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Abstract 

The concept of full commutativity of displacements in the expression for strain energy 

density for the geometrically nonlinear problem has been introduced for the first time and fully 

established in this paper.  Its consequences for the FEM formulation have been demonstrated.  As a 

result, the strain energy, equilibrium equation and incremental equilibrium equation for the 

geometrically nonlinear problem can all be presented in a unified manner involving various 

stiffness matrices which are all symmetric, unique and explicitly expressed.  As an important 

application, the framework has been employed in the FEM implementation of Koiter’s initial post-

buckling theory, which has been handicapped by its mesh sensitivity in evaluating one of the initial 

post-buckling coefficients.  This has largely prevented it from being incorporated in mainstream 

commercial FEM codes.  Based on the outcomes of this paper, the mesh sensitivity problem has 

been completely resolved without the need to use any specially formulated element.  As a result, 

Koiter’s theory can be practically and straightforwardly implemented in any FEM code.  The results 

have been verified against those found in the literature.  
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1 Introduction 

The geometrically nonlinear problem has been perceived as well-established since analyses 

of this kind are routinely carried out by users of commercial FEM codes, e.g. [1-3], as a standard 

provision of these codes.  However, there is one issue which has never been properly raised and 

investigated, namely, the lack of commutativity of displacements in the various stages of FEM 

formulation, all associated with the expression of strain energy density (SED) as will be explored in 

the paper.  The issue has always been sidestepped when encountered without being identified as a 

problem but can be revealed straightforwardly if one attempts to derive the secant stiffness matrix.  

Using conventional notations which are provided in Appendix A to avoid any confusion, the strain 

energy in a finite element can be given as follows.  
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where e  is the domain of the finite element concerned and q the nodal displacement vector 

discretised from an otherwise continuous displacement field u.  In order to establish the equilibrium 

equation, variation of the strain energy (1) is required as given below, where advantage has been 

taken of the symmetry of the C  matrix, the obvious commutativity between q and q  in 

 N B q q  as explained in Appendix A and the fact that any term in the above expression, e.g. 

 
1 1

2 2e

N Ld 
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q B q C B q , is a scalar and its transpose is equal to itself.   
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The integral inside the square brackets in (2) should give the secant stiffness matrix of the element 

but it has never been accepted because it lacks symmetry, as stated in the second edition of [4].  

Whilst the first and fourth terms inside the integral are symmetric, the remaining part, i.e. the sum 

of the second and third terms, does not look symmetric superficially because 
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The above derivation followed the so-called N-notation (a terminology introduced in [9] as being 

one approach to the FEM formulation, in contrast to the other commonly used approach referred to 

in [9] as the B-notation) but has always been avoided in textbooks, e.g. [4-8], because it was seen as 

a dead end.  If one could swap the position of some of the displacements involved, e.g. the q  and 

the q at the end of the expression  
e
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without affecting the value of the expression, the inequality (3) would become an equality and the 

secant stiffness matrix could readily be made symmetric.  Unfortunately, commutativity in matrix 

expressions is generally not applicable.  Without a properly defined secant stiffness matrix, 

equilibrium conditions cannot be stated in explicit form.  Common practice is to establish 

equilibrium indirectly by integrating stresses whilst jumping to the tangential stiffness matrix 

directly [5-8] in terms of the formulation of element stiffness matrices, employing the so-called B-

notation [9].  There have been limited attempts [9-11] to unify expressions of secant and tangential 

stiffness matrices but the obtained expressions lacked uniqueness, as admitted in [10,11].  It will be 

shown later in this paper that the lack of symmetry and uniqueness is in fact a false impression.  A 
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more fundamental and generic issue surfaces when one tries to implement Koiter’s initial post-

buckling theory [12] through FEM as it places more demands on commutativity of displacements in 

energy expressions, referred to as full commutativity, as will be detailed later in this paper.   

Existing accounts [13,14] of the FEM formulation of Koiter’s initial post-buckling theory 

tended to shy away from having such commutativity fully established.  There have not been many 

attempts to adopt the N-notation for the FEM formulation in general since the publication of [13-

14], let alone its implementation for Koiter’s theory.  The difficulty has been circumvented by 

following the B-notation formulation of Koiter’s theory [15].  The price paid for this convenience is, 

however, that the results become mesh sensitive as will be elaborated further in Section 6, noting 

that mesh sensitivity is undesirable in any FEM analysis. 

The objectives of this paper are twofold.  On the fundamental theoretical development side, 

it will establish the full commutativity of the SED as one of its intrinsic properties, and provide an 

explicitly and uniquely presented FEM formulation in N-notation based on the full commutativity 

established.  The failure to appreciate such full commutativity is responsible for the fact that the 

secant stiffness matrix has never been explicitly and uniquely obtained.  This long-standing issue 

will be resolved completely in this paper.  On the practical side, and as a direct application of the 

obtained fully commutative SED, the FEM implementation of Koiter’s theory using N-notation is 

herewith made possible thus freeing it from the problem of mesh sensitivity that occurs in available 

accounts.  As will be introduced in more detail in Section 6 of this paper, Koiter’s theory provides 

deep insight into the buckling problem of structures and hence has tremendous potential in practical 

engineering applications.  However, due to the lack of an acceptable FEM implementation, this 

theory has been largely neglected, at least as far as mainstream commercial FEM codes are 

concerned, wasting the opportunity to exploit it as a potentially valuable approach to address the 

uncertainties associated with the buckling problem.  The outcome of this paper will hopefully lead 

to the resurrection of Koiter’s theory as a design analysis tool, providing structural designers and 

engineers with the means to evaluate the confidence on their obtained buckling strengths of 

structures.  Lack of confidence in predicted results has been the main challenge to existing forms of 

buckling analysis, the reason being the fact that some structures are extremely sensitive to initial 

imperfections whilst others may be not.  No assessment can currently be made of the sensitivity of 

the obtained buckling load to the initial imperfection from the conventional buckling analysis and 

Koiter’s theory fills this gap precisely and neatly, as will be further discussed in this paper. 

 

2 The concept of full commutativity and apparent symmetry 

The strain energy density U  exists for any geometrically nonlinear problem and can be 

expressed as a sum of homogeneous terms from the 1st to the 4th orders as follows 
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1 2 3 4U U U U U               (4) 

where the exact expressions of each term are provided in Appendix A. 

Continuous displacement fields u, u , u  and u  are introduced to facilitate the following 

discussion, and they are assumed to be mutually independent.  They are discretised into q , q , q  

and q  for FEM applications, as already employed in expressing (1).  In the context of Koiter’s 

theory, these displacement fields can be the fundamental equilibrium path 0u , various orders of 

perturbation displacements, 1u , 2u ,…, etc., respectively, as well as displacement variation u . In 

order to illustrate the concept of commutativity, consider the strain energy at a specific deformation 

state which is described as the sum of independent displacement fields.  Take the third order term of 

the SED as given in (A-5) in Appendix A for example 
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Relationship (5) introduces a trilinear form and its typical expression has been given in (6a).   Some 

of the displacements in (6a) can swap their positions without affecting the value of the expression, 

e.g. u  and u .  In other words,  111 , ,U  u u u   is commutative as far as u  and u  are concerned.  

This commutativity is described as partial commutativity of the trilinear form  111 , ,U  u u u  in the 

present paper whilst u  and u  cannot be swapped without affecting the value of  111 , ,U  u u u , in 

general, because 
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In much the same way, a bilinear form  11 ,U u u  and a quad-linear form  1111 , , ,U   u u u u  

can also be introduced from 2U  and 4U , respectively,  
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A property of full commutativity for bilinear, trilinear and quad-linear forms can be introduced as 

one of the key subjects of the present paper if any pair of displacement fields involved in the 

expression concerned can swap their positions in an expression without affecting the value of the 

expression. 

Along with full commutativity, another closely related property can be introduced as follows.  

To formulate element stiffness matrices in FEM, it is desirable to express energy and its first and 

second variations in a form of 
 u Mu , with M being a matrix operator, as shown in (1) and (2), for 

instance.  However, not every term is readily given in this form explicitly, e.g.  N I

  u u σ  as a 

part of  11 ,U u u  as given in (8).  One of the tasks of the present paper is to make such terms into 

 u Mu  form.  Once a bilinear, trilinear or quad-linear form is so expressed, it will be referred to as 

apparently symmetric in the present paper if M is given as a symmetric matrix operator.  The lack 

of symmetry in the secant stiffness matrix as shown in (2) resulted from the lack of such apparent 

symmetry in the third order term of the SED. 

Some of the difficulties in the FEM formulation of problems involving geometrical 

nonlinearity resulting from the lack of full commutativity and apparent symmetry are listed as 

follows. 

1) Whilst the B-notation [9] delivers a symmetric tangential stiffness matrix [5-8], the secant 

stiffness matrix cannot be obtained explicitly. 

2) Following the N-notation [9], one can obtain the tangential and secant stiffness matrices 

directly and make them symmetric [9-11].  However, without achieving the full 

commutativity of SED, the obtained expressions of stiffness matrices lack uniqueness 

[10,11]. 

Just as the secant and tangential stiffness matrices can be considered as the outcomes of the first and 

second orders of variations of the strain energy, higher orders of variations are required in order to 

implement the Koiter theory [12].  The earliest versions of FEM implementation of Koiter’s theory 

tended to follow the N-notation [13,14] for the expressions of the so-called initial post-buckling 

coefficients (IPBCs).  However, the weaknesses of the N-notation as described above prevented it 

from being practically exploited.  Instead, alternative expressions for these IPBCs were brought 

forward [15].  Unfortunately, they suffer from numerical ‘locking’ or mesh sensitivity [16,17].  The 

solution to the problem has so far been either to employ a much more refined mesh than that used 

for conventional buckling analysis in order to evaluate the IPBCs, or to employ specially 

formulated elements [18-23], to name but a few of the available unattractive options. 

It should be pointed out that, in analytical applications of Koiter’s theory, a displacement 

field, such as the buckling mode or any perturbation modes at high orders, is described by a single 
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scalar giving the amplitude of an assumed pattern of the displacement field in the form of a scalar 

function.  Scalars are always commutative and commutativity has therefore never been an issue 

there.  In addition, the ‘locking’ problem is also absent in analytical approaches.  However, the 

applicability of analytical approaches is of course restricted to simple structures under simple 

loading and boundary conditions, requiring FEM to be used for analysing structures of realistic 

complexity, giving rise to the difficulty of mesh sensitivity.  The present paper aims to demonstrate 

that this difficulty can be removed by employing the N-notation after the establishment of the fully 

commutative SED. 

 

3 Fully commutative SED 

Due to the symmetries of stress, strain and stiffness tensors and the definition of the Green 

strain, the following relationships always hold. 

   N N
  u u u u                 (10a) 

 L L L L

       u C u u C u                (10b) 

Given the above, it is clear that  11 ,U u u  as given in (8) is already fully commutative, i.e.  

   11 11, ,U U u u u u .                  (11a) 

However, relationships (10) deliver to  111 , ,U  u u u  and  1111 , , ,U   u u u u   only partial 

commutativity between some pairs of u, u , u  and u  as follows. 

   111 111, , , ,U U   u u u u u u                (11b) 
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u u u u u u u u u u u u u u u u

u u u u u u u u u u u u u u u u
        (11c) 

In general, however, commutativity cannot be blindly assumed between other pairs of u, u , u  and 

u , as may be observed from (7). 

It is desirable to find alternative but equivalent expressions to 111U  and 1111U , denoted as 

111Q  and 1111Q which are fully commutative, i.e. 

     
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   

 

1111 1111

1111

, , , , , ,

 all together 24 permutations , , , .

Q Q

Q

      

    

u u u u u u u u

u u u u
           (12b) 

As 11U  is fully commutative, 11Q  is identical to 11U .   



 7 

The trilinear form is considered first.  The expansion given in (5) offers a hint to the 

construction of 111Q  from 111U .  If all possible permutations ( 3

3 3! 6P   ) of u, u  and u  in 111U  as 

appearing in (5) have been included, one obtains 

 
     

     
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111

111 111 111
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         

u u u u u u u u u
u u u

u u u u u u u u u
.            (13) 

It is clear that swapping any pair of u, u  and u   only results in a reshuffle of the six terms inside 

the brackets, e.g. between pair u and u  

 
     

     
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u u u u u u u u u
u u u u u u

u u u u u u u u u
.          (14) 

Given the partial commutativity of 111U  as shown in (11b),  111 , ,Q  u u u  given in (13) can be 

reduced to  

       

         
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         

             
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The trilinear form  111 , ,Q  u u u  given above is thus fully commutative and it is straightforward to 

verify that it satisfies (12a). 

Similarly, a fully commutative fourth order expression  1111 , , ,Q   u u u u  can be 

constructed from all  4

4 4! 24P     possible permutations of u, u , u  and u  in 1111U .  After 

making use of the partial commutativity (11c), it can be expressed as 
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             

                

u u u u u u u u u u u u u u u u

u u C u u u u C u u u u C u u

, ,
         (15b) 

One can introduce functions  3Q u  and  4Q u  from 111Q  and 1111Q  as 

       3 111 3 111

1
, , , ,

6
Q Q U U  u u u u u u u u              (16a) 

       4 1111 4 1111

1
, , , , , ,

24
Q Q U U  u u u u u u u u u u .            (16b) 

It is clear that 3Q  and 4Q  are identical to 3U  and 4U  in their roles as parts of the SED, respectively, 

but 3Q  and 4Q  are associated with the fully commutative trilinear and quad-linear forms.  If 3Q  and 

4Q  are employed instead of 3U  and 4U  in the SED, they will not alter the value of SED in any way.  

However, any subsequent manipulations on the displacement in the relevant energy term, such as  

variations, will be indifferent to the position of the displacement within the expression, as a 

straightforward and important application of the full commutativity, i.e. 
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       

       

3 111 111 111

111 111 111 12

1 1 1
, , , , , ,

6 6 6

1 1 1
            , , , , , , ,

2 2 2

Q Q Q Q

Q Q Q Q

   

   

 

   

u u u u u u u u u u

u u u u u u u u u u u

               (17a) 

and similarly 

   4 1111 13

1
, , , ,

6
Q Q Q   u u u u u u                (17b) 

   2

3 111 21, , 2 ,Q Q Q    u u u u u    and    2

4 1111 22

1
, , , ,

2
Q Q Q    u u u u u u .          (18) 

where the subscripts correspond to the order of the variable in the variable list in the same way as 

was originally introduced by Koiter in [12].  The SED expression obtained through 3Q  and 4Q  will 

be called the fully commutative SED.  With this property, the variations of them resemble the 

derivatives of power functions.  However, if 3Q  and 4Q  are directly derived from (16) with 3Q  

and 4Q  with 111Q  and 1111Q  as expressed in (15), one might still find the lack of apparent symmetry 

at some points resembling the observation made to (2).  It should be pointed out that the full 

commutativity was taken for granted in [12] by Koiter without proof or guidance how to obtain this 

property in general.  Given the full commutativity as an intrinsic property of SED established 

mathematically above, it is now known with assurance that the matrix involved in (2) is symmetric, 

although this symmetry is not yet obvious.  The lack of apparent symmetry in (2) is only due to the 

way in which the expression is presented.  Apparent symmetry will emerge after various terms 

obtained above have been further streamlined by applying to them an identical transformation to be 

described in the next section. 

 

4 The flip transformation 

The second order term in the Green strain gives rise to a factor of  N u u  appearing in 

various places as shown above.  Whilst the displacements involved in it are commutative, as shown 

in (10a), many energy terms involving this do not have apparently symmetric appearances, i.e. not 

in a form of 
 u Mu  with M being a symmetric matrix operator.  For instance, u and u  in 

 N I

  u u σ  as a term in U11 are both located biasedly on the same side of Iσ .  They tend to cause 

difficulties in FEM formulation if not treated appropriately.  In fact, these terms can be expressed 

differently in appearance but identically in value.  One can easily prove the following relationship. 

   N I I I

      u u σ u S u u S u                (19a) 
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where 
1 1 3

2 2

1

3 3

0 0

0 0

0 0

I

I I i I i

i

I







      
     

     
     
           



s

S s s

s

,             (19b) 

 
1 2 3

0 0 0 0 0 0

0 0  ,       0 0       and      0 0  .

0 0 0 0 0 0

x x x

y y y

z z z

       
     
  
     
       

     
       
     
       

            

           (19c) 

Iσ  and Is  represent the same stress but expressed in contracted and matrix forms, respectively, as 

introduced in Appendix A.  (19a) is an identical transformation through which the asymmetric 

expression has been turned into an apparently symmetric one with IS  being a symmetric matrix 

operator.  This transformation has often been employed, e.g. in [5,6], but the authors failed to trace 

it back to its source where it was originally introduced and it does not seem to have been named 

either.  It is almost certain that it was first brought in when tackling the buckling problem using 

finite elements when the so-called geometric or initial stress stiffness matrix was introduced.  For 

the sake of easy reference, the authors suggest naming it the ‘flip transformation’ because it flips 

one of the two displacements on one side of the stress to other side, leading to the two 

displacements being placed symmetrically on both sides of the symmetric matrix IS .  The 

derivation can be found in [5,6] but is provided in Appendix B in the context of independent 

displacements to be consistent with the present context. 

Similarly, the flip transformation also applies to higher order terms of stress 

       N L N L L

             u u C u u u s u u S u u               (20a) 

         11 11, ,N N N

                u u C u u u u s u u u S u u u             (20b) 

where LS  is similar to IS  but with Is  replaced by Ls , whilst  11 , S u u  is obtained by replacing Is  

with  11 , s u u  whose contracted form can be obtained as 

   11 , N
    u u C u u .                 (20c) 

One can obtain  N
S u  from  11 , S u u , as will be required later, if  u u   

     
3 3

11

1 1

1
,

2
N i N i i i

i i

 

 

         S u u u u  .               (21) 

To reflect the terminology of ‘apparent symmetry’, it would be wrong to call expressions, 

such as  N I

  u u σ , asymmetric, given its equivalence to I

 u S u .  It only appears not to be 

symmetric, whilst the flip transformation makes the symmetry apparent without changing the 

content of the expression. 
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Although  11 11Q U , 111Q  and 1111Q  as given in (8) and (15a) and (15b) are fully 

commutative, they are not apparently symmetric.  With the flip transformation they can be re-

written into fully commutative and apparently symmetric forms as follows, denoted as 11 , 111  and 

1111 , respectively. 

 11 0,  u u u Ψ u                   (22a) 

   111 1, ,    u u u u Ψ u u                   (22b) 

   1111 11, , ,      u u u u u Ψ u u u,                  (22c) 

where 0 L L I

  Ψ C S .                  (23a) 

       1 L N N L L

         Ψ u C u u C S u               (23b) 

           11 11 ,N N N N

             Ψ u u u C u u C u S u u,             (23c) 

The first term in the expression of 0Ψ  in (23a) is symmetric.  The first two terms in the expressions 

of  1
Ψ u  in (23b) and  11

 Ψ u u,  in (23c) forms a symmetric matrix operator.  Since the 

remaining terms associated with S take a form similar to (19b), 0Ψ ,  1
Ψ u  and  11

 Ψ u u,  are 

therefore all symmetric.   11 , u u ,  111 , ,  u u u and  1111 , , ,   u u u u  as given in (22) can 

therefore easily be shown to be fully commutative whilst being apparently symmetric.  Taking 

 111 , ,  u u u  for example,  

          
       

111

111

, ,

, , .

L N N L L

L N L L N





  

    

        

              

u u u u C u u C S u u

u S u u u u C u u C u u u u u
             (24) 

It can be seen that full commutativity may not be a property possessed by an individual term, e.g. 

 N L

    u u C u , but when all three terms in  111 , ,  u u u  are put together, collectively they 

deliver the full commutativity for  111 , ,  u u u  as a trilinear form which is closely associated with 

the third order term in the SED expression.  The same applies to second and fourth order terms. 

It should be pointed out that 11 , 111  and 1111 are identical to 11U , 111Q  and 1111Q , 

respectively, since the flip transformation is meant to be an identical transformation.  The difference 

between them is only the presentation.  The second, third and fourth order terms of the SED can 

now be given in their fully commutative and apparently symmetric forms as 

 2 11 0

1 1
,

2 2
   u u u Ψ u                   (25a) 

   3 111 1

1 1
, ,

6 6
   u u u u Ψ u u                  (25b) 
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   4 1111 2

1 1
, , ,

24 12
   u u u u u Ψ u u                  (25c) 

where    2 11

1
,

2
Ψ u Ψ u u                    (26) 

with 0Ψ  being introduced in (23a) whilst  1Ψ u  in (23b) having u  there replaced by u.  The SED 

and its variations can be obtained as follows. 

1 2 3 4 1 2 3 4 1 0 1 2

1 1 1

2 6 12
U U U U U U U   
            

 
u Ψ Ψ Ψ u            (27a) 

1 2 3 4 1 0 1 2

1 1

2 3
U U U         
           

 
u Ψ Ψ Ψ u              (27b) 

 2 2 2 2

2 3 4 0 1 2U             u Ψ Ψ Ψ u               (27c) 

where the matrices of partial differential operators 0 1 2

1 1 1

2 6 12

 
  

 
Ψ Ψ Ψ , 0 1 2

1 1

2 3

 
  

 
Ψ Ψ Ψ   

and  0 1 2 Ψ Ψ Ψ  are all symmetric and expressed explicitly.   

The expressions of the coefficient arrays for the second, third and fourth order terms of the 

SED can be claimed to be unique under the conditions of full commutativity of 11 , 111  and 1111 .  

Their uniqueness can be argued in exactly the same manner as coefficient matrix for the quadratic 

form [24] where the criterion is the symmetry of the coefficient matrix.  A quadratic form xTMx can 

have an infinite number of different M matrices delivering the same function, e.g. 

T T

1 1 1 1T 2 2

1 1 2 2

2 2 2 2

1 2 1 1
2

0 1 1 1

x x x x
x x x x

x x x x

          
               

          
x Mx , but the commutativity of its 

corresponding bilinear form, i.e. xTMy=yTMx delivers a unique M which symmetric.  The 

difference the third and fourth order terms is that the coefficient matrices are replaced by 3D and 

4D arrays, respectively.  Lack of appreciating the full commutativity prevented the reconciliation of 

different expressions for the same energy term, leading to the failure to deliver unique and 

symmetric stiffness matrices in the past.  

The apparent symmetry as achieved through the use of flip transformation allows 11 , 111  

and 1111  to be expressed explicitly as given in (22) and consequently the SED and its variations in 

the form of (27).  They in turn deliver the secant and tangential stiffness matrices explicitly and 

systematically once applied to the FEM formulation as will be shown in the next section.   

The full commutativity and apparent symmetry have thus been established as an intrinsic 

property of the SED which can be revealed only after the elaborations made above when it is 

presented uniquely and explicitly in the form of (27a). 
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5 Application in finite element formulation of the geometrically nonlinear problem 

The stiffness matrices of a finite element for the geometrically nonlinear problem can be 

derived from the SED.  Controversies in this field are rooted in the lack of full commutativity.  To 

demonstrate the significance of the establishment of full commutativity, derivations are presented in 

this section, with the displacement field discretised as given in (A-6).  With (25),  

 
3

2 0

1

1 1

2 2
L L I

i

    



 
    

 
q A Ψ A q q B CB b s b q                (28a) 

     
3

3 1

1

1 1

6 6
L N N L L

i

     



 
     

 
q A Ψ A q q B CB q B q CB b s b q             (28b) 

     
3

4 2

1

1 1

12 12
N N N

i

    



 
    

 
q A Ψ A q q B q B q b s b qC              (28c) 

The matrices involved in the above expressions can all be given explicitly, owing to the apparently 

symmetric presentation of the above energy terms, for a given type of element in which the 

displacement field is interpolated in the form of (A-6).  In order to obtain the stiffness matrices for 

an element, one can substitute the fully commutative terms (28) into the SED and its variations (27) 

for the element. 

e e e

eU   q h q K q                    (29a) 

 e e e

sU  
 q h q K q                   (29b) 

2 e e

tU   q K q                    (29c) 

where the superscript e indicates that the quantity is associated with the element concerned, and 

e

e

L I d




 h B σ                   (30a) 

0 1 2

1 1 1

2 6 12

e e e e

e   K K N N                  (30b) 

0 1 2

1 1

2 3

e e e e

s   K K N N                  (30c) 

0 1 2

e e e e

t   K K N N                   (30d) 

whilst  0 0 0
e

e
e ed 



   K A Ψ A K K                 (31a) 

   1 1 1 1
e

e e
e qd 



   N A Ψ A N K                 (31b) 

   2 2 2 2
e

e e
e qd 



   N A Ψ A N K                 (31c) 

e

e

L Ld



 K B C B                   (32a) 
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      1
e

e
q

L N N L d 



  N B C B q B q CB                (32b) 

     2
e

e
q

N N d



 N B q C B q                 (32c) 

 
3

0

1 e

e

i I i

i

d 

 

  K b s b   referring to (A9b) for bi            (32d) 

 
3

1

1 e

e

i L i

i

d 

 

  K b s b                  (32e) 

 
3

2

1 e

e

i N i

i

d 

 

  K b s b .                 (32f) 

e

sK  and e

tK  are conventionally known as the secant and tangential stiffness matrices.  For 

the ease of association with e

sK  and e

tK , it is suggested that e

eK  be called ‘the energy stiffness 

matrix’ since it is directly associated with the expression of strain energy.  They have all been 

expressed explicitly and symmetrically above.  e

sK  is related to e

eK  in a similar way as e

tK  is 

related to e

sK . This reveals the generic relationships amongst e

eK , e

sK  and e

tK .  A different 

presentation of these stiffness matrices has also been obtained in [9-11] but they admitted the lack 

of uniqueness and left the problem behind unresolved.  Given the full commutativity as an intrinsic 

property of the SED, the uniqueness of SED expression and stiffness matrices derived from it is 

guaranteed.  It is straightforward to reveal that the secant stiffness matrix as shown in (2) can be 

identically transformed to e

sK  after the flip transformation has been applied to some of the terms as 

provided in Appendix B to bring a resolution to a longstanding issue associated with the secant 

stiffness matrix. 

In (31a), 0

e
K  is the stiffness matrix in linear problems, which incorporates the contribution 

from the initial stress through the so-called initial stress stiffness matrix  0

e
K . e

h  can be 

considered to be an extra load resulting from initial stresses.  For problems without initial stresses, 

 0

e
K  and e

h  can simply be dropped without affecting the other terms.  1

e
N  and  2

e
N  are the 

stiffness matrices due to the nonlinearity, being linear and quadratic functions of q , respectively. 

 

6 Koiter’s initial post-buckling theory 

The initial post-buckling theory was established by Koiter in the 1940s [12] although it did 

not become known to the rest of the world outside the Netherlands until some 20 years later [25].  It 

was the first ever attempt at offering an insight into various buckling phenomena through the 
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concept of stability of equilibrium states, in particular, those in the initial post-buckling regime.  

Through this, the concept of imperfection sensitivity of a structure was quantitatively established 

and directly associated with the stability of the initial post-buckling equilibrium state.  The stability 

of the initial post-buckling equilibrium state and the sensitivity of the buckling load to the initial 

imperfection could all be described through two non-dimensional parameters, a and b, often termed 

as initial post-buckling coefficients (IPBCs) [26].  Research activities on the theory peaked in the 

1970s [26,27] when the development of commercial FEM codes was still in its infancy.  Modern 

mainstream commercial FEM codes have never managed to incorporate Koiter’s theory. 

Buckling analysis is one of the basic modules in modern commercial FEM codes [1-3].  

However, structural engineers and designers are very aware of the limitations of the predicted 

buckling load.  Structures could collapse at a much lower load level than the predicted buckling 

load due to their imperfection sensitivity.  As the buckling analysis alone is insufficient to provide 

any information in this regard, investigations have been taken to the post-buckling regime which 

could be traced as far back as to the 1940s [27] with intensified activities in the 1960s [28,29], to 

name but a few.  The outcomes of such efforts, whilst having enhanced the understanding of the 

post-buckling deformation, proved to be a rather inefficient approach to understanding buckling 

behaviour.  A modern equivalent of such efforts is to analyse structures with artificially introduced 

imperfections, often as an initial deflection taking the pattern of the buckling mode, taking 

advantage of the computing power nowadays and the options available in mainstream FEM codes.  

Such analyses are computationally expensive and time-consuming.  A proper assessment will have 

to involve separate runs having imperfections of either sense one at a time and they will have to be 

run over a range of magnitudes of such artificially introduced imperfection in order to be 

representative.  This is often missing from such attempts.  The computational cost could be 

overwhelming, bearing in mind that each of such an analysis must be conducted as a nonlinear 

problem.  In most of such endeavours, the ultimate objective is in fact some assurance on the 

predicted buckling load. 

Much of the useful part of the outcomes of the above computationally expensive and time-

consuming exercises could have been condensed into the two IPBCs, a and b, if Koiter’s theory had 

been adopted.  Their evaluations involve little more than a conventional buckling analysis, typically 

the extraction of the lowest order of eigenvalue, in terms of computational efforts.  To be specific, 

the evaluation of a requires no more information than has been made available after the buckling 

analysis.  That for b needs slightly more effort since one has to solve another specially formulated 

stiffness equation to obtain the 2nd order of displacement perturbation.  This is a linear problem.  

Computationally, it is equivalent to a single iteration in a conventional incremental-iterative 

nonlinear analysis.  Koiter’s theory is called the initial post-buckling theory and it does produce a 
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prediction of the post-buckling deformation.  However, it is meant to be applicable to the initial 

phase of the post-buckling regime in an asymptotic sense.  It is usually insufficient to offer 

meaningful understanding of post-buckling deformation in a broad sense, if such information is 

genuinely required.  The true value of Koiter’s theory is to provide an efficient tool for designers 

dealing with buckling as they will have much improved level of confidence on the buckling load 

predicted if it is accompanied by IPBCs a and b.  In this regard, through the development of the 

theory in the 1970-80s, mostly by analytical means, a reasonable understanding has been achieved 

in terms of their imperfection sensitivity of simple structures, such as plates and cylindrical shells.  

However, modern structures tend to have intricate details, e.g. panels with hat-shaped stiffeners, 

often involving the use of new materials, such as composites, and their imperfection sensitivity is 

no longer obvious before an appropriate evaluation has been carried out. 

In order to present this paper in self-contained form, the main procedure of Koiter’s theory 

is provided briefly in its FEM presentation.  With the FEM discretisation, after assembling all 

elements involved in the structure, the total potential energy for a conservative elastic system can be 

given as 

         1 2 3 4    q q q q q                (33) 

where the same q  has been used for the nodal displacement vector for the whole structure without 

being confused with its counterpart for an element.  Having employed the fully commutative and 

apparently symmetric SED to formulate element stiffness matrices as shown in the previous section, 

the full commutativity of q  is present in 2 , 3  and 4  for the structure.  Equilibrium is defined 

by the first variation of  

         1 11 21 31, , , 0         q q q q q q q q              (34) 

where the subscript rules for   remain the same as for Q in previous sections as illustrated in (17) 

and (18) in line with Koiter’s original notation [12].   

As conventionally assumed, there exists a fundamental equilibrium path given as 

 0 0 q q  satisfying   0 0 q 0 .                (35) 

where   the load parameter and c  the critical load.  The critical condition for buckling is met as 

  increases from 0 to c , when the second variation as follows seizes to be positive definite, i.e. 

       2

11 111 0 211 0, , , , , 0          q q q q q q q q q             (36) 

whilst there exists a nontrivial displacement variation 1 q q  that results in a zero value for the 

second variation above, i.e. 

     11 1 111 0 1 211 0 1, , , , , 0     q q q q q q q q                (37) 
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which gives the governing equation for the eigenvalue problem where the lowest eigenvalue 

determines the magnitude of 0q  at buckling, i.e. c , and eigenvector 1q  provides the buckling 

mode.  

The classical buckling problem finishes at this point.  However, structures tend to exhibit a 

range of dramatically different behaviours.  Some can support further loads after buckling whilst 

others collapse long before the classical buckling load is reached.  Koiter established [12,25] that 

the different responses were directly related to the state of stability of the post-buckling equilibrium 

path at the bifurcation point.  If it were stable, the structure would be insensitive to the initial 

imperfection and it could sustain higher levels of load without catastrophic collapse.  Otherwise, the 

structure would be sensitive to the initial imperfection and it would tend to collapse at a load 

significantly lower than the predicted buckling load, depending on the magnitude of the initial 

imperfection.  In order to obtain the initial post-buckling path and to assess the stability of the 

equilibrium state on the initial post-buckling path, an asymptotic expression of it can be assumed as 

an implicit function of  q q  in its parametric form with parameter  as follows. 

2 3

0 1 2 3      q q q q q                 (38a) 

 2 31c a b c                         (38b) 

where   is also called the perturbation parameter in the context of asymptotic analysis which 

signifies the amplitude of the buckling mode as a measure of the magnitude of the initial post-

buckling deformation, a, b, c,… are the so-called IPBCs, 1q  is the buckling mode assumed to have 

already being obtained from (37), 2q  is the secondary perturbation mode for the determination of b 

and 3q  are higher order perturbation modes.  For initial post-buckling analysis, the fundamental 

path 0q  is assumed to be known and it can be expanded as a Taylor series around the bifurcation 

point as 

 0 0 0

c c c    q q q .                 (38c) 

For cases where Koiter’s theory applies, buckling is characterised by bifurcation from the 

fundamental equilibrium path.  In most of such cases, the pre-buckling phase of the fundamental 

path involves small deformation and can be determined from a linear analysis as a reasonable 

approximation which is usually incorporated as a part of the buckling analysis.  Koiter’s theory does 

not apply to the other type of buckling at a maximum load where snap-though takes place, in which 

pre-buckling deformation is typically highly nonlinear. 

When the asymptotic series expressions (38a-c) are substituted into the total potential energy 

expression, its first derivative with respect to   gives the equilibrium condition for the post-
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buckling path and can be considered as an implicit function     .  If a and b in (38b) are 

considered as the 1st and 2nd order of derivatives of   with respective to   at 0   and hence 

c  , their expressions can be obtained as follows. 

   
   

3 1 13 0 1

12 0 1 112 0 0 1

,3

2 , , ,

c

c c c c
a



 
 

 

q q q

q q q q q
               (39) 

        
   

 
4 1 2 2 12 0 2 22 0 2

12 0 1 112 0 0 1

, ,2
0

, , ,

c c

c c c c
b a



    
  

 

q q q q q q

q q q q q
               (40) 

In most practical analyses, determination of a and b is sufficient.  As established in Koiter’s theory, 

the most important characteristics of the initial post-buckling behaviour can be determined using 

only these constants, provided that they do not vanish simultaneously. 

If 0a  , the initial post-buckling path given in (38b) can be truncated at the first order of 

the asymptotic series as an approximation and one does not even need to evaluate b as it contributes 

only an asymptotically higher order term.  In this case, an asymmetric bifurcation is expected which 

predicts an unstable initial post-buckling behaviour in general and leads to imperfection sensitivity.  

Given the asymmetric nature of the bifurcation, if the structure is sensitive to an imperfection of one 

sense, e.g. positive, it is insensitive to the same imperfection of the other sense, i.e. negative.  This 

is why if one adopts the nonlinear post-buckling analysis approach, imperfections of both senses 

must be assessed separately to form a complete view. 

When a=0, one has to proceed to the second order perturbation.  If 0b  , function (38b) can 

be truncated at the second order term for initial post-buckling behaviour leading to a symmetric 

bifurcation.  In order to evaluate b, the second order displacement perturbation 2q  is required.  The 

governing equation can be obtained from the second order terms of  in the asymptotically 

expanded total potential energy as [12,25] 

         11 2 111 0 2 121 0 2 12 1 112 0 1, , , , , , , ,         q q q q q q q q q q q q q          (41) 

subject to an orthogonality condition between 1q  and 2q  as  

   11 0 1 2 1111 0 0 1 2, , , , , 0c c c  q q q q q q q .               (42) 

Higher orders of perturbation could be made in theory in the case that b vanishes but this situation 

rarely arise in practice. 

Koiter’s theory has been summarised as above.  However, it has not been implemented in 

any mainstream commercial FEM code.  In fact, there has been no lack of desire to achieve this, 

early attempts could be traced back to the 1970s [13, 14] and numerous more recent efforts could be 

found including those in [16-23].  The development of the FEM implementation of Koiter’s theory 
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has suffered from a number of key obstacles.  One of them was referred to as the ‘locking’ 

phenomenon as originally defined in [31].  It will be resolved as one of the main outcomes of the 

present paper.  The remaining obstacles have also been resolved by the present authors who plan to 

present them soon in subsequent publications. 

Making use of the SED and FEM formulation as presented in previous section, key 

governing equations as presented above can be expressed in the FEM context as follow.   

0 1 2

1 1 1

2 6 12

  
     

 
q K N N q q F  cf. (33)              (43) 

0 1 2

1 1
0

2 3

 
    

 
K N N q F    cf. (34)              (44) 

 0 1 2 1  K N N q 0     cf. (37)              (45) 

   

   
1 1 1 1 1 2 1 0

1 1 1 0 1 2 0 0
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2 2

c

c c c c
a



 

 


 



q N q q q N q q

q N q q q N q q

    cf. (39)            (46) 

      
   

1 2 1 1 2 0 1 0 2 0 2

1 1 1 0 1 2 0 0

61

3 2

c c

c c c c
b



 

 

  
 



q N q q q K N q N q q

q N q q q N q q

  cf. (40)            (47) 

     0 1 2 2 1 1 1 2 1 0

1

2

c    K N N q N q q N q q    cf. (41)           (48) 

    1 1 0 11 0 0 2, 0T c c c  q N q N q q q      cf. (42)           (49) 

where F is the external loading vector whilst various symbols associated with the FEM formulation 

are inherited from the previous section in a straightforward manner except that they have been 

assembled from all elements involved in the structure. 

The expressions of a and b above were obtained as early as in 1971 [13].  However, they 

have remained unimplemented because the nonlinear stiffness matrices 1N  and 2N  have been a 

‘symbolism’ as referred to in the first edition of [4].  In obtaining them in [13], the full 

commutativity of various displacements within each of the terms appearing in the expressions had 

been taken for granted, which did not stand scrutiny if one wished to adopt it in a commercial code.  

Based on the full commutativity and the apparent symmetry as established earlier in this 

paper, all expressions now are not only well-defined and explicit but also proven to be practically 

effective in applications as will be demonstrated in the next section.  

In the literature, most attempts of evaluating the IPBCs a and b through FEM have 

employed the expressions as provided in Appendix C as an alternative.  They are mathematically 

equivalent to (39) and (40), respectively.  However, the equivalence for b was greatly compromised 

numerically when implemented through FEM, as the two terms in the numerator of (C-2) are of 
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opposite senses whilst having similar magnitude.  The sum is often one or more orders of 

magnitude smaller, resulting in the so-called ‘locking’ phenomenon [31].  The fact that it has never 

appeared in analytical solutions [15] suggests that it is a numerical problem associated with 

accuracy.  The underlying reason was in fact the generic shortcoming of FEM in which stresses 

obtained are inherently found to a lower order of accuracy.  As expression (C-2) involves stresses 

explicitly, the accuracy of the results would have to rely on mesh refinement.  Such mesh sensitivity 

for this particular problem has been well-observed and documented in the literature, e.g. [16-23].  

The consequence is that a much more refined mesh would be required for initial post-buckling 

analysis than that which would usually be sufficient to deliver satisfactory buckling analysis.  This 

would undermine the practical usefulness of an FEM code.  To improve the accuracy in order to 

avoid the mesh sensitivity, specially formulated finite elements have been adopted using 

unconventional shape functions, e.g. those having higher orders of continuity [16].  Neither 

enduring the mesh sensitivity nor employing specially formulated elements is an attractive property 

to FEM code developers.  It was undoubtedly one of the major reasons why the theory has never 

been incorporated in any mainstream FEM code. 

Since (C-2) on longer relies on stresses, one can expect (47) to offer improved performance.  

This will be demonstrated in the next section through example applications.  It will be shown that it 

has in fact removed the mesh sensitivity completely without having to use a specially formulated 

element. 

 

7 Numerical examples 

To demonstrate the advantages of the formulation as presented in Section 6, it is applied 

here to the plates presented in [16].  The formulation can be simplified accordingly for plates and 

shells where all higher order terms of in-plane displacements can be neglected, as has been 

conventionally performed in [6-8].  The plate is considered to take a range of aspect ratios and is 

assumed to be simply supported (a), (b-1) and (c-1) or clamped (b-2) and (c-2) with in-plane 

constraints as specified in Figure 1.  It is subjected to a number of loading conditions, viz. (a) 

uniaxial compression, (b) pure in-plane bending and (c) pure shear, as illustrated in Figure 1.  The 

Young’s modulus of the material of the plate is 210 GPaE   and its Poisson’s ratio 0.3v  .  The 

thickness of the plate is 1t mm . 

Given the absence of Koiter’s theory from any mainstream commercial FEM code, the 

present analyses were conducted using an in-house developed FEM code employing the 3D 

degenerated 8-noded shell element with reduced integration [4,5].  Prior to the applications shown 

in this paper, the code had been extensively verified against various sources, including analytical 

solutions wherever available and the results obtained from Abaqus.  For the present application, the 
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obtained results have been listed in Table 1 and compared with available results in [16].  As an 

illustration of the reliability of the in-house code, the results for the buckling loads obtained using 

Abaqus have also been included, where agreement is seen to be excellent.  

The IPBCs as given in (46) and (47) have been evaluated.  As the problem is for a flat plate, 

IPBC a should vanish identically.  This was also verified in the numerical results obtained through 

the in-house code, which offered further assurance of the accuracy of the in-house code from 

another perspective in the post-buckling regime, although there was no need to show this trivial 

result in Table 1. 

 

 

Figure 1. Rectangular plate under different loading and boundary conditions (dashed inner frame 

indicating simply supported and solid clamped boundary conditions against bending) [16] 

 

The predicted IPBC b using the in-house FEM code has been shown in Table 1.  As Abaqus 

does not incorporate Koiter’s theory, no results can be obtained from it.  Results published in [16] 

have been resorted to in order to verify the present predictions where excellent agreement is 

obvious.  Over the range of mesh densities considered, the mesh convergence occurs in a consistent 
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way between the buckling load and IPBC b, i.e. a mesh good enough for buckling analysis is also 

good enough for initial post-buckling analysis.   

 

Table 1. Initial post-buckling coefficient of simply supported rectangular plate  

Case Mesh 

Normalised buckling load 

 2 2 2 312 1 cB Et    
IPBC 

b 

Partitions of b such 

that b=b1b2 

b1 b2 
Ref.[16]  Abaqus Present Ref.[16]  Present 

(a) 

L/B=3 

217 4.033 3.969 3.968 0.2203 0.2108 1.7716 1.5608 

3311 4.014 3.974 3.974 0.2213 0.2190 1.9215 1.7025 

4915 4.007 3.974 3.974 0.2217 0.2149 1.8838 1.6689 

(b-1) 

L/B=1 

99 26.18 25.49 25.31 0.2236 0.2160 2.0664 1.8504 

1515 25.76 25.32 25.25 0.2252 0.2156 2.0441 1.8285 

2525 25.61 25.27 25.25 0.2194 0.2097 2.0129 1.8032 

3333 25.58 25.26 25.25 0.2193 0.2104 2.0257 1.8153 

(b-2) 

L/B=1 

99 53.49 48.90 48.44 0.3400 0.2838 1.3404 1.0566 

1515 49.74 47.71 47.55 0.2978 0.2926 1.3913 1.0987 

2525 48.46 47.55 47.50 0.2978 0.2806 1.3352 1.0546 

3333 48.16 47.53 47.50 0.2924 0.2854 1.3569 1.0715 

(c-1) 

L/B=2 

157 6.777 6.537 6.537 0.07297 0.07305 1.2558 1.1828 

2511 6.639 6.522 6.523 0.07174 0.07273 1.2635 1.1908 

3317 6.587 6.521 6.521 0.07164 0.07226 1.2758 1.2036 

(c-2) 

L/B=2 

157 11.41 10.37 10.37 0.1566 0.1357 1.3057 1.1700 

2511 10.67 10.23 10.23 0.1383 0.1330 1.2982 1.1652 

3317 10.42 10.22 10.22 0.1340 0.1326 1.2924 1.1598 

 

The agreements with [16] and Abaqus verify the correctness of the formulation and the 

implementation.  A much more important aspect is that the present analysis employs a conventional 

type of finite element, viz. 3D degenerated 8-noded shell with reduced integration, available 

commonly in commercial FEM codes, whilst that in [16] was based on specially formulated finite 

elements with a higher order of continuity which is unavailable in any mainstream commercial code. 

It should be pointed out that an analytical solution for b is available in [27] for a problem 

corresponding to Case (a), given as  

 23
1 0.34125

8
b   

                  (50) 

which is significantly different from what was obtained in [16] as well as the present prediction.  It 

is most disturbing to enquire why the disparity has never been flagged up and explained 

appropriately.  There appeared to be reluctance in the literature, e.g. [20], to refer to Case (a).  It 

would be extremely negative for any serious developer of FEM code considering adaption of 

Koiter’s theory, if such the discrepancy were left unaddressed.  The authors of this paper have 
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identified the source of the problem and resolved it.  Since it is not simply a numerical error and 

takes a considerable elaboration on both numerical and analytical sides in order to clarify the 

position, it will have to be presented in a subsequent publication.  For readers’ assurance, the result 

as presented in Table 1 is correct for the problem as defined in Figure 1(a), which is however subtly 

different from that solved analytically in [27]. 

As mesh sensitivity has been one of the key issues regarding the FEM implementation of 

Koiter’s theory, it has been investigated by plotting the predicted b for Case (b-1) shown in Figure 1 

against the degrees of freedom (dofs) involved in the mesh with the template found in [20], as 

shown in Figure 2.  Over the range of the number of dofs as shown, no mesh sensitivity can be 

observed using (47).  It should be noted that the full commutativity and apparent symmetry come 

without any extra computational effort or cost.  If anything, it has made the FEM formulation 

clearer and more streamlined.  In contrast, the curve as was found in [20] with conventional 

elements using the popular expression (C-2) showed strong mesh sensitivity over the same range of 

number of dofs.  Other results shown in Figure 2 including those from [16] show improvements in 

mesh sensitivity but at the price of employing specially formulated finite elements.  In fact, the 

present formulation demonstrated better convergence in general with a number of more pronounced 

cases shown bold in Table 1. 

 

  
Figure 2 Mesh convergence for Case (b-1) as sketched in Figure 1 

 

The reason for the improvement in the numerical accuracy when using (47) instead of (C-2) 

is believed to have resulted from the much reduced direct involvement of stresses in the expression 

of b and therefore any undue numerical errors are avoided.  Also included in Table 1 are the values 

of the two terms of b if expression (47) is split according to its numerator into two separate terms, 

b1 and b2, so that b=b1-b2.  It can be observed that b is indeed an order of magnitude smaller than 
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either b1 or b2 and hence ‘locking’ is likely [16,17], especially if the terms involved could not be 

evaluated sufficiently accurately.  However, having reduced the direct involvement of stresses in 

these expressions, numerical errors due to FEM should have been reduced in comparison with that 

evaluated using (C-2).  The freedom from mesh sensitivity in the present results is therefore by no 

accident.   

Use of (47) brings forward a satisfactory solution and locking does not appear whilst using a 

conventional type of C0 element.  This has been achieved based on the N-notation which was not 

possible practically previously.  With the fully commutative and apparently symmetric SED, the N-

notation is now fully established.  This should open the gate for Koiter’s theory to be incorporated 

in mainstream commercial FEM codes.   

 

8 Conclusions 

In this paper, the concept of full commutativity of displacements in the expressions for the 

strain energy density within the geometrically nonlinear problem has been introduced for the first 

time, and established firmly such that full commutativity can now be identified as an intrinsic 

property of the SED.   

When this fully commutative SED is employed in the formulation of the FEM, as a direct 

application, all relevant stiffness matrices in the so-called N-notation can be obtained uniquely.  In 

order for them to be expressed explicitly, the SED also needs to be put into an apparently symmetric 

form by applying the mathematically identical flip transformation to some of the terms of the SED, 

as has also been established in this paper.  The stiffness matrices thus obtained can then be used to 

construct the strain energy, equilibrium equation and the incremental equilibrium equation in a 

consistent manner.  The N-notation FEM formulation has thus been fully and rigorously established.  

Prior to this, the N-notation formulation has remained as a symbolism, particularly within the FEM 

implementation of Koiter’s theory.  Without a functional N-notation formulation, the option for the 

FEM implementation of Koiter’s theory is through the B-notation instead, which has suffered from 

the well-known mesh sensitivity issue in the evaluation of the IPBC b unless some unconventional 

types of elements have been employed.  With the expression of b in N-notation, the mesh sensitivity 

issue has been resolved naturally whilst using a conventional type of element.  There will be no 

need either to employ specially formulated elements or to endure the inconvenience of mesh 

sensitivity, as has been demonstrated in the present paper.  The unavailability of Koiter’s theory 

from commercial FEM codes is a missed opportunity for structural designer and engineers to 

improve dramatically the confidence in the predicted load carrying capacity of structures when 

designing against buckling.  Using any existing commercial FEM code, it is easy to predict the 

buckling load but difficult to place confidence on it; Koiter’s theory would overcome this problem.  
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The most important contribution of this paper is to pave a way for the wide adoption of Koiter’s 

theory in mainstream FEM codes. 
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Appendix A Basic equations and notations 

Basic notations involved in this paper are defined as follows.  For a linearly elastic 

continuum as dealt with in this paper, the strain energy density U exists and it can be expressed as  

 
1

2
IU   u ε σ ε σ                   (A-1) 

where  is the Green strain, Iσ  the initial Cauchy stress and  the second Piola-Kirchhoff stress [8].   

L N ε ε ε , L Lε u ,  
1

2
N N ε u u               (A-2) 

where   u v w


u  is the displacement field, and 
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          (A-3) 

where operator L  and  N u  are both defined according to the Green strain with the latter 

containing homogeneous linear expressions of the derivatives of u .  These operators apply to the 

displacement field on its right, e.g. L u  and  N u u .  Transposing these expressions reverses the 

sequence of these operators, e.g. L

 u  and  N

 u u .  Given the expression of  N u , u  and u 

in  N  u u  are commutative, i.e.    N N  u u u u . 

Under the assumption of linear elasticity, the constitutive relationship can be given as 

I I L N I L N       σ σ Cε σ Cε Cε σ σ σ                (A-4) 

where C  is the material stiffness, Lσ  and Nσ  are linear and quadratic parts of the second Piola-

Kirchhoff stress in their contracted form, with Nσ  representing the effects of geometrical 

nonlinearity.  In some parts of the derivation involved in the paper, the matrix form these stresses 

are required and they will be denoted as s , Is , Ls  and Ns , respectively. 

Having introduced the notations above, (A-1) can be partitioned according to the orders of 

displacements as follows. 

1 2 3 4U U U U U                     (A-5a) 

where 1 L I L IU     ε σ u σ                 (A-5b) 
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 2

1 1 1

2 2 2
N I L L N I L LU            ε σ ε ε u u σ u C uC            (A-5c) 

   3

1 1

2 2
L N N L L N L NU          ε C ε ε Cε ε C ε u C u u            (A-5d) 

   4

1 1

2 8
N N N NU      ε C ε u u C u u .             (A-5e) 

The subscripts to various terms of U  above indicate the orders of power in displacement.  Each of 

1U  to 4U  is a homogeneous function of u and hence can be expressed as a linear, quadratic, cubic 

or quartic form of u as in (A-5b) to (A5-e), respectively.  Geometrical nonlinearity is brought into 

the problem through 3U  and 4U  which are often referred to as higher order terms whilst 1U   and 

2U  pertain to the conventional linear problem.   

To derive the stiffness matrices of a finite element for the geometrically nonlinear problem 

the displacement field in a finite element can be discretised as follows. 

u Aq                   (A-6) 

where q  is the nodal displacement vector for the element corresponding to the displacement field u 

and A is the displacement interpolation matrix which is formed from shape functions.   

L Lε B q ,  
1

2
N Nε B q q                (A-7) 

where L LB A                  (A-8a) 

      N N N B q u A q A  with  N Aq  denoted later as  N q         (A-8b) 

LB  is independent of q , whilst all the elements of NB  are homogeneous linear expressions of q , 

which represents the effects of geometrical nonlinearity in the kinematic equation.  Matrices LB  

and NB  may vary with the type of element, including truss, membrane and brick continuum 

elements and beam, plate and shell structural elements.  Following an argument that was made 

earlier, q  and q  involved in  N B q q  are commutative, i.e.    N N B q q B q q . 

 Discretising the term in 11  associated with SI as in (22a) leads to  

3

1

I i I i

i

 



 
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 
u S u q b s b q                  (A9a) 

where i ib A .                  (A9b) 

Similarly, those in 111  and 1111 associated with SL and S11 as in (22b-c) are discretised to 

   
3

1

L i L i

i

 



 
     

 
u S q u q b s u b q    with      L L L

   s q s Aq s u          (A10) 
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   
3

11 11

1

, ,i i

i

 
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 
       

 
u S u u u q b s u u b q   with    11 11, ,   s q q s u u           (A11) 

whilst 

   
3

11

1

1
,

2
N i i

i

 



 
  

 
u S u u q b s u u b q   with    N Ns q s u            (A12) 

as a part of (25c) after discretisation. 

 

Appendix B Derivation of the flip transformation and an example of its application 
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where 
IS  and 

i  have been given in (19b) and (19c).  Applying the flip transformation to 

discretised energy terms, e.g. those involved in (2), one can readily recover the symmetry of the 

secant stiffness matrix as in (2). 
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where various stiffness matrices have been given in (30) to (32).  Without making the relevant 

expression apparently symmetric through the flip transformation, the secant stiffness matrix cannot 

be obtained explicitly. 
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Appendix C Alternative expressions for the IPBCs and their drawback 

Alternative expressions of the IPBCs a and b were obtained in [15].  Presented in the 

notations of this paper, they were expressed as follows. 
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where  1N q  is defined in the same way as (A-8b) but with q replaced by 1q , 0

c
σ  the stress state on 

the fundamental equilibrium path at the point of buckling, and 1σ  and 2σ  are the first and second 

order perturbation stresses defined as follows (to be distinguished from 
Lσ  and 

Nσ ). 
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