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Abstract 

Thermal unfolding of proteins is used extensively in screening of drug candidates because molecular 

interactions with ligands and substrates affect strongly protein stability, transition temperature, and 

cooperativity. We use synchrotron radiation circular dichroism to monitor the thermal evolution of 

secondary structure in proteins as they approach the melting point and the impact of substrate on their 

thermal behavior. Using Landau free energy expansion, we quantify transition strength and proximity to a 

critical point through the relative separation τ+ between the transition temperature Tm and the spinodal T+, 

obtained from the equation of state. The weakest transition was observed in lysozyme with τ+ = –0.0167 

followed by holo albumin with τ+ = –0.0208 with the strongest transition in monomeric apo albumin τ+ = –

0.0242. A structural transition at 45 °C in apo albumin leads to a noncooperative melt with τ+ = –0.00532 

and amyloidogenic increase in beta content. 

 
 

 

 

  



Introduction 

Mapping the interactions between proteins and ligands, substrates or other functional partners is of great 

value to understanding protein function, as well as in development of pharmaceutical compounds. 

Biochemical and molecular methods based on molecular recognition, such as affinity chromatography and 

two hybrid tools often involve tagging of proteins and/or partners.1 NMR methods often require stable 

isotope incorporation.2 Thermal analysis by calorimetry,3 circular dichroism4 or other biophysical methods,5 

widely used in screens of compound libraries, does not involve labelling and relies on the observation that 

the thermal stability of proteins is usually enhanced in the presence of interaction partners. In such 

approaches molecular interactions can be observed through changes in the protein unfolding 

temperatures, which are often altered in the presence of co-factors or other ligands. Molecular interaction 

screens have been developed and are used widely to pair up proteins with small molecule partners in drug 

development and many other applications.6    

Thermal unfolding is the collapse of protein structure through its inability to accommodate thermal 

fluctuations, which increase in magnitude with temperature and diverge at the transition. The ability of 

proteins to retain their structure is enhanced by molecular contacts that form during protein-ligand, 

protein-substrate or protein-protein interactions and confer additional stability to protein structure. We 

propose that the structure of apo-proteins responds to temperature gradually and unfolds with a weak, less 

cooperative transition closer to a critical point. (Figure 1 left) Substrate or ligand binding leads to a more 

stable complex, more resilient to heating, which melts with a stronger and more cooperative transition, 

away from a critical point. (Figure 1 right)  

 



Figure 1: Equation of state (red) showing helical order parameter, s, dependence on reduced temperature  

= 1–T/Tm. The points (T±,s±) are spinodals, which can be reached in thermal evolution of metastable systems 

before collapse of the fold. In proteins undergoing reversible unfolding the two spinodals give rise to 

hysteresis by approaching T+ on heating and T- on cooling. The coexistence curve (blue) crosses s = 0 at the 

reduced critical temperature c = 1–Tc/Tm . Order parameters at the transition are sf and su at the 

folded/unfolded states of the protein, respectively. Apo-proteins (left) unfold with lower τ and ΔG than holo-

proteins (right). 

 

Thermal denaturation of proteins is commonly quantified by fitting CD at a single wavelength to the Gibbs-

Helmholtz equation:3-4 

∆𝑮 = ∆𝑯 (𝟏 −
𝑻

𝑻𝒎
) − ∆𝑪𝒑 [(𝑻𝒎 − 𝑻) + 𝑻𝒍𝒏 (

𝑻

𝑻𝒎
)]      (1) 

and obtaining Tm as the denaturation temperature at midpoint of change between folded and unfolded 

state. Cp is the isobaric heat capacity of the system and its change, Cp, and that in enthalpy, H, across the 

transition are usually reported in calorimetric studies. We introduce a dimensionless reduced temperature 

𝝉 = 𝟏 −
𝑻

𝑻𝒎
 describing the normalised distance from the transition and expression (1) reads: 

∆𝑮 = ∆𝑯(𝝉) − ∆𝑪𝒑[𝑻𝒎𝝉 + 𝑻𝒍𝒏(𝟏 − 𝝉)]       (1’) 

We describe changes in protein structure by introducing a thermodynamic order parameter, which relates 

to the fractional content of a specific secondary structure component. Such order parameter is related to 

the molar contribution of hydrogen bonding, gn, to protein secondary structure: 

𝒔 =
𝟏

𝑮𝟎
∑ 𝒈𝒏

𝑵
𝟏            (2) 

The α-helical fraction is roughly monotonic with temperature below the thermal melt temperature and is 

normalised to the range [1,0] between folded and unfolded states.  

We use a simple model, based on a Landau free energy series expansion at Tm in terms of this structural 

parameter.7 Following Morrow and co-workers8 and Jahnig9 we write the Gibbs free energy as a truncated 

Landau series expansion in terms of s near the melting temperature Tm: 

𝑮 = 𝑮𝟎 [
𝒔𝟒

𝟒
+ 𝜶(𝑻 − 𝑻𝒄)

𝒔𝟐

𝟐
+ 𝜷(𝑻 − 𝑻𝒎)𝒔]       (3) 



where ,  < 0, Tc is the critical temperature and Tm is the transition temperature as described in eq. 1. We 

have also considered that in our case s>0 in all physical states. The equation of state is obtained by 

minimising G with respect to s: 

𝝏𝑮

𝝏𝒔
= 𝒔𝟑 + 𝜶(𝑻 − 𝑻𝒄)𝒔 + 𝜷(𝑻 − 𝑻𝒎) = 𝟎       (4) 

In first order phase transitions two spinodal points mark the vanishing second derivatives of G and we 

obtain from the positive spinodal: (Figure 1) 

𝜶 =
𝟑𝒔+

𝟐

𝑻𝒄−𝑻+
 and           𝜷 =

𝟐𝒔+
𝟑

𝑻+−𝑻𝒎
        (5) 

For Tm < Tc the transition is of first order and for Tm > Tc the melt occurs continuously and the transition is of 

second order. Considering first order transitions, we rewrite the equation of state as: 

𝑻 = 𝑻+ +
𝑻𝒎−𝑻+

𝟐
[𝟑 (

𝒔−𝒔+

𝒔+
)

𝟐
+ (

𝒔−𝒔+

𝒔+
)

𝟑
]        (6) 

which describes a linear correlation between the temperature of the system T and a function 

𝒇(𝒔) = 𝟑 (
𝒔−𝒔+

𝒔+
)

𝟐
+ (

𝒔−𝒔+

𝒔+
)

𝟑
          (7) 

of the structural parameter s with slope proportional to the distance between the melting point Tm and the 

spinodal temperature T+ and intercept equal to the spinodal temperature.8a The relative separation 𝝉+ =

𝟏 −
𝑻+

𝑻𝒎
 between Tm and the spinodals Ts (also related to the critical temperature Tc, at which G vanishes) 

is a normalised temperature metric, quantifying the strength of the transition and its proximity to a critical 

point. Such parameter allows comparison of protein unfolding to any other first order transition, such as in 

lipid membranes,8a liquid-solid, Curie transitions,7 etc. 

 

Experimental 

Human serum albumin (HSA), essentially globulin free (lipidated) and essentially fatty acid free and globulin 

free (delipidated), and hens’ egg lysozyme were purchased from Sigma-Aldrich.  Each protein was dissolved 

in phosphate buffer 10mM pH 7.5 to a final concentration of 0.5 – 0.6 mg/ml. 

 

Synchrotron radiation circular dichroism: 



SRCD far UV experiments were performed using a nitrogen-flushed Module B end-station 

spectrophotometer at B23 Synchrotron Radiation CD Beamline at the Diamond Light Source 10 with 

bandwidth 1.1 nm, integration time of 1 s, 1 nm digital resolution, 39 min/min scan speed with 0.02 cm 

pathlength Suprasil cell (Hellma Ltd). For thermal stability, spectra were measured every 2° or 5°C over a 

temperature range between 20°C and 90°C for HSA and Lysozyme.  Reversibility was monitored by 

measuring the spectrum at 20°C after cooling from 90°C with 30 minutes incubation time. The results 

obtained were processed using CDApps 11 with Tm calculated using Boltzmann equation using OriginPro™. 

Secondary structure estimation from CD spectra was carried out using CDApps using Continll algorithm 12. 

 

Linear fitting of secondary structure content and calculations in obtaining the equation of state were 

carried out in Excel (Microsoft). Molecular structure visualization was done using UCSF Chimera 13.  

 

Results and Discussion 

To illustrate our approach we use synchrotron radiation circular dichroism (SRCD) and monitor the effects 

of thermal fluctuations on the unfolding of a well-characterised soluble protein, hen egg lysozyme. We then 

apply the analysis to compare the thermal stability of human serum albumin (HSA) in delipidated form and 

as the fatty acid-stabilised protein.  

 

Boltzmann analysis 

The study of protein conformational changes by circular dichroism (CD) spectroscopy as a function of heat 

was conducted by measuring the far-UV CD spectra in the 185-250nm region at various temperatures from 

20 to 90°C at 2 or 5°C interval.  The far-UV CD spectra permitted protein secondary structure estimation 

(SSE) in terms of α-helix, β-turn, β-strand and irregular (or unordered) content that can be carried out using 

several known algorithms such as Continll 14, Selcon 15, CDDSTR 16 and BestSel 17 to cite the most commonly 

used.  The plot of CD intensity at fixed wavelength versus temperature was used to calculate the melting 

temperature Tm by fitting the sigmoidal curve with the Boltzmann equation 4, 18.  Unfolding temperatures Tm 

obtained from CD intensity at 210 nm were 71.0±1.4°C for holo-HSA, 60.7±0.7°C for apo-HSA and 



69.1±0.6°C for lysozyme respectively. Considering this elevation in Tm, fatty acid-saturated holo-HSA 

appeared more resistant to thermal denaturation than apo-HSA but a direct comparison to lysozyme 

cannot be made using Tm alone (figures 2A, 2B and 2C). By contrast, the ratio of ΔH/ΔS obtained from the 

slope of the plot in Δε(210) around the transition in holo-HSA, 17.8±1.2, indicates lower cooperativity 

compared to apo-HSA, 13.2±0.7. Thermal unfolding in lysozyme was even more cooperative than that in 

either form of HSA with Δε(210) slope around the transition of 6.1±0.5, likely the result of stabilizing role of 

disulphide bridges. 

Similarly, Boltzmann analysis was carried out on the -helical and -strand components estimated using 

Continll for SSE of the thermal denaturation process of the three proteins (holo-HAS, apo-HSA and 

Lysozyme).  The results show that in holo-HSA, the -helical Tm (68.9±1.2°C) was lower than that of the -

strand components (73.1±1.4°C) (figure. 2A), whereas for apo-HSA, both α-helix and β-strand components 

showed a similar Tm of 58.9±0.8°C. However, the thermal denaturation profile of the two components in 

the apo-HSA suggested a more cooperative thermal denaturation process as both slope transitions were 

small and steep (Fig. 2B). For Lysozyme, on the other hand, a cooperative thermal denaturation process 

was observed in both -helix and -strand components with the β-strand component exhibiting a lower 

thermal transition temperature than that of the α-helix conformation (Fig. 2C). 
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Figure 2: Far UV CD spectra (left); -helix and -strand components (right) of (A) Lysozyme, (B) apoHSA and 

(C) holoHSA  as a function of thermal denaturation 

 

Landau free energy analysis 

The interpretation of protein unfolding in terms of thermal fluctuations is illustrated first for lysozyme. 

(Figure 3C) The protein is stable at temperatures as high as 50°C, above which we observe an accelerated 

with temperature decline in helical content. The melt, as reported from Boltzmann analysis of helical 

content occurs at Tm=69.3±1.2°C and fitting the temperature to f(s) using Equation 6, reveals first order 

melt with positive spinodal at T+=75.0±2.9°C,s+=0.094 (τ+=-0.0167±0.00021). Beta component in lysozyme 

remains largely independent of temperature up to 50°C, above which it increases gradually alongside the 

decline in helix and remains invariant above Tm=66.74±1.7°C. Using Equation 6, we obtain the positive 



spinodal temperature at T+=71.6±2.0°C and τ+=-0.0143±0.00019. The similar values of τ+ in the melting of 

helix and sheet suggest a common mechanism and the possibility of amyloidogenic conversion of helix to 

sheet on approach to the melt. 

A 

 

B 

 

C 

 



Figure 3: Helical content in A) lysozyme; inset – lysozyme (PDB ID:5K7O)19; B) apo-HSA, C) holo-HSA as 

a function of temperature with equations of state (left); insets – HSA (PDB ID:5ID7)20; and, right: linear 

fits of T vs. 𝑓(𝑠) = 3 (
𝑠−𝑠+

𝑠+
)

2
+ (

𝑠−𝑠+

𝑠+
)

3
 for each state, used in obtaining the equations of state. Helical 

content is shown in red squares, while sheet is shown in blue circles with corresponding colours for the 

equations of state; in B) the low temperature (monomer) equation of state for the helical melt is shown 

in blue while the high temperature aggregated state is in red. The low fraction and insensitivity of beta 

component to temperature in the monomeric state and, in part in the aggregated state of apo HSA do 

not permit reliable fitting of its thermal behaviour.  

 

We investigate the impact of substrate association on thermal stability of HSA in its delipidated apo form 

and in fatty acid-saturated holo state. SRCD-monitored temperature response of apo-HSA reveals an abrupt 

shift in trend between 40 and 45°C, (Figure 3, top) which has been reported as onset of aggregation above 

this temperature. 21 To quantify this change we analyse the data below 40°C and above 45°C separately as T 

vs. f(s), according to equation 6 (Figure 3, bottom) and using the value of Tm=60C obtained from fitting 

Δε(210). The two linear fits reveal distinct temperature response below and above 40°C with spinodals for 

the low temperature state below 40°C at T+=67.0±2.7°C, s+=0.213 and τ+=-0.0242±0.00032 and in high 

temperature, above 45°C, as T+=60.7±0.6°C,s+=0.170 with τ+=-0.00532±0.00007. Using these parameters we 

calculate the equations of state for HSA melting below 40°C and above 45°C and these are plotted 

alongside the experimental melts in Figure 3B (right) in blue and red, respectively. The decrease in spinodal 

temperature from 67°C to 61°C, reduction in Δs from 0.213 to 0.170 and 4.6-fold decrease in τ+ across the 

aggregation point between 40 and 45°C reveal weakening in the first order character of the transition in the 

aggregated state. This reveals a switch from tight and cooperative temperature response by the HSA 

monomer to a less cooperative melt dominated by weakened internal protein cohesion and intermolecular 

interactions during aggregation. Indeed, small angle neutron scattering measurements have reported an 

aggregation process in apo-HSA, which takes place at approximately 45C,21 while the Boltzmann analysis of 

the SRCD thermal melts following Δε(210) shows a single melting transition at 60°C. 

 



 

In lipidated HSA protein structure is stabilised by multiple contacts with the fatty acids, which elevates the 

helical Tm to 68.9±1.2°C, determined from the Boltzmann analysis of helical unfolding. Spinodal 

decomposition analysis reveals the positive spinodal at T+=76.4±2.2°C,s+=0.209 and τ+=-0.0208±0.00013 

(Figure 3). Despite elevation in Tm, we observe decrease in both τ+ and spinodal order Δs± (as well as the 

corresponding ΔG) in the lipidated form, which reveals a stronger and more cooperative transition in the 

monomeric low temperature state of apo HSA compared to the lipidated holo HSA. This is the result of 

disruption of the apo phase by an aggregation process, which leads to a premature structural collapse in 

the apo form.  

One particular observation is that protein denaturation analysis by Boltzmann fitting reports lysozyme 

unfolding as a stronger, more cooperative transition by comparison to HSA, while Landau free energy 

expansion analysis ranks the two melts in the opposite order. We interpret this as the result of setting the 

reference in Boltzmann analysis to a state of the protein with a different fold, while the Landau free energy 

expansion considers changes in protein structure only within the folded state and with reference to the 

total energy associated with forming a particular secondary structure type. The former case, therefore, 

bears the assumption that protein unfolding is only partial and that part of energy remains associated with 

residual original structure. The free energy expansion model treats the unfolding process as the result of 

thermal fluctuation that gradually weaken the fold within a complete structural state naïve to the high 

temperature unfolded conformation and any secondary structure it may contain. 

 

Conclusion 

We propose a theoretical framework for the analysis of protein thermal denaturation, monitored by SRCD 

or other experimental tools capable of following changes in protein structure. In this approach the 

temperature behaviour of individual secondary structure components is analysed using Landau free energy 

expansion to obtain spinodal parameters as characteristics of the unfolding transition. This analysis permits 

quantitative comparison between the unfolding characteristics in proteins with different thermal 

behaviour, which uses a unified absolute temperature scale referenced to the individual critical point of 



each protein. Guided by conventional Boltzmann analysis in obtaining Tm, the method is comparatively 

insensitive to accurate determination of Tm, as the separation between Tm and T+ depends only weakly on 

Tm and is normalised by the absolute value of Tm in the reduced measure τ+. Akin to Boltzmann analysis, this 

approach permits analysis of thermal behaviour of individual structural elements, such as helices and sheet.  

 

The method is also sensitive to changes in protein structure and interactions within the folded state and it’s 

application is demonstrated on well-characterised proteins lysozyme and HSA. Thermal unfolding of 

lysozyme is of first order, closer to critical point and less cooperative than unfolding of monomeric apo or 

holo HSA with τ+=-0.0167, τ+=-0.0242 and τ+=-0.0208, respectively. Curiously, holo HSA unfolds closer to a 

critical point than monomeric apo HSA, despite its higher Tm. Our approach reveals a structural transition in 

apo HSA, associated with aggregation and amyloidogenic increase in sheet, which interrupts the normal 

thermal evolution of apo HSA and leads to a non-cooperative melt at lower temperature and 4.6-fold lower 

τ+=-0.00532 (Table 1). The method is robust and sensitive to complex thermal behaviour that is further 

affected by intermolecular interactions during substrate or ligand binding and is developed as an assay for 

observing protein interactions at the molecular level, including molecular interactions in membranes.  

 Lysozyme apo-HSA aggregating apo-HSA monomeric holo-HSA 

Tm [°C] 69.3±1.2 58.9±0.8 68.9±1.2 

T+ [°C] 75.0±2.9 60.7±0.6 67.0±2.7 76.0±0.8 

τ+  -0.0167±0.00021 -0.00532±0.00007 -0.0242±0.00032 -0.0208±0.00013 

s+ 0.094±0.001 0.170±0.001 0.213±0.001 0.209±0.001 

 

Table 1: Reduced spinodal temperature 𝜏+ = 1 −
𝑇+

𝑇𝑚
 and order s+; apo-protein (blue) and holo-protein 

(orange) pairs. Uncertainties in Tm were obtained from Boltzmann analysis, in T+ from linear regression 
analysis and in τ from the cumulative relative errors in Tm and T+. 
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