in each condition level for 357 

both models. The results show that both models are suitable to model the deterioration 358 

process of the external façade renders. The biggest relative error is obtained for the Level 359 

D (15.3% for Markov chains and 16.5% for Petri nets). 360 

Taking into account the results obtained by Petri nets, it is confirmed that the proposed 361 

model is suitable to evaluate the degradation of external façade renders. 362 



4.2 Probabilistic analysis 363 

4.2.1 Two-parameter distributions 364 

When using Petri net models, in addition to the exponential distribution, four distributions 365 

were studied: Weibull, Lognormal, Gumbel, and Normal. Table 4 shows the optimal 366 

parameters obtained in all probability distribution analysed as the likelihood computed for 367 

each set of optimal parameters. All the studied distributions lead to a better likelihood 368 

than the exponential distribution. 369 

Table 5 shows the number of observed and predicted façades in each condition level for 370 

each probability distribution and Table 6 shows the relative error obtained for each case. 371 

The values obtained for the relative error are low and, in all cases, acceptable; the largest 372 

errors occur for the exponential distribution. Amongst the alternative distributions, the 373 

largest error is associated with the Gumbel distribution in Level A (8.6%). The results in 374 

those two tables show that the exponential distribution is the one with the largest mean 375 

relative error for all states (7.0%), while the smallest mean relative error for all states is 376 

for the lognormal distribution (2.1%). The normal distribution presents a mean relative 377 

error for all states of 3.3% (second lower value). 378 

Figure 7 presents the average predicted condition profile of the external render façade over 379 

time for each probability distribution analysed. The profiles obtained for the four 380 

distributions are showing some differences to the profile obtained for the exponential 381 

distribution. 382 

The deterioration curve obtained by exponential distribution does not have inflection 383 

points (concave up). The other distribution curves have two inflection points (Figure 384 

7a). In the transition between levels B and C there is an inflection point, where the 385 

concavity of the curve changes. The second inflection point occurs between levels C 386 



and D. In terms of dispersion of the results (Figure 7b), any of the distributions 387 

(Weibull, Lognormal, Gumbel, Normal) has lower dispersion values over the simulated 388 

period than the exponential distribution. In fact, the exponential distribution has a mean 389 

value equal to the standard deviation. There is no physical reason indicating this occurs 390 

for the sojourn times. As a result, the use of Markov chains has limited ability to model 391 

the variability of performance, frequently overestimating it. 392 

These differences between the degradation curves also have high impact on the 393 

probabilistic distribution of the degradation condition level over time (Figure 8a-c). 394 

Despite the peaks occurring, approximately, in the same years, their values are quite 395 

different. 396 

For level A, the predicted probabilities for all distributions are similar, beginning with 397 

probability equal to 1 and decreasing rapidly over time; at year 10 the probability of a 398 

render façade being in level A is near zero (Figure 8a). Also, for level B (Figure 8a), the 399 

predicted probabilities for all distributions are similar; the maximum probability of a 400 

façade belonging to level B occurs between years 3 and 4; after that, the value of the 401 

probability decreases rapidly. In level C significant differences can be observed between 402 

models (Figure 8b). The maximum probability of belonging to level C is close to 0.50 for 403 

the exponential distribution while for the other distributions it varies between 0.70 and 404 

0.80. After the maximum probability is achieved, the slope of the exponential distribution 405 

is softer, when compared with the other distributions. For level D (Figure 8b), the 406 

exponential distribution has a smoother growth when compared to other distributions, 407 

then the peak occurs in all distributions between years 18 and 19 (the maximum 408 

probability of belonging to level D is close to 0.40 for the exponential distribution while 409 

for the other distributions it varies between 0.70 and 0.80). After that, the slope of the 410 

exponential distribution is softer. Finally, as expected, the probability of belonging to 411 



level E (Figure 8c) increases over time; however, the increase for the exponential 412 

distribution is softer than for the other distributions. At year 40, for the other distributions, 413 

the probability of a façade belonging to level E is bigger than 0.95 while, for the 414 

exponential distribution, it is closer of 0.80. 415 

In the analysis of the service life and durability of rendered façades, it is assumed that level 416 

D corresponds to the end of the service life of rendered façades, beyond which a 417 

maintenance action must be performed. Figure 8b shows the probabilistic distribution of the 418 

degradation condition D over time. The results reveal that the exponential models and, 419 

consequently, the Markov chain models, are less accurate in predicting the behaviour of 420 

deteriorated serious conditions, due to the reduced number of samples available. According 421 

to the Markov chain model proposed by Silva et al. (2015), the probability of a rendering 422 

belonging to level D reaches a peak at 15 years. In this study, using a Petri net model, this 423 

peak is between 18 and 19 years. These values seem coherent with physical reality, in 424 

agreement with the results present in the literature: i) Shohet et al. (1999) obtained an 425 

expected service life for cementitious renders of 20 years; ii) Shohet and Paciuk (2004) 426 

estimated a predicted service life of 15 years for a stricter level of demand (with a range of 427 

results between 12 and 19 years), and a service life of 23 years (with a range of results 428 

between 19 and 27 years) for a lower level of demand; iii) Mayer and Bourke (2005) 429 

obtained an estimated service life of 18 years for current renderings; iv) Gaspar and de Brito 430 

(2008) estimated a service life of cement-rendered façades of 22 years; v) Silva et al. 431 

(2013), using an artificial neural network model, obtained an estimated service life of 22 432 

years with a 16-28 years range, and using a multiple linear regression model, obtained an 433 

average estimated service life of 15 years with a range between 12 and 17 years; vi) a 434 

comparative analysis of service life prediction methods applied to rendered façades (Silva et 435 

al. 2016), led to an average value of the estimated service life of rendered façades ranging 436 



between 16 and 22 years. 437 

4.2.2 Three-parameter distributions 438 

The results of the previous section show that the probability distributions with two 439 

parameters show a better fit to the historical data when compared with the exponential 440 

distribution. In an attempt to examine whether a probability distribution with three 441 

parameters is an option to better model the degradation of façades over time, the Weibull 3-442 

parameters distribution was used. The probability density function of this distribution is 443 

given by: 444 

           
 

 
 
   

 
 
   

   
   

 
 
 

 (5) 445 

where  ,   has the same definition given in Table 4 and     is the location parameter 446 

of the distribution. 447 

The optimal parameters obtained for Weibull 3-parameters distribution and the likelihood 448 

obtained for this set of parameters are shown in Table 7. Table 8 shows the number of 449 

observed and predicted façades in each condition level. 450 

From the analysis of the results obtained in the two-parameters distribution (Tables 4 451 

and 5) and the three-parameters distribution (Tables 7 and 8), it is found that the 452 

Weibull 3-parameters shows a better fit than the two-parameters distribution, both in 453 

terms of likelihood and mean relative error. However, the Weibull 3-parameters 454 

distribution increases the level of complexity of the analysis (the number of parameters 455 

to be optimized increase from 8 to 12). 456 



5. CONCLUSIONS 457 

In this paper, a model to asses and predict the life-cycle performance of building 458 

façades based on stochastic Petri nets is proposed. The application of Petri nets to 459 

degradation models is a recent research field, but this modelling technique has shown 460 

several advantages relative to the more traditional Markov chains. The graphical 461 

representation can be used to describe the problem in an intuitive way; PN are more 462 

flexible than the Markov chains, allowing the incorporation of a multitude of rules in 463 

the model to accurately simulate complex situations and keeping the model size within 464 

manageable limits. Moreover, with this modelling technique, transition times are not 465 

required to be exponential distributed. 466 

The sojourn time is defined as a random variable for each condition level. The 467 

deterioration rates were estimated from available historical data, based on the analysis of 468 

the degradation condition of 99 rendered façades, located in Portugal. The Petri net model 469 

with transition times exponentially distributed was used to validate the methodology 470 

proposed by comparison with a benchmark model based on Markov chains. In order to 471 

investigate whether other probability distributions would fit the historical data better than 472 

the exponential distribution, five probability distributions were analysed using Petri net 473 

models (Weibull 2-parameters, Weibull 3-parameters, Lognormal, Gumbel, and Normal). 474 

From the results of the probabilistic analysis performed with Petri nets model, it was 475 

found that the use of distributions with two parameters greatly improves the model’s 476 

goodness of fit. The likelihood values of the four distributions (Weibull 2-parameters, 477 

Lognormal, Gumbel, and Normal) are quite similar and all significantly better than the 478 

exponential distribution. Some improvement is obtained when a Weibull 3-parameters 479 

distribution in considered, but this is obtained at the expense of a significant increase in 480 



the complexity of the model. 481 

In this study, the degradation condition of rendered façades is described by five condition 482 

states, ranging between A (most favourable, without visible degradation) and E (most 483 

serious, with generalised degradation). For the analysis of the service life and durability of 484 

rendered façades, it is assumed that level D corresponds to the end of the service life of 485 

rendered façades, beyond which a maintenance action must be performed. Based on the 486 

Petri net model proposed, a rendered façade presents the higher probability of reaching the 487 

end of its service (corresponding to level D) between 18 and 19 years. The results obtained 488 

are consistent with physical reality and in agreement with the results present in the 489 

literature. This study evaluates the loss of performance of rendered façades over time, 490 

modelling the probability of transition between degradation conditions through Petri net 491 

models. This study demonstrates the validity of this approach to model the degradation of 492 

external claddings and, therefore, in future studies, the authors intend to apply a similar 493 

methodology to predict the service life of other cladding systems, encompassing the effects 494 

of their characteristics in their degradation process (e.g. environmental exposure 495 

conditions). 496 
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FIGURE CAPTIONS 672 

Figure 1 - Illustrative example of the degradation conditions of rendered façades (photographs by Gaspar, 673 

2009) 674 

Figure 2 - Example of a Petri net including three places, and one transition 675 

Figure 3 - An example of the Petri net scheme of the deterioration model 676 

Figure 4 - Procedure for computing the probability of occurrence of the observed transition 677 

Figure 5 - Procedure for optimization of the parameters of the probability distributions (adapted from 678 

Morcous and Lounis, 2005) 679 

Figure 6 - Comparison of the predicted future condition profile over time for both deterioration models: 680 

(a) average condition; (b) standard deviation of condition 681 

Figure 7 - Comparison of the predicted future condition profile over time for all probability distribution 682 

analysed: (a) mean condition; (b) standard deviation of condition 683 

Figure 8 - Probabilistic distribution of all degradation condition levels over time: (a) Level A (black) and 684 

B (grey); (b) Level C (black) and D (grey); (c) Level E 685 
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TABLE CAPTIONS 718 

Table 1 Description of the degradation conditions of rendered façades 719 

Table 2 - Comparison of the optimal parameters of the Markov chains and Petri net models 720 

Table 3 - Number of observed and predicted coating on each degradation condition for both models 721 

Table 4 - Optimal parameters obtained in all probability distribution analysed 722 

Table 5 - Number of observed and predicted coating in each condition level for each probability distribution 723 

Table 6 - Mean error [%] obtained for each probability distribution 724 

Table 7 - Optimal parameters obtained for Weibull 3-parameters distribution 725 

Table 8 - Number of observed and predicted coating for Weibull 3-parameters distribution 726 

727 



Table 1 728 

Condition 

level 
Description 

Condition 

A 

Most favourable condition. Complete mortar surface with no visible 

degradation, with uniform colour, showing no dirt or detachment 

Condition 

B 

Mortar with a non-uniform surface with likelihood of localized voids 

determined by percussion, but no signs of detachment. Small cracking 

(0.25 mm to 1.0 mm) in localized areas and changes in the general colour 

of the surface might exist. Eventual presence of microorganisms. 

Condition 

C 

Mortar with localized detachments or perforations, revealing a hollow 

sound when tapped and detachments only in the socle, with easily visible 

cracking (1.0 mm to 2.0 mm) and showing dark patches of damp and dirt, 

often with microorganisms and algae. 

Condition 

D 

Mortar with an incomplete surface due to detachments and falling of 

mortar patches, showing wide or extensive cracking (≥ 2 mm) and very 

dark patches with probable presence of algae. 

Condition 

E 

Most serious condition, requiring an immediate corrective action, 

associated with incomplete mortar surface due to detachments and falling 

of mortar patches. Also revealing a wide or extensive cracking (≥ 2 mm), 

with very dark patches and probable presence of algae. 

 729 

Table 2 730 

Model 
Optimal parameters 

Likelihood 
            

Markov chains
1
 0.4016 0.2819 0.0994 0.0761 82.4245 

Petri net (Exponential) 0.4201 0.2743 0.0966 0.0804 82.2582 
1
 Data adapted from Silva et al. (2015) 

 731 

Table3 732 

Degradation 

condition 
Observed 

Predicted Error [%] 

Markov chains
1
 Petri net  Markov chains Petri net 

Level A 13 12.57 12.17 3.3 6.4 

Level B 18 17.77 17.63 1.3 2.1 

Level C 31 28.64 28.96 7.6 6.6 

Level D 15 17.29 17.47 15.3 16.5 

Level E 22 22.74 22.77 3.3 3.5 
1
 Data sourced from Silva et al. (2015) 
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  734 



Table 4 735 

Parameters Exponential Weibull Lognormal Gumbel Normal 

P
ar

am
et

er
 1

 
   0.4201 2.8616 0.7001 0.6112 0.4811 

   0.2743 3.8199 0.8702 1.5270 1.3919 

   0.0966 7.9483 2.0754 7.8258 7.2940 

   0.0804 14.1976 2.3615 11.4260 11.6725 

P
ar

am
et

er
 2

 

   - 1.2149 0.7435 4.2326 3.2519 

   - 1.4040 0.8572 4.4394 3.4303 

   - 6.0816 0.3077 0.4219 0.1330 

   - 2.0100 0.4612 11.7718 7.6393 

Likelihood 82.2582 70.4602 70.2610 70.4666 70.1237 

 736 

Table 5 737 

    Level A Level B Level C Level D Level E 

Observed 13 18 31 15 22 

P
re

d
ic

te
d
 Exponential 12.17 17.63 28.96 17.47 22.77 

Weibull 13.58 18.62 29.30 15.49 22.01 

Lognormal 13.09 17.58 32.07 14.67 21.60 

Gumbel 14.12 18.34 29.95 14.53 22.06 

Normal 14.11 18.06 29.38 15.27 22.18 

 738 

Table 6 739 

 Level A Level B Level C Level D Level E 

Exponential 6.4 2.1 6.6 16.5 3.5 

Weibull 4.4 3.5 5.5 3.3 0.0 

Lognormal 0.7 2.3 3.4 2.2 1.8 

Gumbel 8.6 1.9 3.4 3.2 0.3 

Normal 8.5 0.4 5.2 1.8 0.8 

 740 

Table 7 741 

Parameters                 

   1.3998 2.5269 4.5874 1.4221 

   0.7026 0.8977 1.8966 0.4718 

   0.8803 0.7551 4.1532 7.7902 

Likelihood 69.0345    

 742 

Table 8 743 

 
Level A Level B Level C Level D Level E 

Observed 13 18 31 15 22 

Weibull 3-parameters 12.96 17.68 32.04 14.31 22.01 

Mean error [%] 0.3 1.8 3.3 4.6 0.0 

 744 


