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Abstract  

Electrical discharge coating (EDC) methods may be used to enhance the surface functionality 

of electrical discharge machined components. However, industrial uptake of EDC has been 

restricted due to limited understanding of the fundamental interactions between energy source 

and workpiece material. The fraction of energy transferred to the workpiece, Fv, as a 

consequence of sparking, is an important parameter which affects directly crater geometry and 

the microstructural development of the near surface modified layer. In this paper, a 2D transient 

heat transfer model is presented using finite difference methods, validated against experimental 

observations, to estimate effective values for Fv as a function of processing conditions. Through 

this method we can predict coating layer thicknesses and microstructures through appropriate 

consideration of heat flow into the system. Estimates for crater depths compared well with 

experimentally determined values for coating layer thicknesses, which increased with the 

increasing fraction of energy transfer to the workpiece. Predictions for heat transfer and cooling 

of melt pools, arising from single spark events, compared well with experimental observations 

for the developed cermet microstructures. In particular, intermediate processing conditions 

were associated with the development of complex, banded, fine-grained microstructures, 

reflecting differences in localised cooling rates and the competing pathways for heat 

conduction into the substrate and convection within the dielectric fluid. Increased pulse-on 

times were associated with a propensity towards increasing grain size and columnar growth, 

reflecting the higher energies imparted into the coatings and slower cooling rates. 
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Nomenclature 

Symbols  𝑅𝑝 Empirical constant 

a Constant  Rpc Plasma channel radius (µm) 

𝑐𝑝 Specific heat capacity (J/kg.K)  r Radial distance (m) 

ED Electric discharge  T Temperature (K) 

EDC Electrical discharge coating  𝑇𝑚 Melting temperature (K) 

EDM Electric discharge machining  Ts Initial temperature (K) 

FEM Finite element method  T∞ Dielectric fluid temperature (K) 

Fv 
Fraction of energy transferred to the 

workpiece 
 t Time (s) 

HSFC High speed framing camera  ton Pulse-on time (µs) 

h 
Convection heat transfer coefficient 

(W/m2.K) 
 𝑢∞ Velocity of the fluid (m2/s) 

I Current (A)  V Voltage (V) 

k Thermal conductivity (W/m.K)  x &y Cartesian coordinates 

L Workpiece length (m)  2D Two dimensions 

𝐿𝑚 Latent heat of melting (J/kg)    

MMC Metal matrix composite   Greek letters 

m Constant  α Thermal diffusivity (m2/s) 

𝑁𝑢𝑥 Nusselt number (-)  𝛼 ˋ Modified thermal diffusivity (m2/s) 

n  Constant  µ Dynamic viscosity of the fluid (kg/m.s) 

𝑃𝑟 Prandtl number (-)  ρ Density (kg/m3) 

q Convection heat flux (W/m2)    

q0 Maximum heat flux (W/m2)   Subscripts 

𝑅𝑒 Reynolds number (-)  i & j Iteration in x & y direction 

1 Introduction  

Electrical discharge coating (EDC) is an adaptation of electrical discharge machining (EDM), 

which is able to deposit high melting point materials, such as hard-wearing, electrically 

conductive ceramics, onto a substrate, using a semi-sintered tool electrode. EDM is considered 

as a non-contact process that can be used to machine challenging electrically conductive 

materials, regardless of their mechanical properties of hardness, toughness or strength (Lin et 

al., 2008). Even though the first reported use of EDM was recorded in the late 1940s (Singh et 

al., 2004), it is still considered to be a non-conventional machining process when compared to 

more conventional, shear-based machining methods. The EDM process involves transient 

phenomena, between solid, liquid and gas/plasma phases, with chemical reactions leading to 

mass transfer and boundary displacement (Kunieda et al., 2005), necessitating a consideration 

of the electrodynamics, thermodynamics and hydrodynamics of the system (Yeo et al., 2008). 

During ED processing, material is removed by a series of discrete electrical discharges between 

two electrodes immersed in a medium of dielectric fluid, through conversion of electrical 

energy into thermal energy (Singh and Bhardwaj, 2011). The energy distribution into the 

workpiece material may be estimated with reference to the physical properties of the electrodes 

in question, by assuming either all the electrical energy is converted into heat (Singh and 
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Shukla, 2012); or by using refined process models, using either analytical (Yeo et al., 2007) or 

numerical approaches (Das et al., 2003) based on underpinning electro-thermal and electro-

mechanical mechanisms of material removal (Tan and Yeo, 2008). However, there is 

variability in the bases of these modelling approaches, for single spark events, which consider 

a variety of heat sources (e.g. point, cylindrical or Gaussian) and assume different levels of 

energy transfer, in order to calculate temperature distributions, crater geometries and the 

volume of material removed. 

A comprehensive comparison by Yeo et al. (Yeo et al., 2008) of five different EDM 

electrothermal models, in terms of temperature distribution, material removal and crater 

geometry, demonstrated that the model of Di Bitonto et al. (DiBitonto et al., 1989), which 

assumed only 18 % of energy was transferred to the cathode, showed better agreement with 

experimental data than other models which assumed 50 % energy transfer, leading to an 

overestimate of workpiece temperature and resulting crater size. Indeed, the assumption of a 

constant fraction of energy transferred to the workpiece is considered one of the main reasons 

for variability between modelling and experimental data (Singh, 2012). 

With regard to the various attempts to estimate the energy distribution between anode, 

cathode and dielectric fluid during EDM, Okada et al. (Okada et al., 2000) modelled energy 

distribution correlated against a simple thermocouple measurement of both workpiece and 

electrode temperature. Conversely, Singh (Singh, 2012) considered the fraction of energy 

transferred to the cathode, for different discharge parameters, utilising heat transfer principles, 

to show that the fraction of energy increased from 6.1 % to 26.8 % with increasing current and 

pulse-on time (total energy per discharge event). Further, Xia et al. (Xia et al., 1996) 

determined the energy distribution to anode and cathode by measuring and calculating 

electrode temperature as a function of position. In this case, a finite difference method was 

utilised iteratively, with assumed energy loss converging on ~ 40 % and ~ 25 % to the anode 

and cathode, respectively, when the temperatures coincided. The alternative approach of Zhang 

et al. (Zhang et al., 2014) to determine plasma diameter and energy distribution during EDM 

compared experimentally determined boundaries of molten material (i.e. crater morphology) 

with an finite element method (FEM) thermo-physical model, and showed that expansion of 

the plasma diameter should be taken into consideration, under conditions of fixed current, for 

consistency. 

Hence, from literature, it is evident that the proportion of energy transferred into the 

workpiece during electric discharge is a critically important factor in defining model fidelity. 

Further, there has been no modelling to date of spark/material interactions during the related 
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process of electric discharge coating (EDC). In this paper, a 2D transient heat transfer model 

is developed, using finite difference methods, drawing on the approaches of Xia et al. (Xia et 

al., 1996) and Zhang et al. (Zhang et al., 2014), to estimate the effective heat transfer into a 

workpiece during EDC. Interpolation, based on current and pulse-on time, allowed the plasma 

radius and Gaussian heat flux distribution into the workpiece to be predicted. Further, the 

model allows for fundamental interactions between energy source and workpiece during EDC 

processing to be explored, with consideration of original coating / workpiece material 

properties enabling the prediction of coating layer thicknesses and the microstructural 

rearrangements, upon the associated rapid cooling phase. 

2 Process modelling and simulation 

A simple and comprehensive model is now presented to help explain single spark interactions 

during ED processing. Energy is imparted into the workpiece from the plasma channel, with 

material on the scale of the plasma channel diameter experiencing a rapid heating and cooling 

phase, during pulse-on and pulse-off times, respectively.  

 

2.1 Heating phase 

2.1.1 Governing equations and boundary conditions 

A two dimensional axisymmetric transient heat transfer model was developed, to facilitate 

improved understanding of electro-thermal heating for a single discharge incident upon a 

workpiece surface. The finite difference domain was defined with dimension 3 x 1.5 times the 

crater radius, in both the x and y directions, respectively; with a uniform square mesh of grid 

spacing Δx = Δy = 0.5 µm. Figure 1 illustrates the Gaussian heat distribution and interaction 

with the workpiece along with the associated boundary conditions used for the analysis. The 

initial temperature Ts of the workpiece is taken as the ambient temperature; the material 

properties of the electrodes and dielectric are considered temperature-independent; and the time 

increment is set at Δt = 10-8 s. 
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Figure 1 Gaussian profile heat source and boundary conditions with the workpiece, including interior node and 

expanded view of top surface boundary node.  

Conduction without heat generation is considered the main mode of heat transfer between a 

plasma channel and workpiece, for example as shown by (Kansal et al., 2008) as well as (Joshi 

and Pande, 2010) although some heat loss from the top surface of the workpiece is anticipated 

due to convective flow of the dielectric fluid, which is considered in more detail during the 

‘Cooling phase’ (Section 2.2). For simplification, radiative heat losses are neglected here. 

The governing Fourier heat conduction equation, taking into account the boundary 

conditions, is given by: 

𝜕2𝑇 𝜕𝑥2⁄ + 𝜕2𝑇 𝜕𝑦2⁄ = 1 𝛼⁄  𝜕𝑇 𝜕𝑡⁄         (1) 

 

Where T represents the temperature, and x and y are Cartesian coordinates, used to represent 

radial distance from the centre of the crater, and distance below the specimen surface, 

respectively; t represents time (i.e. pulse-on time); and α represents thermal diffusivity (m2/s), 

expressed as:  

𝛼 = 𝑘 𝜌 𝑐𝑝⁄                  (2) 

 

Where k is thermal conductivity (W/m.K); ρ is density (kg/m3); and 𝑐𝑝 is the specific heat 

capacity (J/kg.K). When the temperature of the workpiece reaches a specified level during 

processing, some of the crater material melts and evaporates, whilst some of the tool electrode 

material becomes deposited on the workpiece surface which then re-solidifies. Latent heat is 

exchanged as a result of this phase transition and hence the term for thermal diffusivity 𝛼′ 

requires modification and is used as in  (Zhang et al., 2014):  

 

𝛼′ =  𝑘 𝜌 (𝑐𝑝 + 𝐿𝑚/𝑇𝑚)⁄               (3) 
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Where 𝐿𝑚 represents the latent heat of fusion (J/Kg) and 𝑇𝑚 is the melt temperature (K).  

 

2.1.2 Heat flux and energy distribution  

 

The effective energy transferred into the workpiece is characteristic of the amount of energy 

available and the shape of the heat distribution profile. It is widely accepted that the plasma 

heat source during EDM processing approximates a Gaussian distribution, for example as has 

been approximated by (Das et al., 2003) and (Zhang et al., 2013) amongst others. The Gaussian 

distribution of heat flux is given by: 

 

𝑞(𝑟) = 𝑞0 𝑒𝑥𝑝 (−𝑛(𝑟 𝑅𝑝𝑐⁄ )
2

)               (4) 

 

With maximum heat flux q0 (W/m2) given by: 

 

𝑞0 = 4.57  𝐹𝑣  V 𝐼 𝜋𝑅𝑝𝑐
2⁄                 (5) 

 

Where r is radial distance from the centre of a single spark; Rpc is the plasma channel radius; 

Fv is the fraction of total energy transferred to the workpiece; and V and I are voltage and 

current, respectively. The exponent n used in equation (4) serves to define the Gaussian 

distribution. The heat flux profile becomes steep when n < - 4.5 and becomes flat with any 

increase of n to a value approaching zero (Izquierdo et al., 2009). Further, Shen et al. (Shen et 

al., 2014) report that the energy distribution characteristic was affected by the shape of the 

electrode, with enhanced energy distributed into the workpiece from a needle-shaped electrode. 

For the present work, based on the use of a flat electrode, a value of n = -3 was selected based 

on previous studies, for example from (Somashekhar et al., 2015), also in agreement with work 

of (Tao et al., 2012). 

It is recognised that there are inherent difficulties in measuring the plasma channel radius 

Rpc, due to the small distance between the two electrodes (~ 10 - 100 m (Kunieda et al., 2005)) 

where the plasma occurs at very short pulse-on times (few microseconds). Schulze et al. 

(Schulze et al., 2004) used a high speed framing camera (HSFC) to analysis the discharge 

process, but experienced difficulties analysing the light emission due to the effects of debris 

and bubbles which serve to obscure the spark gap. Descoeudres et al. (Descoeudres et al., 2005) 

used spatially-resolved optical emission spectroscopy to investigate the plasma created during 



7 

 

EDM and reported very fast development of the plasma, with formation < 50 ns after dielectric 

breakdown, with the light originating mostly from a region broader than the gap itself. Further, 

Kojima et al. (Kojima et al., 2008) used a high speed video camera to show that expansion of 

the plasma was complete within ~ 2 s after dielectric breakdown, while the diameter of the 

crater grew slowly in comparison to the plasma, leading to the suggestion that the plasma 

diameter was ~ five times larger than the crater diameter under certain conditions, being distinct 

from conventional plasma expansion models. Similarly, Natsu et al. (Natsu et al., 2006) used 

a high speed video camera to show that expansion of the plasma was complete within a few s 

after dielectric breakdown. 

It is noted that there are a variety of approaches for calculating the plasma channel radius in 

the literature, but with no clear consensus. For example, the time dependent plasma radius 

equation may be taken as: 

𝑅𝑝𝑙𝑎𝑠𝑚𝑎 = 𝑅𝑝 𝑡𝑛            (6) 

 

Where 𝑅𝑝  is an empirical constant and exponent n depends on the experimental conditions, 

with Eubank et al. (Eubank et al., 1993) suggesting n = 0.75, whilst Izquierdo et al. (Izquierdo 

et al., 2009) suggest n = 0.2. Alternatively, the time dependent plasma channel radius equation 

may be expressed as: 

𝑅𝑝𝑐 = 𝑎 𝐼𝑚 𝑡𝑜𝑛
𝑛             (7) 

 

Where ton
 is the pulse-on time; I is current, and a, n and m are empirical constants. Ikai and 

Hashiguchi (Ikai and Hashigushi, 1995) used experimental values for crater radii from single 

pulse interactions to determine the following empirical relationship, and based on pulse width 

and discharge current profile can be determined: 

 

𝑅𝑝𝑐 = 2.04 𝑥 10−3 𝐼0.43 𝑡𝑜𝑛
0.44          (8) 

 

Accordingly, it is recognised that different processing conditions lead to significant differences 

in the plasma channel radius (Zhang et al., 2014). 

With regard to difficulties of measuring the plasma channel reported above and for 

consistency with many other research, for example, (Das et al., 2003) as well as (Tan and Yeo, 

2008) and (Erden, 1983). Therefore, plasma channel radius is assumed to be equal to the crater 

radius generate by the discharge. An interpolation approach as a function of MATLAB 
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software was utilised to estimate the plasma channel radius, based on a wide range of crater 

measurements as a function of current and pulse-on time, Figure 2. 

 

Figure 2 Crater radius as a function of current and pulse-on time obtained experimentally (Table 1). 

 

2.2 Cooling phase 
 

Immediately after the pulse-on time, the plasma channel collapses and is replaced by the 

dielectric fluid. This is accompanied by a sudden drop in pressure which results in the removal 

of some of the molten material in the form of debris. A cooling phase (pulse-off time) then 

proceeds allowing for molten material to cool-down and re-solidify, following renewed contact 

of the crater surface with the dielectric.  

Convection boundary conditions may be applied to the surface through Newton's law: 

𝑞 = ℎ(𝑇𝑠 − 𝑇∞)                (9) 

Where q (W/m2) is the convection heat flux; Ts (K) is the initial temperature; T∞ (K) is the 

dielectric fluid temperature; and h (W/m2.K) is the convection heat transfer coefficient which 

is a function of fluid properties, geometry, surface roughness and the fluid flow pattern 

(Theodore, 2011). In the present work, fluid flow over a flat plate is assumed to be uniform, at 

constant velocity, given by:  

ℎ = 𝑁𝑢𝑥  𝑘 𝐿⁄           (10) 

Where L (m) is the workpiece length and 𝑁𝑢𝑥 is the Nusselt number given by: 

𝑁𝑢𝑥 = 0.644 𝑅𝑒𝑥
0.5 𝑃𝑟0.33        (11) 

Where 𝑅𝑒 is the Reynolds number and 𝑃𝑟 is the Prandtl number, respectively. 
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𝑅𝑒𝐿 = 𝜌 𝑢∞𝐿 µ⁄       (12)          and        𝑃𝑟 = µ 𝑐𝑝 𝑘⁄            (13) 

 

Where 𝑢∞  is the velocity of the fluid (m2/s) and µ is the dynamic viscosity of the fluid (kg/m.s), 

for Laminar flow, it is required that Re < 5x105, and 0.6 ≤ Pr ≤ 50  (Theodore, 2011).  

 

2.3 Methodology  
 

It is difficult to measure the energy distribution to the anode, cathode and dielectric fluid from 

the spark process, with temperature and cooling rate directly influencing the microstructural 

development and hence the physical properties of the modified surface. In the present work, a 

finite difference method was used to estimate the temperature distribution on the basis of the 

underpinning thermo-physical properties of the system (Shahri et al., 2016), to simulate the 2D 

transient heat transfer of a single spark event during EDC. The approach of comparing 

experimentally determined with theoretically calculated crater radii, as proposed by Xia et al. 

(Xia et al., 1996) and Zhang et al. (Zhang et al., 2014), was used. This approach allows the 

percentage of energy transferred to the workpiece to be estimated, to be between 0 and 1, 

stepwise 0.01. In the present approach, when every node on the workpiece under the influence 

of the spark reaches the melting point, the workpiece is replaced with expressions for a 50:50 

composite based on both workpiece and tool electrode material properties. Figure 3 presents a 

flowchart for this 2D transient heat transfer model, performed using MATLAB. In particular, 

the model is capable of calculating the rate of cooling of each melt pool, produced by a single 

spark event, which allows the grain size within the coating layer (crater) to be predicted.  
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Figure 3 A process flow highlighting the 2D transient heat transfer model. 

 

Experimental work was performed to verify the applicability of this model, using a 

Mitsubishi EA12V die sinking machine with a semi-sintered (10×20×100 mm) TiC tool 

electrode. Table 1 presents a summary of the EDC parameters for single spark crater formation 

(~ 0.5 minutes of processing time) and continuum coating layer formation (~ 60 minutes of 

processing time): As a function of current and pulse-on time; with fixed values for electrode 

polarity, voltage and pulse-off time. Sections of 304 stainless steel workpiece material 

(20×20×4 mm) were polished to a mirror finish and cleaned with acetone. Table 2 summarises 

the properties of the workpiece and TiC tool electrode, respectively. In order to measure the 
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gap voltage and record the voltage waveforms for all the processing parameters during EDC, a 

data acquisition system comprising a PicoScope 4224 (PC Oscilloscope) with differential 

oscilloscope probes TA041 was used. Thermal conductivity of the dielectric fluid was 

measured directly using a C-Therm TCi Technologies, averaged over six measurements.  

 
Table 1 EDC machining parameters 

Working 

parameters 

Current 

(A) 
Pulse-on (µs) 

Pulse-

off 

(µs) 

Voltage 

(V) 

Tool 

electrode 

polarity 

Electrode 

material 

Machining 

time (min) 

Description 2,6,10,14,19 2,4,8,16,32,64 256 320 negative TiC 60 & 0.5 

 

 
Table 2 Material properties of the workpiece and tool electrode  

 
Density 

(kg/m3) 

Thermal 

conductivity 

(W/m.K) 

Specific 

heat 

capacity 

(J/kg.K) 

Latent 

heat of 

fusion 

(J/kg) 

Melting 

point 

(K) 

304-SS 7,905 15 510 272,500 1,698 

TiC 4,910 21.5 5,565 1,160,000 3,478 

 

 

EDC processed samples were cross-sectioned using an ATA Brillant 220 cutting machine, 

mounted, polished and washed with acetone, and etched with Krolls reagent (2 ml HF, 3 ml 

HNO3 and 500 ml distilled water), to delineate the TiC distribution within the coating. 

Metallurgical analyses of the workpiece surfaces and coatings were performed using scanning 

electron microscopy (SEM) (FEI XL30) and energy dispersive X-ray spectroscopy (EDS) 

(Oxford Instruments, INCA). 

 

3 Results 
 

3.1 Gap voltage measurement  
 

The gap voltage was measured for each set of processing parameters. Figure 4 presents 

examples of open gap voltages, as measured under three different discharge conditions 

(constant current of 10 A: and 8, 32 and 64 s pulse-on times), illustrating details of the rapidly 

changing voltage (12.5 ns sample interval and 80 MS/s sampling rate). In each case, a capacitor 

charges until it reaches the applied voltage, then the voltage drops suddenly to a steady state 

value at which point discharge occurs, and this value is maintained for the whole duration of 

the discharge, then decreases when the discharge ceases. The gap voltage was observed to vary 

in the range 25 – 35 V, for variable conditions of current (2 to 19 A, for a fixed pulse-on time 

of 8 µs); and variable conditions of pulse-on times (2 to 16 µs, for a fixed current of 10 A). 

Accordingly, a value of 30 V was used as the gap voltage in the modelling, for the case of these 
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processing parameters. However, it was observed that the gap voltage decreased significantly, 

to 23 V and 18 V, with increasing pulse-on times of 32 µs and 64 µs, respectively, necessitating 

adjustment to the modelling voltage in these cases. Furthermore, it was observed that the 

agitation delay time for discharge varied, for each set of processing parameters. 

 
Figure 4 Waveforms associated with coatings produced using a TiC tool electrode and a 304 stainless steel 

workpiece, with negative polarity for pulse-on times of: a) 8 s, b) 32 s and c) 64 s (fixed 10 A current). 

 

 

3.2 Code validity and fraction of energy transferred to the workpiece  
 

Figure 5 presents a comparison of the fraction of energy transferred to the workpiece during 

EDC processing, as predicted by the present model (red lines), based on estimates for Fv 

obtained during EDM processing, as reported by Singh (Singh, 2012) (blue lines) and Shabgard 

and Akhbari (Shabgard and Akhbari, 2016) (black lines), as a function of increasing current 

and pulse-on time. The energy distribution ratio into the workpiece varied between 17 % and 
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23 % with increasing current (fixed pulse-on time of 8 µs), whilst a significant increase in the 

amount of energy transferred to the workpiece, up to ~ 50 % was associated with an increase 

in pulse-on time (fixed current of 10 A). The high increase in fraction of energy transferred, 

for pulse-on conditions of 32 and 64 µs, was attributed to the drop in gap voltages, to 23 and 

18 V, respectively. Overall, the values of Fv are in good general agreement with previous 

reports such as (Singh, 2012) and (Shabgard and Akhbari, 2016) , but are slightly higher, which 

probably reflects the differences in the EDC mechanisms of surface modification, as workpiece 

material is replaced / alloyed with tool electrode material, being distinct from material removal 

during EDM processing.  

 

Figure 5 Fraction of energy transferred to the workpiece, compared to literature (Singh, 2012) and (Shabgard 

and Akhbari, 2016) as function of increasing: a) current and b) pulse-on time. 

 

3.3 Heat distribution 

 

Simulated results for temperature distribution into the workpiece, as a consequence of single 

spark events, as a function of increasing current and pulse-on time, are shown in Figure 6. The 

minimum temperature attained was determined to be ~ 13,000 K under low energy processing 

parameters (i.e. 2 A / 8 µs and 10 A / 2 µs). With increasing current (4 to 19 A, for fixed pulse-

on time of 8 µs), the temperature was found to vary between ~ 17.5 x 103 – 20 x 103 K; whilst 

for increasing pulse-on time (8 to 64 µs, for a fixed current of 10 A), temperatures of ~ 20 x 

103 K reducing to ~ 16 x 103 K were achieved. 
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Figure 6 MATLAB simulations showing heat distribution into the workpiece at the end of the 'pulse-on' stage; 

along with the temperature distribution across the top surface (dotted white line) and the boundary of molten 

material with the bulk substrate (dashed white line).  

 

Each dotted white line represent the radial temperature distribution across the top surface of 

the workpiece, from the centre of a single discharge, which acts to define the size of the crater. 
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The highest temperature established at the centre gradually decreases with distance from the 

origin, reflecting the Gaussian distribution of the heat flux equation. Hence, maximum energy 

was transferred at the centre, with decreasing power density towards the periphery. The dashed 

white line represents the consequent boundary of molten material with the bulk substrate. It is 

considered that the neighbouring workpiece surface that does not interact directly with the 

plasma channel is largely unaffected, due to short pulse-on time, and hence does not change 

significantly in temperature. 

 

3.4 Crater diameter  
 

Representative craters for each set of processing parameters were identified using SEM (Figure 

7) with reported sizes based on an average of 30 measurements, as determined using ImageJ, 

Table 3. The edges of individual craters produced by discrete spark events could be readily 

identified. Overlapping craters and craters created from abnormal discharges were discounted. 

Average crater sizes ranged from 41 to 96 µm with increasing current from 2 to 19 A (fixed 

pulse-on time of 8 µs); and from 35 to 165 µm with increases in the pulse-on time from 2 to 64 

µs (fixed current of 10 A), which reflects the general trend of increasing input energy (Algodi 

et al., 2016). 

 

 
Figure 7 Plan view SE images of craters created from single spark events, at the start of template coating. 

Average crater sizes increase with increasing pulse energy. 

 
Table 3 Average crater sizes (n = 30) as a function of processing conditions 

 Current / A  Pulse-on time / s 

 2 6 10 14 19  2 4 8 16 32 64 

2A-8µs 10A-8µs 19A-8µs

10A-64µs10A-2µs 10A-16µs
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Mean crater size / 

m 
41 60 69 83 96  35 57 69 107 151 165 

 4.3 4.7 5.0 8.6 8.7  5.6 11.8 5.7 7.8 14.3 16.5 

 

 

 
Figure 8 Simulated crater boundaries into the workpiece as a function of increasing: a) current and b) pulse-on 

time. 

 

Simulated crater profiles, delineating the boundary between the melt pool and the bulk 

workpiece, as a function of current and pulse-on time, are presented in Figures 8a and b. Crater 

diameter was predicted to increase significantly with increasing current (for fixed pulse-on time 

of 8 s), but without significant change in melt pool depth (Figure 8a); whilst increasing the 

pulse-on time (for fixed current of 10A) resulted in an increase in both crater width and depth 

(Figure 8b) (Maradia et al., 2015). 

 

3.5  Layer thickness  
 

Figure 9 presents representative high magnification BSE images of the ED processed samples 

in cross-section geometry, providing detailed insight into the microstructural development of 

the coatings, confirming the formation of a metal matrix composite (MMC) of variable TiC / 

Fe composition, as a function of the processing conditions (Algodi et al., 2016). Representative 

localised compositions, as determined by EDS, are summarised in Table 4 (Figures 9b:1-3, c:4-

6). Regions of enhanced TiC (Figures 9, arrowed), originating from the tool electrode, appear 

dark (locally averaged composition) within such BSE images, due to the lower atomic number 

of Ti compared to Fe. Coatings produced under the low energy conditions of 2 A (8 µs) and 10 

A (2µs) show a non-uniform distribution of TiC throughout the coating (Figures 9a and b), 

reflecting a lower level of intermixing between workpiece and transferred tool electrode 

material. Coatings produced under conditions of increasing current (10 - 19 A for a fixed pulse-

on time of 8 µs) exhibit a higher amount and more regular distribution of TiC throughout the 

coating, but with a much more complicated, intermixed microstructure (Figures 9c and 9e), 
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being attributable to the electrode condition, complexities of the melting mechanism, material 

re-deposition and intermixing with the substrate during multiple discharges (Murray et al., 

2016). 

 

 
 

Figures 9 SE images of ED processed coatings, viewed in cross-section: (a,c,e) for fixed pulse-on time of 8 s as 

a function of increasing current; and (b,d,f) for fixed current of 10 A as a function of increasing pulse-on time. 

(b:1-3; and c:4-6) Representative localised compositions, determined by EDS, are summarised in Table 4. 

 
Table 4: Elemental distribution 

 Element (wt%)  Element (wt%) 

Fig 9b 

Region Ti Fe C Cr Fig 9c 

Region Ti Fe C Cr 

1 6.17 61.75 13.29 14.62 4 32.19 35.81 18.73 10.17 

2 38.77 11.63 33.60 7.72 5 37.53 25.06 17.78 8.96 

3 21.42 40.64 27.59 7.48 6 56.79 7.13 32.27 3.81 

 

Simulations of crater formation from single spark events during EDM processing provide 

information on material removal rate and the thickness of the recast layer, to help refine the 

process. Similarly, simulations of single spark events during EDC processing, as performed 
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here, provide for improved understanding of crater development and the layer formation 

process in terms of resultant microstructure and thickness. Figure 10 presents a comparison of 

simulated crater depths from single spark events, with experimentally determined EDC layer 

thicknesses (after 60 minutes of processing, corresponding to the overlap of ~185 spark events 

(Algodi et al., 2016)), as a function of increasing current and pulse-on time. The key point 

being that there is a strong correlation between crater depth and developed coating thickness, 

consistent with EDC being a sequential replacement process for near surface material. A slight 

increase in simulated crater depth with increasing current (2 - 10 A) was returned (Figure 10a), 

reflecting a fairly consistent fraction of energy into the workpiece (Figure 5a); whilst increasing 

the pulse-on time led to a significant increase in crater depth, commensurate with an increase 

in layer thickness (Figure 10b), reflecting the increased energy imparted to the workpiece 

(Figure 5b). It is noted that crater depth and layer thickness followed a very similar trend with 

increasing pulse-on times from 2 to 16 µs, whilst there was a higher discrepancy between 

simulated and experimentally determined values for longer pulse-on times of 32 and 64 µs, 

reflecting a greater variation in crater sizes under higher energy processing conditions. 

 

Figure 10 Comparison of simulated crater depth from single spark event with experimentally determined EDC 

layer thicknesses, as a function of increasing: a) current and b) pulse-on time. 

 

3.6 Cooling phase and coating microstructural development 
 

Figure 11 presents more detailed BSE images of the Fe/TiC cermet coatings, produced under 

conditions of 8 and 64 s (fixed current of 10 A), respectively, in order to illustrate the 

variability of the fine scale microstructure. For the former (8 s), the microstructure comprised 

a band of very fine grained material at the surface (Figure 11b – Region I); a thin, transitional 

region of columnar grains (Figure 11d – Region II); a band of equiaxed, coarser TiC grains 

within the Fe matrix (Figure 11d – Region III); and another band of very fine grained material 

next to the coating/substrate interface (Figure 11c – Region IV). The development of this 
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microstructure was attributed to localised differential cooling rates, as determined by heat flow 

back into the dielectric oil and into the substrate, on the time scale of an individual discharge.  

 

Figure 11 BSE images of the developed cermet coating microstructures in cross-section geometry, processed 

under conditions of: a-d) 10 A, 8 µs; and e-h) 10 A, 64 µs. 
 

Similarly, the latter (64 s) showed the development of a banded microstructure with generally 

larger grain sizes, reflecting the increased pulse-on time and energy into the system, and the 
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consequent longer time taken for cooling and recrystallisation. The near surface region was 

characterised by relatively large grains (Figure 11f - Region I); an inner banded structure of 

columnar grains (Figure 11h – Region II); and a dendritic structure next to the coating/substrate 

interface (Figure 11g – Region III) (Zhitnyak et al., 2016). Increased thickness of the coating 

layer was associated with increased levels of cracking through the coating and at the 

coating/substrate interference (Figure 9f and Figure 11e). 

Figures 12a and b present the average rate of change of temperature at the surface of a single 

cermet crater centre, as a function of increasing current (for a fixed pulse-on time of 8 s) and 

increasing pulse-on time (for a fixed current of 10 A), respectively. The rate of heat transfer 

varied for these sample sets, with the highest value of ~ 6.8x108 K/s returned for samples 

produced under conditions of low pulse-on time of 2 µs (10 A); whilst a long pulse-on time of 

64 µs (10 A), or an increase in current (> 10 A), were associated with lower values of cooling 

rate. Since the flow of dielectric fluid was maintained constant, this variation in heat flow was 

attributed to differences in the melt pool volume and its initial temperature after the pulse-on 

time. 

 

Figure 12 Average surface simulated cooling rate for a single TiC crater deposit as a function of: a) Current 

(fixed pulse-on time of 8 s) and b) Pulse-on time (fixed current of 10 A). 

 

To better understand the microstructural formation processes of both individual craters and 

layer cermet coatings comprising many sequentially deposited craters, temperature profiles at 

different depths into a crater, as a function of increasing time, where determined. Figure 13 

shows a depiction of the microstructure generated within a crater processed under conditions 

of 10 A current and 8 µs pulse-on time (Figure 9d and 11a), alongside temperature-time 

simulation with each curve representing a node located at different depths (1 µm pitch) into the 

centre of the crater; i.e. from the oil-flow/surface interface to the melt/solid (crater/workpiece) 
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interface. It is noted that the temperature of the near surface molten material decreases sharply, 

reducing to ~ 4x103 K within ~ 10 µs of the end of the pulse-on time, followed by a lower 

cooling rate. The resultant banded microstructure within the crater is defined by the competing 

heat transfer processes, with rapid cooling of near surface material governed by convection 

within the flowing dielectric oil, whilst initial gentle heating combined with slightly slower 

cooling rates in the vicinity of the melt/solid interface (~ 3 µm from the bottom of the crater) 

are governed by conduction into the substrate. Hence, it is evident that the cooling phase has 

two distinct stages, with rapid non-uniform cooling within the first ~ 10 – 20 s leading up to 

the onset of TiC crystallisation (~ 3.16 - 3.25) x 103 K, followed by a second more uniform 

stage of heat loss up to ~100 µs, leading up to the onset of Fe matrix solidification (~ 1.4 - 

1.45) x 103 K.  

 

Figure 13 Cooling profiles as a function of increasing time (pulse-off), each line representing a node located at 

the crater centre (a-l) from the oil-flow/surface interface to the melt/solid with 1 µm pitch. 

 

4 Discussion 
 

The fraction of total discharge energy transferred to the workpiece is an important factor 

determining temperature distribution within the modified layer; the modelling of which allows 

for prediction of the developed microstructure and correlation with layer mechanical properties 
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(Algodi et al., 2016). The fraction of energy transferred to the workpiece, Fv, is defined 

ultimately by the discharge voltage, current and pulse-on time. Figure 5a illustrates that an 

increase in current, from 2 to 19 A, for a fixed pulse-on time of 8 µs, having a low impact on 

Fv, and this is attributed to the instability of the heat source. Under conditions of short pulse-

on time, discharge occurs at very high frequency, resulting in inadequate time for conduction 

of energy and hence insignificant impact of current (Shabgard and Akhbari, 2016). Conversely, 

Figure 5b illustrates increasing Fv to the workpiece with increasing pulse-on time from 2 to 64 

µs (for a fixed current of 10 A), being attributable to the effects of a relatively steady heat 

source with sufficient time for conduction. No significant change in Fv at high pulse-on times 

of ~ 32 – 64 µs occurs (Figure 5b, red line) because additional energy supply is lost to maintain 

the plasma channel, and hence energy transfer to the workpiece becomes limited (Singh, 2012). 

Singh and Shukla (Singh and Shukla, 2012) report similarly that a further increase in pulse-on 

time does not give significant erosion during EDM, with additional energy supplied being lost 

to maintain the plasma channel.  

It is evident that the values for Fv, predicted using the current model, are close to the 

experimental EDC data and in good agreement with other studies, including (Singh, 2012) and 

(Shabgard and Akhbari, 2016) (Figure 5), reflecting the incorporation of real processing 

conditions, such as the Gaussian distribution of the heat source, along with latent heat of fusion 

and the cermet material properties. However, it is noted that the modelling of EDC processes 

returns slightly higher values for Fv, as compared to EDM. This is attributed to the difference 

between coating and machining processes, with EDC acting to replace and intermix near 

surface material rather than remove material, with a decrease in the heat carried away by debris 

leading to an increase of heat conducted into the workpiece (Okada et al., 2000). 

  
Figure 14 Radial temperature profiles along the top surface of the workpiece as functions of: a) increasing 

current and b) pulse-on time. 
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Figures 14a and b (extracted from Figure 6) present simulated temperature profiles across the 

top surface of the workpiece as a function of current and pulse-on time, respectively, 

demonstrating increases in the size of the heat affected region with increasing the current and 

pulse-on time, however, maximum temperature does not have the same trend, reflecting the 

increasing size of the plasma channel. A similar effect was reported by Xie et al (XIE et al., 

2011) for EDM simulations of Ti-alloys. 

Further, the modelling of crater depth (Figure 10) showed good agreement with 

experimental data for the overall EDC layer thickness. The increase in crater depth with 

increasing pulse-on time (Figure 10b) is related directly to increasing Fv and correlates with 

the depth of initially formed craters from single spark events, being attributable to the more 

effective transfer of heat into the bulk. Small variations between the simulated and measured 

crater depths (and layer thicknesses) for conditions of high pulse-on time (32 – 64 µs) is 

attributed to the high variability of crater sizes (Table 3), attributed to fluctuating average gap 

voltages. Hence, crater dimensions are dependent primarily upon heat input during discharge 

and the time required to create each melt pool.  

The EDC processing conditions of 10 A and 8 s produced colonies of very fine grained 

equiaxed TiC within an Fe matrix near the coating surface and close to the melt pool / substrate 

interface, along with an intermediate band of larger equiaxed and columnar grains containing 

segregated clusters of carbon (Figures 11a-d; (Algodi et al., 2016)), being characteristic of a 

very rapid cooling process and indicative of the initiation of crystallisation at both the surface 

and the melt pool / substrate interface. During the pulse-on time, TiC particles from the tool 

electrode melt and fuse with the workpiece melt pool, whilst the process of solidification starts 

at the end of the discharge. The TiC melting point is higher than that of Fe and hence it is 

anticipated that TiC particles develop in advance of Fe matrix formation. Subtle variations in 

localised grain sizes simply reflect variations in localised composition and heat flow, mediated 

by conduction into the substrate and convection into the dielectric oil.  

This description of ED coating development is consistent with the predictions of the 

simulations based on heat transfer into the workpiece. A steep drop in temperature was 

predicted for the near surface of the melt pool, to ~ 4 x 103 K, during the first ~10 µs (Figure 

13), which is still above the melting point of TiC. At the same time a gradual rise in temperature 

was predicted in the vicinity of the melt pool / substrate interference. Thereafter, a more 

generalised, homogeneous cooling process occurred, resulting in the onset of the solidification 

process. Lower average values for the rate of change of temperature were predicted for samples 
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produced under conditions of high pulse-on time of 64 µs (Figure 12b), consistent with the 

development of more dendritic TiC / Fe cermet morphologies observed at the melt pool / 

substrate interface (Figures 11e-h), being consistent with  high thermal input energy and a 

relatively low cooling rate in this case (Sahoo et al., 2016), whilst columnar grained structures 

were again found in the middle of this coating. 

EDC has received attention given its potential advantages including the ability to 

consecutively machine material while depositing a coating in the same process, without 

needing further apparatus or post-processing. Secondly, the process takes advantage of the 

ability of EDM to create complex shapes using an inverted form tool electrode, and hence the 

coating process can easily be applied to complex components. Since EDC is capable of 

producing coatings from hard, high melting point materials such as ceramics, which may be 

difficult to process by other means, the technique has excellent potential for the production of 

hard-wearing coatings to enhance the lifetime of components. This work has opened up the 

possibility to extend the model to include different material types and dielectric media. This is 

essential for developing new process methodologies. 

5 Conclusion 
 

A theoretical model has been developed to predict the amount of energy transferred into the 

workpiece during the EDC processing of cermet coatings. 2D transient heat transfer principles 

solved by the finite difference method enabled coating thicknesses and microstructures to be 

predicted and validated against experimental observations. The modelling demonstrated that 

the fraction of energy imparted into the workpiece from each spark event is a critical 

consideration for ED processing and varies as a function of process conditions. The effective 

amount of energy transferred to the workpiece was predicted to vary between 17 % and 23 % 

for increasing current from 2 to 19 A (for a fixed pulse-on time 8 µs); and between 7 % and 53 

% for increasing pulse-on time from 2 to 64 µs (for fixed current of 10 A). A maximum value 

of Fv was attained for the highest pulse-on time of 64 µs. 

Estimates for crater depth from the modelling compared well with experimentally 

determined values for coating thickness, except for the case of high pulse-on times where there 

was more variability, but generally, crater sizes (layer thicknesses) increased as the amount of 

energy transferred to the workpiece increased. Further, the predictions for heat transfer and 

cooling of the melt pool compared well with experimental observations for the developed 

cermet microstructures, as a function of processing conditions. In particular, intermediate 
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processing conditions of 10 A and 8 s were associated with the development of complex, 

banded, fine-grained microstructures, reflecting differences in localised cooling rates and the 

competing pathways for heat conduction into the substrate and convection within the dielectric 

fluid. Increasing the pulse-on time was characterised by a propensity towards more columnar 

growth, reflecting the higher energies imparted into the coatings and slower cooling rates. 

 

Acknowledgements 

Samer J. Algodi thanks the Ministry of Higher Education & Scientific Research in Iraq for 

funding support. A.T. Clare would like to acknowledge funding from Engineering and Physical 

Sciences Research Council [grant number EP/L017547/1]. In addition, the authors 

acknowledge the kind support of Mr Iwasaki of Mitsubishi Electric Nagoya. 

References  

Algodi, S.J., Murray, J.W., Fay, M.W., Clare, A.T., Brown, P.D., 2016. Electrical discharge 

coating of nanostructured TiC-Fe cermets on 304 stainless steel. Surface and Coatings 

Technology 307, 639-649. 

Das, S., Klotz, M., Klocke, F., 2003. EDM simulation: finite element-based calculation of 

deformation, microstructure and residual stresses. Journal of Materials Processing 

Technology 142, 434-451. 

Descoeudres, A., Hollenstein, C., Wälder, G., Perez, R., 2005. Time-resolved imaging 

and spatially-resolved spectroscopy of electrical discharge machining plasma. Journal of 

Physics D: Applied Physics 38, 4066. 

DiBitonto, D.D., Eubank, P.T., Patel, M.R., Barrufet, M.A., 1989. Theoretical models of 

the electrical discharge machining process. I. A simple cathode erosion model. Journal of 

Applied Physics 66, 4095-4103. 

Erden, A., 1983. Effect of materials on the mechanism of electric discharge machining 

(EDM). Journal of Engineering Materials and Technology 105, 132-138. 

Eubank, P.T., Patel, M.R., Barrufet, M.A., Bozkurt, B., 1993. Theoretical models of the 

electrical discharge machining process. III. The variable mass, cylindrical plasma model. 

Journal of applied physics 73, 7900-7909. 

Ikai, T., Hashigushi, K., 1995. Heat input for crater formation in EDM, Proceedings of the 

International Symposium for Electro-Machining-ISEM XI, EPFL, pp. 163-170. 

Izquierdo, B., Sanchez, J., Plaza, S., Pombo, I., Ortega, N., 2009. A numerical model of 

the EDM process considering the effect of multiple discharges. International Journal of 

Machine Tools and Manufacture 49, 220-229. 

Joshi, S., Pande, S., 2010. Thermo-physical modeling of die-sinking EDM process. 

Journal of manufacturing processes 12, 45-56. 

Kansal, H., Singh, S., Kumar, P., 2008. Numerical simulation of powder mixed electric 

discharge machining (PMEDM) using finite element method. Mathematical and Computer 

Modelling 47, 1217-1237. 

Kojima, A., Natsu, W., Kunieda, M., 2008. Spectroscopic measurement of arc plasma 

diameter in EDM. CIRP Annals-Manufacturing Technology 57, 203-207. 

Kunieda, M., Lauwers, B., Rajurkar, K., Schumacher, B., 2005. Advancing EDM through 

fundamental insight into the process. CIRP Annals-Manufacturing Technology 54, 64-87. 

Lin, Y.-C., Hwang, L.-R., Cheng, C.-H., Su, P.-L., 2008. Effects of electrical discharge 

energy on machining performance and bending strength of cemented tungsten carbides. 

Journal of Materials Processing Technology 206, 491-499. 



26 

 

Maradia, U., Hollenstein, C., Wegener, K., 2015. Temporal characteristics of the pulsed 

electric discharges in small gaps filled with hydrocarbon oil. Journal of Physics D: Applied 

Physics 48, 055202. 

Murray, J., Algodi, S., Fay, M., Brown, P., Clare, A., 2016. Formation mechanism of 

electrical discharge TiC-Fe composite coatings. Journal of Materials Processing 

Technology. 

Natsu, W., Shimoyamada, M., Kunieda, M., 2006. Study on expansion process of EDM 

arc plasma. JSME International Journal Series C Mechanical Systems, Machine Elements 

and Manufacturing 49, 600-605. 

Okada, A., Uno, Y., Okajima, I., 2000. Energy Distrihution in Electrical Discharge 

Machining with Graphite Electrode. energy 1, 1Xe. 

Sahoo, C.K., Soni, L., Masanta, M., 2016. Evaluation of microstructure and mechanical 

properties of TiC/TiC-steel composite coating produced by gas tungsten arc (GTA) 

coating process. Surface and Coatings Technology 307, 17-27. 

Schulze, H.-P., Herms, R., Juhr, H., Schaetzing, W., Wollenberg, G., 2004. Comparison 

of measured and simulated crater morphology for EDM. Journal of Materials Processing 

Technology 149, 316-322. 

Shabgard, M., Akhbari, S., 2016. An inverse heat conduction method to determine the 

energy transferred to the workpiece in EDM process. The International Journal of 

Advanced Manufacturing Technology 83, 1037-1045. 

Shahri, H.R.F., Mahdavinejad, R., Ashjaee, M., Abdullah, A., 2016. A Comparative 

Investigation on Temperature Distribution in Electric Discharge Machining Process 

through Analytical, Numerical and Experimental Methods. International Journal of 

Machine Tools and Manufacture. 

Shen, Y., Liu, Y., Zhang, Y., Tan, B., Ji, R., Cai, B., Zheng, C., 2014. Determining the 

energy distribution during electric discharge machining of Ti–6Al–4V. The International 

Journal of Advanced Manufacturing Technology 70, 11-17. 

Singh, H., 2012. Experimental study of distribution of energy during EDM process for 

utilization in thermal models. International Journal of Heat and Mass Transfer 55, 5053-

5064. 

Singh, H., Shukla, D., 2012. Optimizing electric discharge machining parameters for 

tungsten-carbide utilizing thermo-mathematical modelling. International Journal of 

Thermal Sciences 59, 161-175. 

Singh, S., Bhardwaj, A., 2011. Review to EDM by using water and powder-mixed 

dielectric fluid. Journal of Minerals and Materials Characterization and Engineering 10, 

199. 

Singh, S., Maheshwari, S., Pandey, P., 2004. Some investigations into the electric 

discharge machining of hardened tool steel using different electrode materials. Journal of 

materials processing technology 149, 272-277. 

Somashekhar, K., Panda, S., Mathew, J., Ramachandran, N., 2015. Numerical simulation 

of micro-EDM model with multi-spark. The International Journal of Advanced 

Manufacturing Technology 76, 83-90. 

Tan, P., Yeo, S., 2008. Modelling of overlapping craters in micro-electrical discharge 

machining. Journal of Physics D: Applied Physics 41, 205302. 

Tao, J., Ni, J., Shih, A.J., 2012. Modeling of the anode crater formation in electrical 

discharge machining. Journal of Manufacturing Science and Engineering 134, 011002. 

Theodore, L., 2011. Heat transfer applications for the practicing engineer. John Wiley & 

Sons. 

Xia, H., KUNIEDA, M., NISHIWAKI, N., 1996. Removal amount difference between anode 

and cathode in EDM process. International journal of electrical machining 1, 45-52. 

XIE, B.-c., WANG, Y.-k., WANG, Z.-l., ZHAO, W.-s., 2011. Numerical simulation of 

titanium alloy machining in electric discharge machining process. Transactions of 

Nonferrous Metals Society of China 21, s434-s439. 

Yeo, S., Kurnia, W., Tan, P., 2007. Electro-thermal modelling of anode and cathode in 

micro-EDM. Journal of Physics D: Applied Physics 40, 2513. 



27 

 

Yeo, S., Kurnia, W., Tan, P., 2008. Critical assessment and numerical comparison of 

electro-thermal models in EDM. Journal of materials processing technology 203, 241-

251. 

Zhang, Y., Liu, Y., Shen, Y., Li, Z., Ji, R., Cai, B., 2014. A novel method of determining 

energy distribution and plasma diameter of EDM. International Journal of Heat and Mass 

Transfer 75, 425-432. 

Zhang, Y., Liu, Y., Shen, Y., Li, Z., Ji, R., Wang, F., 2013. A new method of investigation 

the characteristic of the heat flux of EDM plasma. Procedia CIRP 6, 450-455. 

Zhitnyak, I., Gloushankova, N., Levashov, E., Shtansky, D., 2016. Structural 

transformations in TiC-CaO-Ti3PO (x)-(Ag2Ca) electrodes and biocompatible TiCaPCO 

(N)-(Ag) coatings during pulsed electrospark deposition. Surface & Coatings Technology 

302, 327-335. 
 

 

 

Figure captions 
 
Figure 1 Gaussian profile heat source and boundary conditions with the workpiece, including interior node and 

expanded view of top surface boundary node. 

 

Figure 2 Crater radius as a function of current and pulse-on time obtained experimentally (Table 1). 

 

Figure 3 A process flow highlighting the 2D transient heat transfer model. 

 

Figure 4 Waveforms associated with coatings produced using a TiC tool electrode and a 304 stainless steel 

workpiece, with negative polarity for pulse-on times of: a) 8 s, b) 32 s and c) 64 s (fixed 10 A current). 

 

Figure 5 Fraction of energy transferred to the workpiece, compared to literature (Singh, 2012) and (Shabgard 

and Akhbari, 2016) as function of increasing: a) current and b) pulse-on time. 

 

Figure 6 MATLAB simulations showing heat distribution into the workpiece at the end of the 'pulse-on' stage; 

along with the temperature distribution across the top surface (dotted white line) and the boundary of molten 

material with the bulk substrate (dashed white line). 

 
Figure 7 Plan view SE images of craters created from single spark events, at the start of template coating. 

Average crater sizes increase with increasing pulse energy. 

 

Figure 8 Simulated crater boundaries into the workpiece as a function of increasing: a) current and b) pulse-on 

time. 

 

Figures 9 SE images of ED processed coatings, viewed in cross-section: (a,c,e) for fixed pulse-on time of 8 s 

as a function of increasing current; and (b,d,f) for fixed current of 10 A as a function of increasing pulse-on 

time. (b:1-3; and c:4-6) Representative localised compositions, determined by EDS, are summarised in Table 4. 

 

Figure 10 Comparison of simulated crater depth from single spark event with experimentally determined EDC 

layer thicknesses, as a function of increasing: a) current and b) pulse-on time. 

 

Figure 11 BSE images of the developed cermet coating microstructures in cross-section geometry, processed 

under conditions of: a-d) 10 A, 8 µs; and e-h) 10 A, 64 µs. 

 

Figure 12 Average surface simulated cooling rate for a single TiC crater deposit as a function of: a) Current 

(fixed pulse-on time of 8 s) and b) Pulse-on time (fixed current of 10 A). 

 

Figure 13 Cooling profiles as a function of increasing time (pulse-off), each line representing a node located at 

the crater centre (a-l) from the oil-flow/surface interface to the melt/solid with 1 µm pitch. 

 

Figure 14 Radial temperature profiles along the top surface of the workpiece as functions of: (a) increasing 

current and (b) pulse-on time. 
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Table captions 

 
Table 1 EDC machining parameters 

 

Table 2 Material properties of the workpiece and tool electrode 

 

Table 3 Average crater sizes (n = 30) as a function of processing conditions 

 

Table 4 Elemental distribution 


