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Abstract: A rationale for creating highly aligned distributions of molecules is that it enables vector 

properties referenced to molecule-fixed axes (the molecular frame) to be determined. In the present 

work, the degree of alignment that is necessary in order for this to be achieved in practice is explored. 

Alignment is commonly parametrised in experiments by a single parameter, <cos2>, which is 

insufficient to enable predictive calculations to be performed. Here it is shown that, if the full 

distribution of molecular axes takes a Gaussian form, this single parameter can be used to determine 

the complete set of alignment moments needed to characterise the distribution. In order to 

demonstrate the degree of alignment that is required in order to approach the molecular frame, the 

set of alignment moments corresponding to a few chosen values of <cos2> are used to project a 

model molecular frame photoelectron angular distribution into the laboratory frame.  These 

calculations show that <cos2> needs to approach 0.9 in order to avoid significant blurring to be 

caused by averaging. 
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Over the last decade or so there has been considerable interest in the use of strong electric fields, 

such as those produced by high intensity laser light, as a means of aligning and orienting the axes of 

gas phase molecules in space.1-11  These techniques pave the way for the study of stereo-dynamical 

phenomena, including those associated with reaction dynamics1, 12, 13 and photoionization,14-18 as well 

as for the preparation of molecular targets for ultrafast diffraction experiments.10, 19 However, in order 

to exploit the techniques quantitatively it is important to be able to characterize the prepared 

alignment or orientation in a set of basis functions that relate to the symmetry of the distribution of 

molecular axes.   

A distribution of molecular axes, P(,), that is aligned or oriented along one axis in space can be 

expressed as an expansion in spherical harmonics, YKQ(,), where the polar angle  and the azimuthal 

angle  define the position of the principal molecular axis, lying along z, relative to a laboratory-fixed 

axis system (X,Y,Z):20 

 ( , ) ( , )KQ KQ

KQ

P A Y     .           (1) 

In Eq. (1) the AKQ coefficients are moments of the molecular axis distribution defined by the rank (K) 

and component (Q), where K = 0,1,2…, and K  Q  K. The A00 term is proportional to the total number 

of molecules, and the higher AKQ terms scale with A00. For our purposes here, the distribution will be 

assumed to be normalized, so that 
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This is equivalent to setting A00 = 1 in Eq. (1). Eq. (1) is valid for any molecular symmetry, providing 

that the alignment is created in one dimension only.20, 21  The number of terms that appear in Eq. (1) 

limit the anisotropy that is observable in a given measurement. When cylindrical symmetry is 

maintained, only terms with Q = 0 contribute to Eq. (1). In the limit of perfect alignment (all molecular 

axes lying parallel to the laboratory Z axis, with no preference for “up” or “down”), an infinite number 

of even-K values would be needed in the expansion. An isotropic distribution would have K = 0, Q = 0 

only, and a distribution that is oriented as well as aligned (molecular axes lying parallel to the 

laboratory Z axis, with a preference for “up” or “down”) requires the presence of non-zero AKQ terms 

with odd values of K. 

In general the values of the contributing alignment moments can be determined from a known 

distribution of molecular axes through the relationship: 
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However, the full distribution of molecular axes is generally unknown in a given experiment, and one-

dimensional alignment is typically characterized by the single parameter <cos2>,7, 22 where 
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or sometimes by the angular width of P(,).6  Using these measures a perfectly aligned distribution 

would have <cos2> = 1 (or an infinitesimally small angular width) and an isotropic distribution would 

have <cos2> = 1/3 (or an angular width of ). Similarly, an oriented distribution can be characterized 

experimentally by <cos> where 
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Here, an un-oriented distribution would have <cos> = 0, and a completely oriented distribution 

would have <cos> = 1 (“up”) or -1 (“down”).  

Although <cos2> and <cos> give useful experimental measures of alignment and orientation, it is 

important to understand what values of these parameters are needed if a measurement in the 

laboratory is to approach the molecular frame.  A case in point is the measurement of a photoelectron 

angular distribution (PAD) resulting from ionization in the weak-field limit. Such a measurement has 

the potential to image the valence-electron dynamics that occur during a chemical reaction, but only 

if the molecular frame is approached.23 The photoelectron wavefunction can be described by an 

expansion in partial waves defined by the orbital angular momentum, l, with the expansion 

terminating at lmax. In general the photoelectron angular distribution, I(,), can be expressed: 

( , ) ( , )LM LM

LM

I Y     .            (6) 

In the molecular frame limit, in which photoelectrons are detected relative to the direction of the 

principal molecular axis, the PAD will contain terms with 0  L  Lmax and L  M  L, up to Lmax = 2lmax.24 

In order to assess whether ionization of an aligned distribution of molecules can capture this 

anisotropy, the alignment needs to be represented in terms of the moments shown in Eq. (1).20, 21, 25  

Direct sensitivity to lmax then requires the presence of alignment moments with K  2lmax  2. Thus, for 
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example, if the photoelectron wavefunction contains contributions from g-waves (l = 4), these will 

only be apparent in the laboratory frame PAD if alignment moments with K  6 have significant 

magnitude in the distribution of molecular axes. More generally, high-K alignment moments are 

needed in order to gain sensitivity to a highly anisotropic experimental observable. 

Assuming cylindrical symmetry (Q = 0), and no orientation, it has been shown that when (non-state-

selected) molecules interact with a strong electric field the molecular axis distribution in Eq. (1) can 

often be well-represented using a Gaussian form:2 
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where n is a normalization constant, 
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 and 0 < 2  1. This form is particularly convenient because the parameter 2 relates to the angular 

width, and for small values of 2, is very approximately related to <cos2> by2 
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Although Eq. (9) gives a rule of thumb, the relationship breaks down rapidly as 2 increases. Fig. 1a 

shows the actual relationship between <cos2> and 2, as established using Eq. (4).  This figure enables 

the estimation of 2 from an experimentally determined value of <cos2>.  It can be seen that the 

value of <cos2> has fallen to less than 0.45 by the time that 2 has reached 0.5; this represents a 

negligible degree of alignment.   

In some strong-field alignment experiments 2 is measured directly; alternatively 2 can be 

determined from an experimentally determined value of <cos2>, using the relationship shown in Fig. 

1a. Once 2 is known, the alignment moments needed to characterize the molecular axis distribution 

can be calculated using Eq. (3). The results of this procedure are illustrated in Fig. 1b. Here, AKQ=0 

coefficients are plotted as a function of 2 for values of K up to 16. These plots provide a means of 

estimating the number of alignment moments that contribute to a distribution described by Eq. (7), 

as well as the relative values of those alignment moments.  It is immediately apparent from these 

plots that the AK0 coefficients decrease rapidly with increasing 2, and that higher moments become 

increasingly significant for small values of 2. This is further illustrated in Fig. 2 which shows the values 



 

 

 

5 

of 2 at which AK0 terms with a specified value of K begin to make a significant (> 5% of the value of 

A20) contribution to the distribution of molecular axes defined by Eq. (7).  For example, it can be seen 

that when 2 < 0.1 (<cos2> > 0.76) the number of moments required to represent the distribution 

starts to increase rapidly, with A16,0 greater than 5% of A2,0 for 2 < 0.03 (<cos2> > 0.94).  The larger 

the number of contributing moments the greater the sensitivity to highly anisotropic properties (see 

below). In experiments in which a single laser pulse is used to create alignment it has been shown that 

it is not possible to generate values of <cos2> greater than ~0.76, 9, 26 and that more complicated 

pulse sequences are required to create higher alignment.  A distribution characterized by <cos2>  

0.76 gives limited sensitivity to anisotropic properties, as shown below. 

Photoelectron angular distributions (PADs) have become a popular probe of non-adiabatic 

intramolecular dynamics, with their anisotropy uniquely sensitive to purely electronic effects.23 As 

discussed above, this sensitivity is maximised if the PADs approach the molecular frame.  Calculations 

of PADs from aligned distributions of molecules therefore provide an excellent illustration of the 

significance of the plots shown in Figs. 1 and 2.  However, in order to be of relevance to 

experimentalists it is helpful to calculate the PADs that would be expected following ionization of a 

distribution characterized by <cos2>, rather than choosing an arbitrary set of AKQ values.  The 

alignment parameters needed to describe a Gaussian distribution characterized by a given value of 2 

provide the means of doing this.  A model weak-field molecular frame PAD for an arbitrary symmetric 

top molecule has been calculated using the formalism of Underwood and Reid,20 by taking two 

arbitrary sets of radial dipole matrix elements and phases for partial waves up to lmax = 4 in order to 

generate anisotropies that would be averaged out in laboratory frame measurements of molecules 

that are unaligned, or aligned through resonant excitation with one or two photons. The results of this 

are shown in Figs. 3 and 4 for the two sets of matrix elements.  In both figures panel (a) shows the 

molecular frame PAD;§ this has the maximum possible degree of anisotropy, reflecting directly the 

photoelectron wavefunction. Laboratory frame PADs are then calculated by projecting the molecular 

frame PAD by convoluting it with distributions of molecular axes described by Eq. (7).   

In Fig. 3a it can be seen that the molecular frame PAD has four lobes and so to approach the molecular 

frame results those same four lobes need to appear in the laboratory frame PAD.  The distributions 

used for the calculations shown in Figs. 3b to 3d are described by 2 = 0.06, 0.1, 0.12, respectively, 

corresponding to <cos2>  0.87, 0.76 and 0.72.  Comparison of the different panels in Fig. 3 allows an 

assessment of the alignment that needs to be created in order to capture the features of the molecular 

frame PAD.  It can be seen that if the alignment is characterized by 2 = 0.1 (<cos2>  0.76), the 
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laboratory frame PAD does not contain the necessary four lobes, and in this case 2 needs to be at 

most ~0.06 (<cos2> > ~0.87) in order for the laboratory frame PAD to resemble the molecular frame 

PAD.  This means that, according to Fig. 2, alignment moments up to K = 10 need to be present in 

order to reproduce the molecular frame anisotropy in this case.  In Fig. 4a radial dipole matrix 

elements have been chosen to generate a molecular frame PAD with eight lobes. Here, the 

distributions used for the calculations shown in Figs. 4b to 4d are described by 2 = 0.03, 0.06, 0.1, 

respectively, corresponding to <cos2>  0.94, 0.87 and 0.76, and it can be seen that even an alignment 

characterized by 2 = 0.06 (<cos2>  0.87) is not sufficient to capture the anisotropy of the molecular 

frame PAD. In this case 2 needs to be ~0.03 (<cos2> > ~0.94) which means that, according to Fig. 2, 

alignment moments up to K = 16 need to be present. A key result of this work is that the higher the 

anisotropy present in the molecular frame PAD the better the alignment needs to be in order for a 

laboratory frame measurement to detect that anisotropy.  A deconvolution procedure, designed to 

extract the molecular frame PAD, can only be applied if the alignment is sufficient for all molecular 

frame lobes to appear.    

A further advantage of characterizing the distribution of molecular axes by Eq. (7) is that this form 

lends itself to a straightforward extension that allows the representation of an oriented distribution. 

This can be achieved by writing: 

  
2

2

sin

2
( , ) (1 cos )expP n a 

 
      ,         (10) 

where 1  a  1. Eq. (10) provides a fair representation of some examples of measured and computed 

oriented distributions of non-state-selected molecules. 1, 9, 11 Using Eq. (10), the alignment remains 

characterized by 2, and the degree of orientation can be characterized by a combination of the 

parameters a and 2, which are related to <cos> by    

   2cos cosa   .                (11) 

The behaviour of <cos> versus a for three different values of 2 is shown in Fig. 5a.  The value of 

<cos> is maximized for 2  0 and for a = 1. A given value of 2 results in the same values of the 

even-K AKQ coefficients as those shown in Fig. 1b, but a non-zero value of the parameter a means that 

non-zero AKQ=0 coefficients with odd-K also appear. An example of the behaviour of the odd-K AKQ=0 

coefficients as a function of a is shown in Fig. 5b, for 2 = 0.1. The linear relationship is maintained for 

all values of 2, with AKQ=0 coefficients with high values of odd-K becoming increasingly important as 

the value of 2 decreases.  
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The treatment above has assumed cylindrical symmetry throughout, but in some cases the extension 

to non-cylindrically symmetric experimental geometries is straightforward. A typical scenario might 

involve a probe laser pulse whose polarization vector lies at some angle  to the alignment axis. 

Assuming cylindrical symmetry (Q = 0) in the original frame, the AKQ parameters in the new frame can 

be calculated through  

0 0( )K

KQ Q KA d A ,                 (12) 

where the 0 ( )K

Qd  is a reduced Wigner rotation matrix element that can be calculated using recursion 

relations.27 Thus, an experimental determination of <cos2> would enable the determination of the 

AK0 coefficients relevant to the alignment frame using the procedure outlined above, and these AK0 

coefficients could be rotated into the probe frame using Eq. (12).  The laboratory frame PADs resulting 

when the probe is an ionizing pulse would also be non-cylindrically symmetric as a consequence of 

the contribution of LM terms with M = Q to the expansion in Eq. (6). These PADs could be calculated 

using the alignment moments determined by Eqs. (3) and (12) to project a given molecular frame PAD 

into the laboratory frame.  

Sophisticated experiments are now able to align asymmetric molecules in three dimensions;28 in this 

case cylindrical symmetry is broken in the alignment frame and the spherical harmonics that appear 

in Eq. (1) are replaced by Wigner rotation matrix elements,21 

  , , exp( ) ( )exp( )K K

QQ QQD i Q d i Q      
   ,         (13) 

where (,,) are the Euler angles necessary to express the  orientation of the molecular frame axis 

system (x,y,z) relative to the laboratory frame axis system (X,Y,Z). Such a situation requires an 

extension of the treatment given here and will be considered elsewhere.  

Conclusion 

It has been shown that, when an aligned distribution of molecular axes takes a Gaussian form, the 

relative magnitudes of the contributing moments of the distribution can be estimated through 

knowledge of either the angular width (2) or <cos2>.  The determination of the alignment moments, 

which can be achieved through Eq. (3), enables the calculation of the laboratory frame projection of 

anisotropic molecular properties, such as molecular frame photoelectron angular distributions. These 

calculations show that <cos2> needs to approach 0.9 in order to avoid significant blurring to be 
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caused by averaging.  The treatment can be extended quite straightforwardly to oriented distributions, 

and to non-cylindrically symmetric pump-probe experiments.   
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Figure Captions 

Fig. 1: (a) <cos2> as a function of 2 for the distribution of molecular axes given by Eq. (7), (b) AKQ 

alignment moments resulting from Eq. (3) for the distribution given in Eq. (7), as a function of 2. 

Fig. 2: The values of 2 at which AK0 terms with a specified value of K begin to make a significant (> 5% 

of the value of A20) contribution to the distribution of molecular axes defined by Eq. (7).    

Fig. 3: Polar plots of photoelectron intensity calculated using the formalism given in Ref. 20 for an 

arbitrary set of radial dipole matrix elements and phases chosen to generate a distribution with four 

lobes in the molecular frame. (a) The molecular frame PAD with the polarization vector of the light 

parallel to the molecular axis, (b)–(d) laboratory frame projection of (a) following the ionization of a 

Gaussian distribution of molecular axes described by (b) 2 = 0.06 (<cos2>  0.87), (c) 2 = 0.1 

(<cos2>  0.76) and (d) 2 = 0.12 (<cos2>  0.72). In (a) Z denotes the molecular axis, in (b)-(d) Z 

denotes the polarization direction of the linearly polarized ionizing photon, taken to be parallel to the 

direction of alignment. 

Fig. 4: As for Fig. 3 but with radial dipole matrix elements and phases chosen to generate a distribution 

with eight lobes in the molecular frame. (a) The molecular frame PAD with the polarization vector of 

the light parallel to the molecular axis, (b)–(d) laboratory frame projection of (a) following the 

ionization of a Gaussian distribution of molecular axes described by (b) 2 = 0.03 (<cos2>  0.94), (c) 

2 = 0.06 (<cos2>  0.87), and (d) 2 = 0.1 (<cos2>  0.76). 

Fig. 5: (a) <cos> vs the orientation parameter a for three values of 2 for a distribution of molecular 

axes described by Eq. (10).  (b) Odd-K alignment moments determined using Eqs. 3 and 10 as a 

function of the parameter a, with 2 = 0.1. The experimental degree of orientation is given by Eq. 

(11). 
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Notes  

‡ Integrals can be straightforwardly evaluated using, for example, Mathematica.  

§ There is no unique molecular frame PAD. The PAD depends on the relative direction of the 

electric vector of the ionizing light and the molecular axis. 
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