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ABSTRACT

We have modelled ∼ 0.1 arcsec resolution ALMA imaging of six strong gravitationally
lensed galaxies detected by the Herschel Space Observatory. Our modelling recovers
mass properties of the lensing galaxies and, by determining magnification factors, in-
trinsic properties of the lensed sub-millimetre sources. We find that the lensed galaxies
all have high ratios of star formation rate to dust mass, consistent with or higher than
the mean ratio for high redshift sub-millimetre galaxies and low redshift ultra-luminous
infra-red galaxies. Source reconstruction reveals that most galaxies exhibit disturbed
morphologies. Both the cleaned image plane data and the directly observed interfero-
metric visibilities have been modelled, enabling comparison of both approaches. In the
majority of cases, the recovered lens models are consistent between methods, all six
having mass density profiles that are close to isothermal. However, one system with
poor signal to noise shows mildly significant differences.

Key words: gravitational lensing - galaxies: structure

1 INTRODUCTION

The most prodigious star formation rates observed in the
Universe are located within strongly optically obscured
galaxies at high redshift (e.g., Alexander et al. 2005; Greve
et al. 2005; Tacconi et al. 2006; Pope et al. 2008). The
ultra-violet radiation emitted by their hot young stars is
absorbed by copious quantities of enshrouding dust and re-
emitted in the mid- and far-infrared (far-IR). Observations

⋆ Herschel is an ESA space observatory with science instruments
provided by European-led Principal Investigator consortia and
with important participation from NASA.
† E-mail: simon.dye@nottingham.ac.uk

indicate that on average they are substantially more ener-
getic per unit mass than local star forming galaxies and have
higher star formation efficiencies (e.g., Santini et al. 2014).
They are also considerably more abundant than local ultra-
luminous infra-red galaxies (ULIRGs) which have compa-
rable bolometric luminosities (e.g., Chapman et al. 2005;
Swinbank et al. 2010; Alaghband-Zadeh et al. 2012; Row-
lands et al. 2014). Capturing these systems in the midst of
a high rate of assembly is of key importance for a complete
understanding of galaxy formation. Thanks to recent ad-
vances in sub-millimetre (submm) interferometric imaging
capability with facilities such as the Atacama Large Mil-
limetre/submillimeter Array (ALMA), study of these high
redshift submm-bright galaxies can now be conducted with
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resolutions < 0.1 arcsec, providing vastly more detail than
was previously possible.

Strong gravitational lensing offers an additional increase
in spatial resolution, with magnification factors often in ex-
cess of 10. This neatly complements the high lensing bias
that occurs at submm wavelengths, which makes selection
of strong lens systems relatively easy (Blain 1996; Negrello
et al. 2007). In this way ALMA follow-up of significant
numbers of strongly lensed far-IR sources detected in large
area surveys such as the Herschel Astrophysical Terahertz
Large Area Survey (H-ATLAS; Eales et al. 2010), the Her-

schel Extragalactic Multi-tiered Extragalactic Survey (Her-
MES; Oliver et al. 2012) and the Herschel Stripe 82 Sur-
vey (HerS Viero et al. 2014) conducted using the Herschel

Space Observatory (Pilbratt et al. 2010) and the millimetre
wavelength surveys carried out by the South Pole Telescope
(Carlstrom et al. 2011; Vieira et al. 2013) and the Planck
satellite (Cañameras et al. 2015) are beginning to bring
about rapid progress in our understanding of the early stages
of galaxy formation. In particular, the improved sensitiv-
ity of these facilities allows study of less luminous galaxies
than previously possible, pushing down towards the main
sequence of star formation occupied by more typical star
forming systems.

Not only are these surveys quickly increasing the size of
current strong lens samples (e.g., Wardlow et al. 2013; Heza-
veh et al. 2013; Bussmann et al. 2013; Calanog et al. 2014;
Rowan-Robinson et al. 2014; Bussmann et al. 2015; Nayyeri
et al. 2016; Negrello et al. 2017), they are also extending
their redshift range owing to the more favourable submm
K-correction than that which occurs at shorter wavelengths.
Due to the scaling of the lensing cross-section with lens red-
shift, higher redshift sources are lensed by higher redshift
lenses on average and so the extended redshift range also
allows study of lens mass profiles in galaxies at an earlier
epoch, to widen the time period over which structural evo-
lution in lens galaxies can be studied. Submm lens samples
therefore allow the density profile slope to be measured at
earlier times when galaxies were evolving more quickly (see,
for example, Dye et al. 2014; Negrello et al. 2014).

One particular measurement which has generated sig-
nificant interest owing to its simplicity and because it pro-
vides an observational benchmark for simulations of large
scale structure is that of the mass profile of lens galaxies on
scales where baryons often dominate the mass budget (i.e.,
on scales of the Einstein radius; see, for example, Ruff et al.
2011; Bolton et al. 2012; Barnabé et al. 2012; Sonnenfeld
et al. 2015). The physics governing the baryons is complex
and this gives rise to significant uncertainties in simulations.
Observational characterisation of the way in which baryons
shape the central mass profile of galaxies therefore brings
valuable insight to this problem.

The more accurate lens models afforded by higher res-
olution submm follow-up also bring about improvements in
model-dependent source characteristics such as luminosity,
star formation rate and gas and dust mass but also emission
line ratios, source morphology and source kinematics which
are subjected to differential magnification effects in the re-
constructed source plane. A striking example of the degree to
which enhancements to our understanding of submm sources
can be made by strong lensing can be found in several studies
which recently analysed ALMA follow-up imaging of the H-

ID zl zs

H-ATLAS J142413.9+022303 0.595a 4.243b

H-ATLAS J142935.3-002836 0.218c 1.026d

HELMS J004714.2+032454 0.478e 1.190e

HELMS J001626.0+042613 0.215f,g 2.509e

HELMS J004723.6+015751 0.365f,g 1.441e

HELMS J001615.7+032435 0.663e 2.765e

Table 1. The six lenses systems modelled in this work with their
lens galaxy redshifts, zl, and source redshifts, zs. aBussmann et
al. (2012). bCox et al. (2011). cMessias et al. (2014). dNegrello
et al. (2017). eNayyeri et al. (2016). fAmvrosiadis et al. (2017).
gMarchetti et al. (in prep.).

ATLAS discovered lens system SDP81 (see Dye et al. 2015;
Swinbank et al. 2015; Rybak et al. 2015a,b; Wong, Suyu &
Matsushita 2015; Tamura et al. 2015; Hezaveh et al. 2016;
Inoue et al. 2016). These studies serve to illustrate how high
resolution submm imaging brings about a dramatically dif-
ferent interpretation of the lensed source compared to what
is inferred from optical data. Whilst significant differences
between optical and submm observations, such as large off-
sets in flux centroids, are not limited to lensed sources, (see,
for e.g., Hodge et al. 2015; Chen et al. 2015), differences are
expected to be more prevalent at higher redshifts when the
rate of galaxy evolution and assembly was higher. At these
redshifts, lensing efficiency and therefore lens magnification
is high, enabling much enhanced spatial resolution for more
detailed morphological study.

Techniques to reconstruct the lensed source from inter-
ferometric data naturally divide into those which directly
model the visibilities in the uv-plane (e.g., Bussmann et al.
2012, 2013; Rybak et al. 2015a; Hezaveh et al. 2016) and
those which model the cleaned data in the image plane (e.g.,
Dye et al. 2015; Inoue et al. 2016). The advantage of the
latter approach is that the reconstruction is often vastly less
computationally intensive but this comes at a price of not
working with the purest form of the data. This can in prin-
ciple cause biases in the lens modelling, especially when cov-
erage of the uv-plane is sparse.

In this paper, we have opted to use both uv-plane
and image-plane modelling, so that comparison between
both methods can be made. We carry out lens modelling
of ALMA imaging of six galaxy-galaxy strong lens systems
originally detected by the Herschel space observatory within
H-ATLAS and the HerMES Large Mode Survey (HELMS;
Asboth et al. 2016; Nayyeri et al. 2016) which is an exten-
sion to the original HerMES fields.

The layout of this paper is as follows: Section 2 outlines
the data. In Section 3 we describe the methodology of the
lens modelling. Section 4 presents the results and we sum-
marise the findings of this work in Section 5. Throughout
this paper, we assume the following cosmological parame-
ters; H0 = 67 km s−1 Mpc−1, Ωm = 0.32, ΩΛ = 0.68 (Planck
Collaboration 2013).

2 DATA

The ALMA observations modelled in this pa-
per are contained within the ALMA dataset

Downloaded from https://academic.oup.com/mnras/advance-article-abstract/doi/10.1093/mnras/sty513/4907987
by Periodicals Department , Hallward Library, University of Nottingham user
on 07 March 2018



ADS/JAO.ALMA#2013.1.00358.S (PI: Eales). The
ALMA spectral setup used for each lens system is iden-
tical, comprising Band 7 continuum observations in four
spectral windows, each of width 1875 MHz centred on the
frequencies 336.5, 338.5, 348.5 and 350.5 GHz. In each
spectral window, there are 128 frequency channels giving a
resolution of 15.6 MHz. Forty two 12 m antennas were used
with an on-source integration time of approximately 125 s.
This results in an angular resolution of 0.12 arcsec and an
RMS of approximately 230µJy/beam and 130µJy/beam
for the H-ATLAS and HELMS sources respectively after
combining all four spectral windows. In this paper, we have
used the calibrated visibilities as provided in the ALMA
science archive. The cleaned data used for the image plane
modelling were constructed using Briggs weighting with
a robustness parameter of -0.2 and were primary beam
corrected. Both calibration and cleaning were carried out
using version 4.3.1 of the Common Astronomy Software

Applications package (McMullin et al. 2007). The image
pixel scale used for the H-ATLAS and HELMS sources was
0.02 and 0.03 arcsec respectively.

When calculating intrinsic source properties, in addi-
tion to the photometry obtained from our own ALMA imag-
ing data, we have drawn from a variety of other datasets.
We have used submm photometry obtained by the Herschel

space observatory using both the Spectral and Photomet-
ric Imaging Receiver (SPIRE Griffin et al. 2010) at the
wavelengths 250, 350 and 500µm and the Photoconductor
Array Camera and Spectrometer (PACS; Poglitsch et al.
2010) at wavelengths of 100 and 160µm. For the H-ATLAS
sources, SPIRE and PACS photometry was taken from the
H-ATLAS first data release (Valiante et al. 2016). For the
HELMS sources, SPIRE fluxes were taken from Nayyeri et
al. (2016, N16 hereafter) whereas PACS fluxes were ex-
tracted from imaging held in the Herschel Science Archive1.
Where available, we have also used 880µm photometry ob-
tained with the Submillimeter Array (SMA) as detailed in
Bussmann et al. (2013), 850µm Submillimeter Common
User Bolometer Array 2 fluxes as given in Bakx et al. (2017,
in prep.) and ALMA Band 6 data (1280µm) from Messias et
al. (2014). Finally, the source H-ATLAS J142935.3-002836
is the Infrared Astronomical Satellite (IRAS) source IRAS
14269-0014 for which we have taken the 60µm flux density
as given in the IRAS faint source catalogue (Moshir, Kop-
man & Conrow 1992).

Table 1 lists the six systems modelled in this paper
along with their lens and source redshifts. Table 2 gives their
observed photometry.

3 METHODOLOGY

In this paper, we have applied the standard image plane
version of the Warren & Dye (2003) semi-linear inversion
(SLI) lens modelling method and a modified version which
works directly in the interferometric uv-plane on the visi-
bility data. Both use the framework derived by Suyu et al.
(2006) for optimising the model Bayesian evidence. The im-
age plane version adopts an implementation similar to that

1 http://archives.esac.esa.int/hsa/whsa

described by Nightingale & Dye (2015) which uses a ran-
domised Voronoi tessellation in the source plane to minimise
biases in the lens model parameters. The only differences are
that here we have used k-means clustering for the source
pixels and Markov Chain Monte Carlo (MCMC) optimisa-
tion, whereas Nightingale & Dye used h-means clustering
and MultiNest (Feroz, Hobson & Bridges 2009). The uv-
plane version is described in more detail below.

3.1 Adapting the SLI method to visibility data

At the heart of the SLI method lies a pixelised source plane.
Using a given lens model, an image of each pixel is formed.
In the image plane version of the method, the source surface
brightness distribution for a given lens model is determined
by finding the linear superposition of these images which
best fits the observed lensed image. Adapting this scheme
to work with interferometric visibility data requires forming
a model visibility dataset for each source pixel image. The
linear combination of each model visibility dataset that best
fits the observed visibilities then recovers the source surface
brightness distribution for a given lens model, in the same
manner as the image plane SLI version.

This scheme was used recently by Hezaveh et al. (2016)
in application to ALMA data. In their implementation,
phase calibration was included in the modelling procedure
by introducing the phase offset of each antenna as a free pa-
rameter of the fit. In our implementation, the sources are too
faint to provide such self-calibration hence we have instead
opted to apply the phase calibration provided by external
calibrators observed throughout acquisition of our science
data.

In the image plane SLI method, the rectangular ma-
trix fij holds the fluxes of lensed image pixels j for each
source plane pixel i assuming the source pixel has unit sur-
face brightness. Analogously, in the uv-plane version, the
rectangular matrix gij is used instead, where each row holds
the complex visibilities determined from the lensed image
of the unit surface brightness source pixel. Each row of gij
therefore contains the Fourier transform of its correspond-
ing row in fij , evaluated at the same points on the uv-plane
as the observed visibilities. This is achieved by incorporat-
ing the MIRIAD software package library (Sault, Teuben &
Wright 1995) into our reconstruction code, but using a much
streamlined version of the uvmodel procedure. The inputs to
uvmodel are the observed visibility dataset and, in turn, the
lensed images of the source plane pixels. In this way, a model
visibility dataset is created with visibilities equal to

∑
i
sigij

for each visibility j given source pixel surface brightnesses
si. With observed complex visibilities Vj , the χ2 statistic is
therefore computed as

χ2 =
J∑

j=1

∑I

i=1 |sigij − Vj |
2

σ2
j

, (1)

where the summations act over I total Voronoi source pixels
and J visibilities and it is assumed that there is no covari-
ance between visibilities. We used a similar method as Heza-
veh et al. (2016) for determining the 1σ uncertainties, σj , on
the visibilities. These were computed from the rms of differ-
ences in neighbouring visibilities grouped in the uv-plane to
remove sky contribution. Whereas Hezaveh et al. computed
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ID f60 f100 f160 f250 f350 f500 f850 fSMA
880 fALMA

880 f1280

H-ATLAS J142413.9+022303 - - - 112± 7 182± 8 193± 8 121 ± 8 90± 5 116± 8 -
H-ATLAS J142935.3-002836 190 ± 38 911 ± 29 1254± 34 802± 7 438± 7 200± 7 - - 38 ± 3 5.86 ± 0.99
HELMS J004714.2+032454 - 82± 11 164 ± 22 312± 6 244± 7 168± 8 - - 49 ± 5 -
HELMS J001626.0+042613 - 13± 10 53± 20 117± 7 151± 6 127± 7 - - 39 ± 4 -
HELMS J004723.6+015751 - 104 ± 15 285 ± 32 398± 6 320± 6 164± 8 - - 42 ± 5 -
HELMS J001615.7+032435 - 23± 11 92± 24 195± 6 221± 6 149± 7 - - 33 ± 4 -

Table 2. Observed (i.e., lensed) source flux densities in mJy. Subscripts indicate the passband central wavelength in µm. Fluxes f100 to
f500 inclusive are taken from the H-ATLAS first data release (Valiante et al. 2016) for the two H-ATLAS sources. For the four HELMS
sources, f100 and f160 are PACS flux densities extracted from maps acquired from the Herschel Science Archive and flux densities f250
to f500 are taken from Nayyeri et al. (2016). Flux densities f850, fSMA

880 , fALMA
880 and f1280 are taken from Bakx et al. (2017, in prep.),

Bussmann et al. (2013), this work and Messias et al. (2014) respectively. Finally, f60 is the 60µm flux taken from the IRAS faint source
catalogue (Moshir, Kopman & Conrow 1992).

this for each baseline, our computation was applied over all
baselines although our analysis excluded baselines flagged as
being bad (and therefore exceptionally noisy) by the ALMA
data reduction pipeline. The minimum χ2 solution is given
by

s = F
−1

v (2)

where the elements of the real quantities F and v are re-
spectively

Fij =
J∑

n=1

gRing
R

jn + gIing
I

jn

σ2
n

vi =
J∑

n=1

gRinV
R

n + gIinV
I

n

σ2
n

. (3)

Here, the superscripts R and I denote the real and imaginary
components respectively and the column vector s contains
the real source pixel surface brightnesses.

The source is linearly regularised, introducing the real
regularisation matrix H as described in Warren & Dye
(2003). The regularisation scheme we adopted follows that
of Nightingale & Dye (2015), computing the mean gradient
between a given Voronoi source pixel and its three nearest
neighbours. To find the most probable lens model parame-
ters, we used Markov Chain Monte Carlo (MCMC) optimi-
sation to maximise the Bayesian evidence derived by Suyu et
al. (2006). We performed multiple MCMC runs for a range
of power-law density profile slopes which were kept fixed
in each case to help simplify parameter space. The number
of source pixels was kept fixed during optimisation and the
regularisation weight was optimised following the procedure
outlined in Dye et al. (2008).

3.2 Lens model

We used an elliptical power-law density profile with an ex-
ternal shear component where necessary to model the lenses
in this work. We used the form introduced by Kassiola &
Kovner (1993) which has a surface mass density, κ,

κ = κ0 (r̃/1kpc)1−α . (4)

where κ0 is the normalisation surface mass density and α
is the power-law index of the volume mass density profile.
Here, the elliptical radius r̃ is defined by r̃2 = x′2 + y′2/ǫ2

where ǫ is the lens elongation (i.e., the ratio of semi-major to

semi-minor axis length). The orientation of the semi-major
axis measured in a counter-clockwise sense from north is
described by the parameter θ and the co-ordinates of the
centre of the lens in the image plane are (xc, yc). The exter-
nal shear field is characterised by the shear strength, γ, and
the shear direction angle measured counter-clockwise from
north, θγ . The shear direction angle is defined to be per-
pendicular to the direction of resulting image stretch. We
only incorporated external shear in the lens model when the
Bayesian evidence was improved by its inclusion. We found
that only two of the six lenses in this work needed external
shear. The total number of lens model parameters is thus
eight when shear is included and six when not.

4 RESULTS

Figure 1 shows the model reconstructions of each of the
six lenses using both the image plane and visibility plane
methods. It is apparent from the figure that whilst there are
differences in the reconstructed sources between both meth-
ods, these are quite subtle. The variation in source plane
pixelisation between image plane and uv-plane reconstruc-
tions likely accounts for a significant amount of this varia-
tion; the largest difference in morphology is seen in the case
of H-ATLAS J142935.3-002836 but, owing to the random
nature of the k-means clustering, this source also possesses
the largest differences in source pixelisation. An anticipated
tendency of the image plane method to reproduce possi-
ble artifacts arising from transformation from the visibility
plane or cleaning procedure has not manifested itself in the
reconstructions. Faint source features seen in each lens sys-
tem are commonly reconstructed with both methods, giving
an indication of their robustness. Additionally, the fact that
the optimal regularisation weight may differ between the im-
age and visibility plane due to correlated image plane pixels
appears to have had little consequence2, although this ef-
fect may be at least partly responsible for the differences
seen between some residual plots. (For example, H-ATLAS
J142935.3-002836 and HELMS J001626.0+042613 show sig-
nificant residuals at the location of image peaks in the image

2 We adopted a uniform noise map for the image plane modelling,
neglecting correlations between image pixels although we found
that varying the pixel scale produced no significant changes in
the reconstruction.
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ID κ0 (xc, yc) (arcsec) θ(deg) ǫ α γ θγ(deg) θE(arcsec)

Image plane

H-ATLAS J142413.9 0.59 ± 0.01 (0.18 ± 0.01, 0.68 ± 0.01) 84± 2 1.07± 0.02 2.03± 0.04 0.97± 0.04
H-ATLAS J142935.3 0.44 ± 0.01 (1.60 ± 0.01, 0.62 ± 0.01) 124± 1 1.33± 0.02 1.82± 0.05 0.71± 0.03
HELMS J004714.2 0.50 ± 0.01 (1.56 ± 0.02, 2.34 ± 0.03) 94± 2 1.25± 0.02 1.96± 0.04 0.59± 0.03
HELMS J001626.0 0.56 ± 0.01 (2.88 ± 0.02, 1.67 ± 0.02) 36± 1 1.37± 0.03 2.14± 0.06 0.98± 0.07
HELMS J004723.6 1.18 ± 0.02 (2.52 ± 0.02,−0.60± 0.02) 178± 2 1.18± 0.01 1.87± 0.04 0.09± 0.01 167± 2 2.16± 0.10
HELMS J001615.7 2.21 ± 0.04 (0.12 ± 0.05,−0.96± 0.07) 18± 2 1.41± 0.02 2.00± 0.07 0.13± 0.01 55± 2 2.79± 0.20

Visibility plane

H-ATLAS J142413.9 0.59 ± 0.01 (0.18 ± 0.01, 0.68 ± 0.01) 85± 2 1.07± 0.01 2.06± 0.04 0.97± 0.04
H-ATLAS J142935.3 0.43 ± 0.01 (1.60 ± 0.01, 0.61 ± 0.01) 125± 1 1.35± 0.02 1.79± 0.05 0.70± 0.03
HELMS J004714.2 0.50 ± 0.01 (1.55 ± 0.02, 2.34 ± 0.03) 93± 2 1.24± 0.02 1.91± 0.05 0.58± 0.03
HELMS J001626.0 0.58 ± 0.01 (2.89 ± 0.02, 1.66 ± 0.02) 36± 1 1.38± 0.03 2.18± 0.06 0.98± 0.07
HELMS J004723.6 1.18 ± 0.03 (2.51 ± 0.02,−0.60± 0.02) 178± 2 1.20± 0.02 1.89± 0.06 0.08± 0.01 161± 2 2.08± 0.12
HELMS J001615.7 2.00 ± 0.07 (0.11 ± 0.05,−0.94± 0.06) 18± 2 1.42± 0.02 1.90± 0.05 0.10± 0.01 53± 2 2.96± 0.16

Table 3. Lens model parameters. The top half of the table gives the parameters obtained from the image plane analysis and the bottom
half gives those from the visibility plane analysis. Only HELMS J004723.6+015751 and HELMS J001615.7+032435 showed significant
improvement in the fit when external shear was included in the lens model, hence the remaining four were modelled without it. Parameters
are: lens normalisation, κ0 in units of 1010M⊙ kpc−2; co-ordinates of the lens model centroid with respect to the phase-tracking centre
of observations (west and north correspond to positive xc and yc respectively); lens semi-major axis orientation, θ, measured counter-
clockwise from north; lens semi-major to semi-minor axis ratio, ǫ; logarithmic slope of the power-law density profile, α; external shear
strength, γ; shear direction angle, θγ , measured counter-clockwise from north; Einstein radius, θE .

plane reconstruction compared to the uv-plane reconstruc-
tion.) The strongest features identified in the residual plots,
such as those of H-ATLAS J142935.3-002836 and HELMS
J004714.2+032454, have a significance of ∼ 2.5σ.

Figure 1 also shows the dirty beam maps for each lens
system. The strongest sidelobes occur in the HELMS beams
approximately 1 arcsec east and west of the central beam
component. These sidelobes each contain 6 per cent of the
flux contained in the main beam component. To assess the
impact that such sidelobes might have on the reconstruc-
tions, we carried out a simple test whereby we reconstructed
the cleaned image of HELMS J001626.0+042613 with the
dirty beam and the model beam. The resulting reconstruc-
tions showed differences in the source and model images
which were only at the level of a few per cent, smaller
than the differences between uv-plane and image-plane re-
constructions. We therefore conclude that beam sidelobes in
the current data play a negligible role.

The lens model parameters recovered for each of the six
lenses using the image plane and visibility plane methods
are given in table 3. On the whole, there is good agreement
between the parameters obtained using the two methods,
although there are mildly significant differences in the case
of HELMS J001615.7+032435. However, this system has the
lowest signal to noise ratio and the lack of detection of a
counter image introduces additional uncertainty.

Figure 2 shows how source magnification varies as a
fraction of ranked source surface brightness. We took the
best fit lens model for each system (determined from the
image plane modelling although the results are very similar
from the uv-plane modelling – see table 4) and computed the
average source magnification factor of 100 different source
plane pixelisations. This was computed for different frac-
tions of the total source flux density by working down a
list of source pixels ranked by flux density (i.e. the product
of source pixel area and reconstructed surface brightness).

The plots show how sensitive the inferred magnification is
to different interferometric configurations which probe dif-
ferent scales and surface brightness limits. The two systems
HELMS J004723.6+015751 and HELMS J001615.7+032435
exhibit the largest variation in magnification since their
sources are located in the vicinity of a caustic cusp where
magnification gradients are significantly stronger.

4.1 Intrinsic source properties

We have computed intrinsic properties of the background
sources in each lens system. To do this, we de-magnified
the available submm photometry (see table 2) by the total
source magnification factors derived from the image plane
reconstructions, µimg

tot , as given in table 4. These are con-
sistent with the magnifications from the uv-plane recon-
structions in the sense that all differences in magnification
propagate to differences in intrinsic source properties that
are significantly smaller than the uncertainties arising from
the SED fitting. Using the source redshifts given in table
1, we then fitted the rest-frame photometry with both a
single temperature optically thick spectral energy distribu-
tion (SED) and a dual temperature optically thin SED. This
SED choice gives an estimate of the upper and lower values
in the range of possible dust masses, which we computed
using the method outlined in Dunne et al. (2011). Here, we
used the observed ALMA 880µm flux density and a dust
mass absorption coefficient computed by extrapolating the
850µm value of κ850 = 0.077 m2kg−1 (James et al. 2002)
to the rest-frame wavelength corresponding to the observer-
frame wavelength of 880µm (see Dunne et al. 2000, for more
details). Computing dust masses in this way minimises the
propagation of errors in dust temperature.

When fitting the optically thin SED, the temperature
and normalisation of both components were varied. For the
optically thick SED, temperature, normalisation and the
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Figure 1. Lens reconstructions. Each system is shown in pairs of rows, the cleaned ALMA image and the dirty beam being shown in
the top left-most and bottom left-most panels respectively. The middle-left, middle right and right-most columns show the image of
the reconstructed source (the model image – the white cross and white circle shows the source plane centre and lens model centroid
respectively), the cleaned image minus the model image and the reconstructed source respectively, the top row showing the image plane
reconstruction and the bottom row showing the visibility plane reconstruction. The reconstructed source plots show the caustic (white
lines). The colour scale gives the surface brightness at 880µm in Jy arcsec−2 for source and image plots. All residuals are < 3σ.
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Figure 1 – continued Lens reconstructions.
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Figure 2. Magnification profile plots of image plane reconstructions. Each panel shows how magnification (solid line) and image flux
density fraction (dashed line) varies as a function of the fraction of total source flux density above a surface brightness threshold (see
main text for details). Magnification profiles have been averaged over 100 realisations of the source plane pixelisation for the best-fit lens
model. The plot gives an indication of the extent to which the computed magnification varies with source surface brightness as would
be reached by different interferometer configurations. The largest variation in magnification is seen for HELMS J004723.6+015751 and
HELMS J001615.7+032435 since both have sources located in the vicinity of a lensing caustic cusp.

opacity at 100µm, τ100, were varied in the fit. In all cases,
the emissivity index was fixed to 2.0 (see, for example Smith
et al. 2013). The best fit SED parameters and the corre-
sponding de-magnified luminosity of the source computed by
integrating the best fit optically thin SED from 3-1100µm
are given in table 4. Finally, we computed the star forma-
tion rate of the source with the conversion from luminosity
given by Kennicutt & Evans (2012) which uses a Kroupa
(Kroupa 2001) initial mass function (IMF).

4.1.1 Object notes

H-ATLAS J142413.9+022303 - Keck K-band imaging
of this system (see Calanog et al. 2014) reveals two com-
pact galaxies interior to the Einstein ring, each consistent
with an early-type morphology. Follow-up spectroscopy by
Bussmann et al. (2012, B12 hereafter) gives a redshift of
z = 0.595 but due to lack of spatial resolution, it is unclear
if this corresponds to solely the brighter primary galaxy or
whether both galaxies have the same redshift. In this work,
we have used a single power-law profile, finding that this
gives a perfectly acceptable fit to the data. The lens profile
centre, which is a free parameter of the fit, aligns within
0.05 arcsec of the centre of the brighter of the two galaxies.
Adding a second mass to the lens model does not provide
a significant improvement to the fit and makes a negligible
difference to the inferred intrinsic source properties reported
herein.

B12 found that a source model comprising two sersic pro-
files gives a significantly better fit than a single sersic pro-
file source model. At a qualitative level, this is consistent
with the irregular morphology of the reconstructed source

we have obtained in the current work. B12 also estimated
the de-magnified luminosity of the CO(1-0) line emitted by
the source and found this to be a factor of 2.4 greater than
that inferred from the line dispersion (which correlates with
line luminosity; see, for example Harris et al. 2012). This
discrepancy is significantly lessened to 1.4 using our magni-
fication factor which is 80 per cent higher than that deter-
mined by B12.

The lensed source in this system has a very high star
formation rate (SFR) of 2200M⊙/yr (see below for more
discussion). This compares to the value of ≃ 5000M⊙/yr
reported by Bussmann et al. (2013), although this becomes
≃ 2800M⊙/yr using our magnification factor instead.

H-ATLAS J142935.3-002836 - This lens system has
been previously investigated in detail by Messias et al.
(2014, M14 hereafter) who analysed a broad range of multi-
wavelength imaging, including ALMA Band 3 and Band 6
data (with central wavelengths of 3.1 mm and 1.3 mm respec-
tively and maximum resolutions of 1.4 arcsec and 0.6 arcsec
respectively). Optical imaging acquired with the Keck tele-
scope (see Calanog et al. 2014) indicates that the lens is
an edge-on spiral and optical spectroscopy by M14 from the
Gemini-South telescope gives a lens redshift of 0.218.

The power-law lens model determined by M14 using im-
age plane modelling of their submm/mm data has parame-
ters κ0 = (0.40±0.01)×1010M⊙ kpc−2, α = 2.08±0.08, ǫ =
1.46±0.04, θ = 136±1 deg and θE = 0.62±0.08 arcsec com-
pared to the parameters κ0 = (0.43±0.01)×1010M⊙ kpc−2,
α = 1.79 ± 0.05, ǫ = 1.35 ± 0.02, θ = 125 ± 1 deg and
θE = 0.70 ± 0.03 arcsec obtained directly from our much
higher resolution ALMA visibility data. Whilst the models
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ID µimg
tot µuv

tot M thick
d

M thin
d

T thick/K T thin/K τ100 LFIR Mgas SFR (M⊙/yr)

H-ATLAS J142413.9 6.6± 0.5 6.4± 0.5 8.7 9.7 59 41 / 21 5.8 13.2± 0.1 11.8± 0.1 2200 ± 500
H-ATLAS J142935.3 23.6± 1.3 22.3± 1.3 7.9 8.2 70 45 / 26 4.4 12.3± 0.1 10.7± 0.1 330± 80
HELMS J004714.2 8.3± 0.6 8.7± 0.6 8.7 9.2 43 51 / 22 9.2 12.2± 0.1 11.3± 0.1 220± 60
HELMS J001626.0 4.1± 0.3 4.3± 0.3 8.8 9.3 48 57 / 27 4.4 12.8± 0.1 11.5± 0.1 980 ± 240
HELMS J004723.6 16.5± 1.0 15.2± 1.0 8.2 8.7 52 48 / 26 5.2 12.2± 0.1 10.9± 0.1 230± 60
HELMS J001615.7 15.9± 1.0 17.1± 1.0 7.9 8.5 58 72 / 34 2.4 12.5± 0.1 10.7± 0.1 480 ± 100

Table 4. Intrinsic source properties. Columns are the total source magnification computed using the image plane method and uv-plane
method, µimg

tot and µuv
tot respectively, dust mass assuming a single temperature optically thick SED, M thick

d
, dust mass assuming a dual

temperature optically thin SED, M thin
d

, temperature of the optically thick SED, T thick, temperatures of the optically thin SED, T thin/K,
the opacity at 100 µm for the optically thick SED, τ100, de-magnified luminosity (computed as the integral of the best fit SED from 3 to
1100 µm using the optically thin SED), LFIR, H2 gas mass calculated using the scaling relation of Hughes et al. (2017), Mgas, and star
formation rate (SFR) scaled from LFIR using the prescription given by Kennicutt & Evans (2012) with a Kroupa IMF. Dust masses are
expressed as log10(Md/M⊙), gas masses as log10(Mgas/M⊙) and the luminosity values are log(LFIR/L⊙).
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Figure 3. SEDs of the lensed sources. Each plot shows the two-temperature optically thin fit (continuous black line) and the single-
temperature optically thick fit (dashed grey line). The measured photometry shown by the data points in the plots are de-magnified
using the total magnifications, µimg

tot , given in table 4.

are similar, there are some significant discrepancies in cer-
tain parameters. One likely cause of this might stem from
degeneracies between the triplet κ0, α and ǫ which can give
rise to substantial differences if any systematics are present
(for example, arising from the fixed source plane grid used in
the modelling method of M14; see Nightingale & Dye 2015,
for more details).

Our reconstructed ALMA Band 7 source has the same
linear structure as that found by M14 in the submm/mm
wavebands, aligned with approximately the same orienta-
tion along the lens fold caustic. Regarding the source mag-
nification factor, our value of 24 is consistent with the val-
ues quoted in M143. In our reconstruction, there is a hint of

3 In M14, magnifications were computed over different fractions
of the source plane area containing 10, 50 and 100 per cent of the
total source plane flux. M14 computed a 50 per cent magnification

morphological disturbance at the southern end of the source.
This is exactly where M14 find that a second optically de-
tected source intersects in what they interpret as a possible
merger.

This source has an extremely high SFR to dust mass ratio,
the highest in our sample. The source lies > 3σ away from
the mean in the distribution of SFR to dust mass ratios
of high redshift submm galaxies (SMGs) and lower redshift
ULIRGs determined by Rowlands et al. (2014) as Figure 4
shows.

HELMS J004714.2+032454 - This is a double image
system which is very well fit with a single power-law density

of 14 and a 10 per cent magnification of 26. To be consistent with
the definition used by M14 would require a source plane fraction
somewhere between these two values.
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profile and no external shear. The source exhibits a long faint
structure extending to the south-east and this is readily seen
in the lensed image.

The SPIRE and ALMA photometry alone continues to
rise towards shorter wavelengths, the peak of the SED being
constrained purely by the PACS photometry. The relatively
high 100µm PACS flux is suggestive of a warmer dust com-
ponent and this is reflected in a significantly better fit by
the dual temperature SED compared to the single tempera-
ture template, although both SEDs give a comparable dust
mass.

De-magnifying the far-IR luminosity given in N16 us-
ing our magnification factor of 8.3 gives log(LFIR/L⊙) =
12.1 ± 0.1, slightly less than our determination but consis-
tent within the uncertainties. The luminosity implies a star
formation rate of ≃ 220 ± 60M⊙/yr. Given its dust mass
range of 108.7 − 109.2 M⊙, this places the source somewhere
between having the characteristics of a high redshift SMG
or lower redshift ULIRG and the bulk population of z < 0.5
galaxies detected in H-ATLAS, according to Rowlands et al.
(2014).

HELMS J001626.0+042613 - This double image system
is well described by an isolated power-law density profile and
a relatively compact source. Both reconstruction methods
suggest faint extended source structure but this only con-
tributes a few per cent of the main source flux. The system
has the lowest magnification factor in our sample of only
4.1 ± 0.3.

The peak of the source SED in this system is well bounded
by the ALMA and SPIRE photometry giving robust tem-
perature estimates. In the dual temperature SED, the warm
component makes a larger contribution to the total dust
mass than the other five sources but this is not well con-
strained owing to uncertainties in the shorter wavelength
PACS photometry. The de-magnified source luminosity is
log(LFIR/L⊙) = 12.7 ± 0.1 which agrees with the value
quoted by N16. The z = 2.51 source has a high SFR of
980M⊙/yr and its SFR to dust mass ratio is consistent with
a typical SMG/ULIRG as indicated in Figure 4.

HELMS J004723.6+015751 - This system is one of two
in our sample which require external shear in the lens model,
consistent with the location of a smaller external galaxy
10 arcsec to the south. The source shows a compact, rela-
tively featureless morphology with the hint of an extended
structure to the north west.

The SPIRE and ALMA photometry of the source on their
own indicate that the peak of the SED lies in the vicinity
of the shortest wavelength data point at 250µm. This is
borne out by the inclusion of PACS photometry. As a re-
sult, the fitted dual temperature SED implies a dominant
mass of cold dust at 26 K. The intrinsic source luminosity
of log(LFIR/L⊙) = 12.2 is in agreement with that measured
by N16. The SFR of 230±60M⊙/yr for this z = 1.44 source
compared with its relatively low dust mass places it in the
upper envelope of SFR to dust mass ratios spanned by SMGs
and ULIRGs according to Rowlands et al. (2014).

HELMS J001615.7+032435 - The relatively low im-
age signal-to-noise ratio in this cusp-caustic configuration
lens results in an undetected counter-image which increases

the modelling uncertainty for this system. Nevertheless, the
most probable lens model is one with a significant external
shear. This is consistent with several smaller nearby galax-
ies, mainly to the north-east, with colours similar to the lens
which is, in turn, consistent with the larger Einstein radius
of a group-scale lens.

In light of this, we attempted a lens model that includes
external convergence provided by a singular isothermal ellip-
soid (SIE) mass model. The best fit model we found places
the SIE to the north-east with the result that the required
external shear is reduced by approximately 30 per cent and
the normalisation of the primary lens, κ0, is lowered by ap-
proximately 20 per cent. The magnification is also reduced
by approximately 30 per cent. However, the model is less
favoured by the Bayesian evidence and there is a tendency
for it to produce a brighter counter image which would have
been detected in the ALMA data. The location and normal-
isation of the external SIE is, as expected, degenerate with
the normalisation and shear of the primary lens. Further
observations of the lensing galaxies are required to better
characterise the lens model.

The ALMA and SPIRE photometry of the source in
this lens system prefers an optically thick single tempera-
ture SED. However, with the inclusion of PACS fluxes, a
marginally improved fit is obtained with a second weak but
quite hot dust component, although the improvement in the
fit is not significant given the additional SED parameters.
The source has a luminosity of log(LFIR/L⊙) = 12.5 which
agrees with that of N16 who used an optically thin single
component SED. The SFR to dust mass ratio of this source
is extremely high, placing it nearly 3σ above the mean in the
distribution of ratios measured in the SMG/ULIRG popu-
lation.

5 SUMMARY AND DISCUSSION

We have modelled ALMA imaging data of six strong galaxy-
galaxy gravitational lens systems originally detected by the
Herschel Space Observatory. For each lens system, we have
carried out modelling of both the cleaned image data and the
visibility data directly. We find only minor differences in the
reconstructed source morphologies between the two meth-
ods. The expectation is that such differences will become
more prominent as coverage of the uv-plane becomes more
sparse, not least because this will generally lead to larger-
scale image pixel covariances from beam sidelobes which are
not included in the cleaned data. In Dye et al. (2015), mod-
elling of the cleaned image was advocated on the basis that
the uv-plane was very well sampled in that particular case
and because image plane modelling is substantially more
computationally efficient than uv-plane modelling generally.
In the present work, the uv-plane is less well sampled in com-
parison and hence the decrease in efficiency by modelling the
visibility data is less severe. Nevertheless, image plane mod-
elling is still at least an order of magnitude quicker than
uv-plane modelling and gives very similar results.

In our fitting of a smooth power-law mass density pro-
file, we have found that the lenses are all close to isothermal
and that the recovered model parameters are in broad agree-
ment between both methods. However, one system with par-
ticularly poor signal to noise shows mildly significant dis-
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Figure 4. Star formation rate (determined using the method of
Kennicutt & Evans 2012) plotted against dust mass for the six
lensed sources. For each source, the range in dust mass spanned
by M thick

d
and M thin

d
is plotted, with uncertainties in SFR indi-

cated at the midpoint. Also plotted are the empirical relationships
between SFR and Md determined by Rowlands et al. (2014) for
high redshift SMGs and low redshift ULIRGs (solid line with 1σ
spread indicated by the solid grey shaded region) and the pop-
ulation of z < 0.5 galaxies detected in H-ATLAS (dashed line
with 1σ spread indicated by the perforated grey shaded region).
The thick grey cross locates SDP.81 as determined by Dye et
al. (2015). One interpretation of this plot is that the majority
of lensed sources in this paper have higher dense molecular gas

fractions than the average ULIRG/SMG (see Section 5 for more
discussion).

crepancies in the slope and normalisation of the power-law
profile, although these two parameters are typically quite
degenerate. A more exhaustive investigation into the origin,
prevalence and strength of such discrepancies along with dif-
ferences in the reconstructed source is left for future study.

We have used the lens magnification factors obtained
from the modelling to demagnify the submm source pho-
tometry. Fitting rest-frame SEDs to this photometry, we
have determined the dust temperature, dust mass, luminos-
ity and inferred star formation rate of the lensed sources.
Using both an optically thick single-temperature SED and
an optically thin SED with two temperature components has
allowed an estimate of the range of dust mass possible for
each source. Taking the mid-point of this range in each case,
we find that five of the six sources have a ratio of star forma-
tion rate to dust mass which is in excess of the mean ratio
of the SMG/ULIRG population as determined by Rowlands
et al. (2014).

The extent of this excess is shown in Figure 4 which
plots the SFR obtained by scaling the far-IR luminosity us-
ing the relation given by Kennicutt & Evans (2012) against
dust mass. The figure shows that two of the sources in our
sample are at least as extreme as the H-ATLAS lensed source
SDP.81 investigated by Dye et al. (2015). These lie in the
upper envelope of the distribution of SFR-to-dust mass mea-
sured by Rowlands et al. (2014). Since our computed SFR
is simply a scaled version of far-IR luminosity, the underly-
ing fact is that these sources have a high luminosity for the
quantity of gas available for star formation. This is often

an indication that a component of the source’s luminosity
comes from an active galactic nucleus but we are unable
to comment further on this possibility without additional
observations.

If we convert the rest-frame 850µm flux density of our
sources to H2 gas mass (see table 4) using the empirical scal-
ing relation given by Hughes et al. (2017), we find that the
five sources located above the Rowlands et al. SFR-to-dust
mass relationship also lie on or above the mean relationship
between SFR and H2 gas mass determined by Scoville et al.
(2016). If dust is indeed an accurate tracer of molecular gas
as these scaling relationships suggest, then the implication is
that these sources possess a higher star formation efficiency
(SFE). Treating the range in dust mass for each source as a
1-sigma error and fitting a line parallel to the SMG/ULIRG
relationship in Figure 4 to the mid-point of the dust mass
range for all six sources, the increase in SFE is a factor of
5 relative to that implied by the SMG/ULIRG relationship
of Rowlands et al. and a factor of 40 relative to z < 0.5
H-ATLAS galaxies.

An alternative explanation to the SFR-to-dust mass off-
set being the result of an enhanced SFE could be that the
gas-to-dust ratio in these sources is higher. Similarly, the
results would be explained if the dust mass opacity coeffi-
cient were lower by the factors mentioned above. Both of
these possibilities seem to disagree with measurements of
gas mass from CO detections at low and high redshift (see,
for example, Dunne & Eales 2001; Magdis et al. 2012; Row-
lands et al. 2014; Scoville et al. 2014, 2016; Grossi et al.
2016; Hughes et al. 2017). These studies indicate a tight
correlation between CO line intensity and 850µm luminos-
ity, thereby implying a constant H2 gas-to-dust mass ratio.
However, a caveat is that this assumes a fixed value of the ra-
tio of H2 surface gas mass density to CO line intensity, αCO.
Sandstrom et al. (2013) find a weak dependence of αCO on
metallicity in local galaxies, such that lower metallicity tends
to correspond to higher values of αCO. If this holds in high
redshift SMGs, whilst a lower metallicity would not affect
the CO-to-dust ratio, the ratio of H2 gas-to-dust would be
increased, leading to an enhanced SFR-to-dust mass ratio.

An additional point to note is that interpreting a higher
SFR to gas mass ratio as a higher SFE when the total molec-
ular gas mass is used assumes that star formation occurs
throughout the full extent of molecular gas. Determinations
of dense molecular gas mass traced by HCN emission show
a correlation between far-IR luminosity and HCN line in-
tensity that is much tighter than the correlation between
HCN and CO line intensity (see for example, Gao & Solomon
2004; Privon et al. 2015). SFR therefore appears to depend
on dense molecular gas mass rather than total molecular gas
mass traced by CO. In light of this, and assuming universal
star formation physics, a more probable interpretation of the
high SFR to gas mass ratios we find is that the sources in our
sample have a significantly higher dense molecular gas mass
fraction. This conclusion was also reached by Oteo et al.
(2017) who carried out a similar analysis of two H-ATLAS
lensed sources.

Papadopoulos & Geach (2012) provide evidence to sug-
gest that high density molecular gas is more prevalent in
galaxy mergers than quiescently forming systems and that
its fraction can be used to determine the mode of star for-
mation. Inspection of the reconstructed morphologies (Fig-
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ure 1) of the two sources in our sample with extreme SFR
to gas mass ratios (i.e., HELMS J001615.7+032435 and H-
ATLAS J142935.3-002836) does indeed reveal signs of dis-
turbed morphology, but no more so than others in the sam-
ple. Nevertheless, increasing the number of gravitational lens
reconstructions of such systems with high magnification fac-
tors offers the ability to further investigate such hypotheses.
This becomes especially true with the inclusion of source
kinematics measured via molecular lines.

ACKNOWLEDGEMENTS

SD acknowledges support from the UK STFC Ernest
Rutherford Fellowship scheme. LD acknowledges funding
from the European Research Council Advanced Investiga-
tor grant COSMICISM and the ERC Consolidator grant
CosmicDust. MN acknowledges financial support from the
European Union’s Horizon 2020 research and innovation
programme under the Marie Sk lodowska-Curie grant agree-
ment No 707601. MJM acknowledges the support of the Na-
tional Science Centre, Poland through the POLONEZ grant
2015/19/P/ST9/04010. LM acknowledges support from the
South African National Research Foundation through the
South African Research Chairs Initiative. This project
has received funding from the European Union’s Horizon
2020 research and innovation programme under the Marie
Sk lodowska-Curie grant agreement No. 665778. Some of the
spectroscopic redshifts reported in this paper were obtained
with the Southern African Large Telescope (SALT) un-
der proposal 2015-2-MLT-006. This paper makes use of the
following ALMA data: ADS/JAO.ALMA#2013.1.00358.S.
ALMA is a partnership of ESO (representing its mem-
ber states), NSF (USA) and NINS (Japan), together with
NRC (Canada) and NSC and ASIAA (Taiwan) and KASI
(Republic of Korea), in cooperation with the Republic of
Chile. The Joint ALMA Observatory is operated by ESO,
AUI/NRAO and NAOJ. This research has made use of the
NASA/IPAC Infrared Science Archive, which is operated by
the Jet Propulsion Laboratory, California Institute of Tech-
nology, under contract with the National Aeronautics and
Space Administration.

REFERENCES

Alaghband-Zadeh, S., et al., 2012, MNRAS, 424, 2232
Alexander, D. M., Bauer, F. E., Chapman, S. C., Smail,
I., Blain, A. W., Brandt, W. N., Ivison, R. J., 2005, ApJ,
632, 736

Asboth, V., et al., 2016, MNRAS, 462, 1989
Amvrosiadis, A., et al., 2017, MNRAS, submitted
Barnabé, M., et al. 2012, MNRAS, 423, 1073
Blain, A. W., 1996, MNRAS, 283, 1340
Bolton, A. S., Burles, S., Koopmans, L. V. E., Treu, T.,
Gavazzi, R., Moustakas, L. A., Wayth, R., Schlegel, D. J.,
2008, ApJ, 682, 964

Bolton, A. S., et al., 2012, ApJ, 757, 82
Bussmann, R. S., et al., 2012, ApJ, 756, 134, B12
Bussmann, R. S., et al., 2013, ApJ, 779, 25
Bussmann, R. S., et al., 2015, ApJ, 812, 43
Calanog, J. A., et al., 2014, ApJ, 797 ,138
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