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ScienceDirect
The future sustainable production of chemicals and fuels from

non-petrochemical sources, while at the same time reducing

greenhouse gas (GHG) emissions, represent two of societys

greatest challenges. Microbial chassis able to grow on waste

carbon monoxide (CO) and carbon dioxide (CO2) can provide

solutions to both. Ranging from the anaerobic acetogens,

through the aerobic chemoautotrophs to the photoautotrophic

cyanobacteria, they are able to convert C1 gases into a range of

chemicals and fuels which may be enhanced and extended

through appropriate metabolic engineering. The necessary

improvements will be facilitated by the increasingly

sophisticated gene tools that are beginning to emerge as part

of the Synthetic Biology revolution. These tools, in combination

with more accurate metabolic and genome scale models, will

enable C1 chassis to deliver their full potential.
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Introduction
The continued use of fossil fuels is no longer tenable. A

finite resource, their extraction, processing and exploita-

tion is wreaking havoc with the environment through

pollution and global warming. The challenge facing our

generation is, therefore, to identify sustainable and cleaner

processes for chemical, fuel and energy production. Bio-

logical routes offer the most promising alternative where,

to avoid conflict with the food chain, attention has largely

focussed on using lignocellulosic biomass as the feedstock.

However, its recalcitrance to deconstruction is making the

development of economic processes extremely challeng-

ing. One solution is to directly capture carbon before its

incorporation into lignocellulose through the use of micro-

bial chassis able to utilize single carbon (C1) gases (CO
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and CO2) as a feedstock. Such gases are an abundant, low

cost waste product from a wide range of industrial pro-

cesses, with total global carbon emissions from fossil fuel

equivalent to approximately 9.7 gigatons in 2014 [1]. This

includes sources such as steel manufacture and power

generation, additionally the availability of C1 gas from

the anaerobic digestion or gasification of renewable

domestic or agricultural waste and residues provides a

diverse range of feedstocks of C1 gas (Figure 1).

Those C1 fermenting process organisms being most

actively pursued include anaerobic clostridial acetogens,

the aerobic chemolithoautotrophic Cupriavidus necator, var-

ious photoautotrophic cyanobacteria and, in the case of

CH4, the methanotrophic Methylococcus capsulatus. Many

naturally produce metabolites of industrial value, such as

ethanol, butyrate and 2,3-butanediol. The full extent of

their capability, however, resides in their potential to

produce a much wider range of chemicals and fuels through

their rational metabolic engineering. There are many phys-

ical process engineering and commercialisation challenges

that need to be addressed in order to bring this technology

to the wider market, however for the purposes of this short

review we will focus on recent advancements in metabolic

engineering and Synthetic Biology with respect to these

organisms. Additionally we will summarise recent efforts

made with C1 chassis able to grow on CO and CO2; CH4-

utilising bacteria [2] will not be considered, other than to

note current commercial activity (see Table 1).

Acetogens
Obligately anaerobic acetogenic bacteria [3] employ the

Wood–Ljungdahl pathway (WLP) to synthesize acetyl-

CoA from either CO or CO2 + H2 (Figure 2). Acetyl-CoA

can be further directed towards pyruvate, the generation of

biomass, solventogenesis or acetate with, in the latter case,

the generation of ATP. Acetate formation from CO and

CO2, however, does not generate net ATP, as for every

mole of acetate produced one mole of ATP is consumed

during the synthesis of formyl-THF from formate. Rather,

net ATP generation is reliant on the Na+ or proton

gradient (depending on the acetogen), formed by WLP

reducing equivalents, which is coupled to a membrane

bound ATPase [4]. Acetogens are particularly attractive as

chemical production platforms, as the WLP is the most

efficient of the known CO2 fixation pathways.

Native products

Acetogens produce a number of native chemicals and fuels,

including high value C4 compounds such as 2,3-butanediol
www.sciencedirect.com
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Sustainable conversion of waste gases to biofuels and chemicals through a combination of industrial process optimisation and genetic engineering

approaches.
(Clostridium ljungdahlii and Clostridium autoethanogenum),
butyrate and butanol (Clostridium carboxidivorans) and 2-

oxobutyrate (Clostridium aceticum and Sporomusa ovata).
Strategies explored to optimise yields include the manipu-

lation of culture conditions, bioreactor design, adaptative

evolution [28–30] and more recently electrosynthesis. The

latter seeks to increase productivity through the direct or

indirect acquisition of electrons. Whilst exciting, the chal-

lenges related to scalability may be unsurmountable [31,32].

Improvements to product yield through metabolic engi-

neering have been made possible by significant improve-

ments in available genetic tools. Exemplification of directed

mutagenesis methods based on intron retargeting and allelic

exchange has allowed insertional disruption, and precise in-

frame deletion, of target genes [8,33]. In C. ljungdahlii, for

example, carbon flow was successfully redirected towards

acetate through in-frame deletions of adhE1 and adhE2 [8].

In contrast, in-frame deletion of aor2 in C. autoethanogenum,
resulted in an approximate 180% increase in ethanol yield

over the wildtype organism [5�]. In Acetobacterium woodii
autotrophic acetate formation was improved through over-

expression of WLP genes, resulting in a strain capable of

producing 51 g l�1 acetate in 3.8 days [13].

The efficiency of mutant generation by allelic exchange is

improved through the use of CRISPR/cas9 technology as
www.sciencedirect.com 
it allows the direct selection of the rare mutant alleles that

arise in a population, considerably shortening mutant

isolation time. The successful use of Streptococcus pyro-
genes CRISPR/cas9 in acetogens has been reported. In C.
ljungdahlii, in-frame deletion mutants were generated

within pta, adhE1, ctf and pyrE [34�], while knockouts

in 2,3-bdh and adh were successfully made in C. auto-
ethanogenum [35]. It may be anticipated that this type of

system will figure prominently in the future engineering

of acetogens.

Synthetic pathway products

As yet, aside from those claims restricted to patent filings,

examples of product expansion or enhancement through

the incorporation of synthetic pathways in acetogens are

relatively few. Acetone production through overexpres-

sion of the requisite genes (ctfA/B and adc) from Clostrid-
ium acetobutylicum has been reported in C. aceticum [12] and

A. woodii. In the latter case, to concentrations of approxi-

mately 15 mM in batch and 26.4 mg l�1 hour�1 in contin-

uous culture fermentation [14�]. Conversion of acetone to

isopropanol as a consequence of a native alcohol dehy-

drogenase (CaADH) has been demonstrated in C. auto-
ethanogenum during both heterotrophic [36] and autotro-

phic [6] growth. Autotrophic production of isopropanol

has similarly been achieved in C. ljungdahlii [11].
Current Opinion in Biotechnology 2018, 50:174–181
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Table 1

Examples of targeted metabolic efforts towards selected platform chemicals and biofuels within most prominent C1 chassis of the four

groupings

C1 chassis Engineering target product Native/recombinant

product

Largest production

scale

Example

studies/companies

Major acetogens

Clostridium autoethanogenum Ethanol Native Industrial (15 000 l) Lanzatech [5�]
2,3-Butanediol Native Demonstration Lanzatech

Acetone/isopropanol Recombinant Proprietary Lanzatech [6]

Butanol Recombinant Proprietary Lanzatech [7]

Clostridium ljungdahlii Acetate Native Laboratory [8]

Butyrate Recombinant Laboratory [9]

Butanol Recombinant Laboratory [10]

Isopropanol Recombinant Laboratory [11]

Clostridium aceticum Acetone Recombinant Laboratory [12]

Acetobacterium woodii Acetate Native Laboratory [13]

Acetone Recombinant Laboratory [14�]
Chemoautotroph

Cupriavidus necator PHB Native Laboratory [15]

Alka(e)nes Recombinant Laboratory [16��]
3HP Recombinant Laboratory [17]

Isopropanol Recombinant Laboratory [18,19]

Isobutanol/methy-1-butanol Recombinant Laboratory [20]

Photoautotroph

Synechococcus elongatus UTEX 2973 Ethanol Recombinant Laboratory [21]

1-Butanol/isobutanol Recombinant Laboratory [22]

Synechococcus elongatus PCC 7942 Succinate Recombinant Laboratory [23��]
Synechocystis sp. PCC 6803 Ethylene Recombinant Laboratory [24]

Methanotroph

Methylotrophus capsulatus Propylene Recombinant Undisclosed Calysta [25]

Undisclosed methanotrophic species Isobutanol Recombinant Pilot plant Intrexon [26]

Farnesene Recombinant Undisclosed Intrexon [27]
Whilst C. carboxidivorans naturally produces butyrate and

butanol, their production in C. autoethanogenum [7] and C.
ljungdahlii [10] has been demonstrated using plasmid-

located genes (Figure 2) derived from C.
acetobutylicum. In the latter case, to concentrations of

approximately 2 mM at exponential phase growth in batch

fermentation [10]. More recently butyrate production in

C. ljungdahlii from CO/CO2 was increased to 16 mM

through genome integration of the butyrate pathway

genes (Figure 2) concomitant with deletion of pta and

adhE1 [9]. Whilst further deletions were acknowledged as

likely to result in higher butyrate yields, the inefficient

tools available at the time precluded their generation.

The advent of CRISPR/cas9 systems has the potential to

overcome these limitations.

Cupriavidus necator
A number of autotrophic bacteria use oxygen as the

electron acceptor during CO2 fixation through a reductive

pentose phosphate cycle. By far the most studied and

developed aerobic chassis of this type is C. necator, for-

merly Ralstonia eutropha. A facultative chemolithoauto-

troph, it is able to grow heterotrophically on a range of

organic carbon sources, in addition to its use of CO2, H2

and O2 as sole carbon and energy sources. A broad genetic

toolkit is available that allows rudimentary genome
Current Opinion in Biotechnology 2018, 50:174–181 
editing as well as the controlled expression of heterolo-

gous genes from a subset of vectors [37] (Figure 3).

Native products

Under nutrient limitation, C. necator directs the majority

of its reduced carbon into synthesis of the biopolymer

poly[(R)-3-hydroxybutyrate] (PHB), an energy and car-

bon storage compound that can accumulate at rates of up

to 1.55 g l�1 hour�1, eventually representing some 70% of

total cell weight [38]. PHB is formed from acetyl-CoA

through the sequential activities of 3-ketothiolase (PhaA),

acetoacetyl reductase (PhaB) and PHA synthase (PhaC).

The practical industrial applications of PHB are as a

bioplastic, however, derivatives may have more wide

ranging applications in medical and pharmaceutical fields

[39]. The existing high levels of production have limited

the scope for substantive increases through metabolic

engineering. Indeed, the plasmid-based overexpression

of the native phaCAB operon actually reduced productiv-

ity [15].

Synthetic pathway products

The ability of C. necator to divert so much of its carbon

into PHB makes it an attractive chassis for chemical and

fuel production, based on the assumption that other, more

desirable products could replace PHB as the carbon sink.
www.sciencedirect.com
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Figure 2
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The Wood–Ljungdahl pathway of acetogens with possible products (boxed). ACK, acetate kinase; ACS, CO dehydrogenase/acetyl-CoA synthase;

ADC, acetone decarboxylase; ADHE, aldehyde/alcohol dehydrogenase; ALDC, acetolactate decarboxylase; ALS, acetolactate synthase; AOR,

aldehyde:ferredoxin oxidoreductase; BCD, butyryl-CoA dehydrogogenase; CoFeS-P, corrinoid iron–sulphur protein; CRT, crotonase; CTFA/B,

acetoacetyl-CoA:acetate/butyrate-CoA-transferase; FAK, fatty acid kinase; Fd, oxidized ferredoxin; Fd 2�, reduced ferredoxin; FDH, formate

dehydrogenase; FTS, formyl-THF synthetase; HBD, 3-hydroxybutyryl-CoA dehydrogenase; LDH, lactate dehydrogenase; MTI, methyltransferase I;

MTII, methyltransferase II; MTC, methenyl-THF cyclohydrolase; MTD, methylene-THF dehydrogenase; MTF, methyltransferase; MTR, methylene-

THF reductase; PFOR, pyruvate:ferredoxin oxidoreductase; PTA, phosphotransacetylase; PTF, phosphotransferase; RNF, Rnf complex THF:

tetrahydrofolate; THL, thiolase, 2,3-BDH: 2,3-butanediol dehydrogenase; 2 [H], reducing equivalents (e.g. NADH or NADPH). Figure adapted from

Bengelsdorf FR, Straub M, Durre P: Bacterial synthesis gas (syngas) fermentation. Environ Technol 2013, 34:1639–651.
Accordingly, isopropanol production at up to final con-

centrations of 3.44 g l�1 have been achieved in heterotro-

phic batch conditions by overexpressing codon optimised

clostridial genes (Figure 2) in a phaB/phaC double mutant

[18]. The observed slow growth rates were subsequently

alleviated by overexpression of native GroESL genes

leading to final isopropanol concentrations of 9.8 g l�1

in fed batch cultures using fructose as carbon source.

During auxotrophic growth, isopropanol reached final

concentrations of 250 mg l�1 in only 12 hours [19].

Recombinant fructose grown strains producing appreci-

able titres of isobutanol (270 mg l�1) and of 3-methyl-1-

butanol (40 mg l�1) have also been engineered through

heterologous overexpression of ketoisovalerate
www.sciencedirect.com 
decarboxylase and alcohol dehydrogenase encoding

genes from Lactococcus lactis and Escherichia coli, respec-

tively, in combination with the disruption of competing

pathways. These included deletion of the phaCAB
operon, and the circumvention of three potential carbon

sinks through deletion of ilvE, bkdAB and

aceE. Additionally, the native branched-chain amino acid

biosynthesis pathway genes, which generate the precur-

sors to the introduced synthetic pathway, were

overexpressed.

Alkanes and alkenes are the predominant components of

diesel, petrol and jet fuel, and are therefore attractive

biofuel targets. Heterologous expression of an alkane

synthesis pathway from Synechococcus elongatus, comprising
Current Opinion in Biotechnology 2018, 50:174–181
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Figure 3
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NADH

Simplified overview of autotrophic native poly-3-hydroxybutyrate and recombinant acetone/isopropanol production pathways in Cupriavidus

necator. Abbreviations: 3-PGA (3-phosphoglyceric acid), G3P (glyceraldehyde-3-phosphate), RuBP (ribulose bisphosphate), GP (glycerate-3-

phosphate), CoA (coenzyme a), TCA (tricarboxylic acid), ATP (adenosine triphosphate), ADP (adenosine diphosphate), NAD (nicotinamide adenine

dinucleotide). Native enzymes; PHAA (acetyl-CoA acetyltransferase), PHAB (acetoacetyl-CoA reductase), PHAC (polyhydroxyalkanoic acid

synthase), CTF (acetoacetyl-CoA transferase). Recombinant enzymes; ADC (Acetoacetate decarboxylase), ADH (alcohol dehydrogenase).
genes encoding an acyl-ACP reductase and an aldehyde

deformylating oxygenase, autotrophic alkane production

was demonstrated in C. necator. Through knockout medi-

ated redirection of carbon flow from PHA synthesis,

435 mg l�1 of alka(e)nes and 670 mg l�1 total hydrocar-

bons were achieved in batch growth on heterotrophic

carbon sources, while on gas (H2/O2/CO2 composition

of 60:2:10) a final concentration of 4.4 mg l�1 was

achieved. The latter represents the first demonstration

of non-native alka(e)ne production from C1 gas [16��].

Cyanobacteria
Cyanobacteria are a diverse group of photosynthetic

organisms capable of growth using sunlight and CO2 as

their source of energy and carbon, respectively. Cyano-

bacteria more suited to biotechnical applications then

other photosynthetic organisms due to their compara-

tively rapid growth rate and well-developed genetic tools.

The major challenges for the implementation of a pho-

toautotrophic microbial platform for fuel and chemical

production is how to supply dense cultures with sufficient

sunlight to support fermentation at scale. Nevertheless,
Current Opinion in Biotechnology 2018, 50:174–181 
they remain an exciting microbial chassis, capable of

producing industrially relevant chemicals and fuels at

high titres.

Native products

Cyanobacteria have a broad spectrum of natively pro-

duced secondary metabolites, including amino acids, fatty

acids, macrolides, lipopeptides and amides [40], some of

which have potential pharmaceutical applications. Strat-

egies to improve production of native compounds have

largely focussed on either increasing the efficiency of

photosynthesis, through overexpression of the carbon

fixing enzyme RuBisCO, or reducing the light harvesting

capabilities of the organism to avoid the issue of excess

light absorption above the optimal values. The latter is to

allow deeper light penetration into high optical density

cultures [41]. Genome editing through homologous

recombination and suicide plasmids has been established

in the most developed strains, predominantly Synechocystis
and Synechococcus. Additionally the Streptococcus pyogenes
CRISPR/Cas9 system has recently been exemplified in

S. elongatus UTEX 2973 through in-frame deletion of the
www.sciencedirect.com
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nblA gene [42]. NblA is involved in the degradation of

phycobilisomes; primary antenna protein complexes asso-

ciated with photosystem II.

Synthetic pathway products

The production of a wide range of biofuels and industri-

ally relevant chemicals has been demonstrated through

expression of heterologous genes within cyanobacteria,

including ethanol [21], 1-butanol, isobutanol [21] and

ethylene [24] to name a few. Recently a CRISPR-

Cas9-assisted simultaneous glgc knockout and gltA/ppc
knockin for succinate production was demonstrated in

S. elongatus PCC 7942 [23��], paving the way for the rapid

generation of further stable strains where the overex-

pressed genes are localised to the chromosome.

Metabolic and genome scale modelling
As our capability to genetically modify the range of C1

chassis available becomes more effective, so must our

ability to identify the most rational gene targets for

modification. The generation of sophisticated metabolic

and genome scale models, in combination with the col-

lection of proteomic and metabolomic datasets, is increas-

ingly allowing in silico engineering studies to elucidate

exciting, and often un-intuitive, potential targets for

manipulation within industrially relevant organisms.

Chen and co-workers recently published a list of proposed

targets for deletion and overexpression in C. ljungdahlii to

increase the productivity of native and non-native pro-

ducts, using a genome-scale metabolic reconstruction of

the organisms’ metabolism [43]. In parallel, a study by

Richter et al. proposed a different model for product

regulation, based predominantly on thermodynamics,

nutrient limitation and pH manipulation, rather than

genetic regulation [44��]. Numerous metabolic models

have been proposed for C. necator [45–47], with Park and

co-workers proposing the first genome scale model capa-

ble of in silico engineering and culture condition strategies

towards enhanced 2-methylcitric acid production, as well

as enhanced PHA and PHB production [45].

Conclusions
Progress towards the development of C1 fermenting

microorganisms as chassis for the production of chemicals

and fuels is gathering pace as available Synthetic Biology

tools and genome scale models become ever more sophis-

ticated. As novel technologies such as CRISPR/cas9

mutagenesis are implemented across the broad range of

chassis, we can expect to see a rapid increase in the rate of

generation of central metabolic pathway mutants, and

elucidation of the intricacies of the pathways. Heterolo-

gous expression systems will continue to be developed

and modularised, with stable expression of pathways from

the chromosome rather than plasmid being a logical step

to expect from the developing chassis organisms, increas-

ing industrial applications. Significantly progress is being

made on all fronts with the leading chassis, but presently
www.sciencedirect.com 
the most commercially advanced system is the ethanol

production process being pursued by LanzaTech based

on the anaerobic acetogen C. autoethanogenum and the use

of steel mill off-gas. Full scale production plants are

planned or under construction at steel mills in China,

Taiwan and Belgium. The production of other products at

a commercial scale appears to be planned for an undeter-

mined time in the future and are likely to be confined to

reduced products whose synthesis requires minimal input

of ATP in keeping with the anaerobic nature of this

chassis. Those products that need significant ATP will

require the use of an aerobic chassis, such as Cupriavidus
or Cyanobacteria. In both cases, scale remains an issue.

The former because of the more challenging issues of

using an explosive gas mixture that combines O2 with H2

and CO2, while the latter will always be compromised by

the difficulties of providing sufficient light input at scale.
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