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Quantum-enhanced passive remote sensing

Emre Köse ,1,* Gerardo Adesso ,2,† and Daniel Braun 1,‡

1Institut für Theoretische Physik, Eberhard Karls Universität Tübingen, 72076 Tübingen, Germany
2School of Mathematical Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom

(Received 23 December 2021; accepted 6 June 2022; published 6 July 2022)

We investigate theoretically the ultimate resolution that can be achieved with passive remote sensing in
the microwave regime used, e.g., on board of satellites observing Earth, such as the soil moisture and ocean
salinity (SMOS) mission. We give a fully quantum mechanical analysis of the problem, starting from thermal
distributions of microscopic currents on the surface to be imaged that lead to a mixture of coherent states of
the electromagnetic field which are then measured with an array of antennas. We derive the optimal detection
modes and measurement schemes that allow one to saturate the quantum Cramér-Rao bound for the chosen
parameters that determine the distribution of the microscopic currents. For parameters comparable to those of
SMOS, a quantum enhancement of the spatial resolution by more than a factor of 20 should be possible with a
single measurement and a single detector, and a resolution down to the order of 1 m and less than a 1

10 K for the
theoretically possible maximum number of measurements.
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I. INTRODUCTION

Optical imaging has evolved dramatically since the discov-
ery that Abbe’s and Rayleigh’s resolution limit comparable to
the wavelength of the used light is not a fundamental bound.
This was demonstrated experimentally with a series of works
starting with stimulated emission depletion in 1994 by Hell
[1], who showed that decorating molecules with fluorophores
and quenching these selectively, imaging of a molecule with
nanometer resolution could be achieved in the optical domain
(see [2] for a review). This was followed in 2016 by theoretical
work by Tsang and coworkers [3] who framed the problem
of the ultimate resolution of two-point sources in terms of
quantum parameter estimation, a very natural approach given
that quantum parameter estimation theory was originally mo-
tivated by generalizing the classical Cramér-Rao bound that
had long been used in radar detection to the optical domain
[4–7]. Tsang and coworkers showed that even in the limit
of vanishing spatial separation between the two sources a
finite quantum Fisher information (QFI) for that parameter
remains, whereas the classical Fisher information degrades in
agreement with Rayleigh’s bound [8]. A large body of the-
oretical work followed that incorporated important concepts
such as the point spread function for analyzing optical lens
systems, and mode engineering such as SPADE for optimal
detection modes [8–25], reminiscent of the engineering of
a “detector mode” for single-parameter estimation of light
sources [26]. Experimental work in recent years validated this
new approach to imaging [27–30]. Optical interferometers
were investigated in [21,31–33]. The resolution for general
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parameter estimation for weak thermal sources was studied
in [34]. Recently, the spatial resolution of two point sources
for two-mode interferometers was examined for the far-field
regime [35].

In this work, we investigate the ultimate limits of passive
remote sensing in the microwave regime with a satellite of
the surface of Earth. There, the state of the art is the use of
antenna arrays for synthesizing interferometrically a large an-
tenna with corresponding enhanced resolution. For example,
the SMOS (soil moisture and ocean salinity) interferometer
achieves a resolution of about 35 km, flying at the height
of about 758 km and using a Y-shaped array of 69 antenna
[36–39]. Each antenna measures in a narrow frequency band
1420–1427 MHz with a central wavelength around λ ∼ 21 cm
and in real time the electric fields corresponding to the thermal
noise emitted by Earth according to the local brightness tem-
peratures on its surface. The signals are filtered and interfered
numerically, implementing thus purely classical interference,
which implies a resolution governed by the van Cittert–
Zernike theorem [40–42]. Recently, it was shown theoretically
that larger baselines can be synthesized by using the motion
of the satellite but at the price of the radiometric (i.e., temper-
ature) resolution [43]. The question naturally arises to what
extent the resolution can be improved by using methods of
quantum metrology. As in the optical domain the answer can
be found by analyzing the quantum Cramér-Rao bound and
then trying to find the optimal measurements that can achieve
it. We solve this problem, in general, for an arbitrary antenna
array defined by the positions of individual antenna, in the
sense of finding, at least numerically, the optimal modes for
measuring the electric fields. We go beyond the situation of lo-
calized point sources that has become a favorite simplification
in the field and describe the sources as randomly fluctuat-
ing microscopic current distributions which in turn generate
the electromagnetic field noise, ultimately measured by the
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satellite. This is closer to the literature on passive remote
sensing in the microwave regime and allows a direct compar-
ison with the van Cittert–Zernike theorem. We also make use
of the scattering matrix formalism introduced in this context
in [44]. The thermal fluctuations of the microscopic currents
lead to Gaussian states of the microwave field [26,45–47],
and our analysis makes therefore heavy use of the quantum
Cramér-Rao bound (QCRB) for Gaussian states [48–53]. We
assume that only the current densities at the surface of Earth
contribute. In reality, the emission seen by the SMOS is from
a surface layer on Earth that has a finite thickness, but is thin
enough to make a two-dimensional (2D) approximation. Also,
the receivers see the emission from the cosmic microwave
background. We neglect it as its temperature is two orders
of magnitude lower than the one of Earth [43]. Additional
technical noises are neglected and indeed beyond the scope
of this paper. Additional technical noises in the context of
imaging were considered in Refs. [54–56].

The rest of the paper is organized as follows. In Sec. II,
we describe the state for the n-mode interferometer for gen-
eral sources on the source plane using the scattering matrix
formalism. Later, we present the general formula of the
positive-operator-valued measure (POVM) for the QFI based
on the state of the n-mode interferometer. In Sec. III, first,
we discuss the QFI for the parameters, source size, and tem-
perature of a single uniform circular source for both a single
antenna and two antennas. Second, we discuss the spatial res-
olution, source separation, and centroid on the source plane,
of two strong point sources with the same and different tem-
peratures for a two-mode interferometer. Third, we examine
an array of antennas to increase the spatial resolution of a
uniform circular source and two-point sources. We conclude
in Sec. IV.

II. THEORY

A. Continuous vector potential and interaction with classical
current sources

The operators for the quantized vector potential A(r, t ) can
be written in continuous form. The operator for the vector
potential in the Coulomb gauge reads as [57,58]

Â(r, t ) =
∫

d3k

(
h̄

16π3ε0c|k|
)1/2

×
∑

σ=1,2

ε(k, σ )â(k, σ ) exp(−ic|k|t + ik · r) + H.c.,

(1)

where, â(k, σ ) are the continuous mode operators with
[â(k, σ ), â†(k, σ )] = δ(k − k′)δσσ ′ , and ε(k, σ ) are the di-
rections of the polarizations with index σ ∈ 1, 2, which are
always perpendicular to wave vector k. Mode functions are
plane waves and parametrized by k and σ . The interac-
tion Hamiltonian for the classical current distribution of the
sources j(r, t ) with electromagnetic waves in free space is
given by [43,58–60]

HI (t ) = −
∫

d3r j(r, t ) · Â(r, t ). (2)

In the interaction picture, using the Schrödinger equation the
state of the electromagnetic field at time t can be obtained
from the one at t0 as [58–61]

|ψ (t )〉 = U (t, t0)|ψ (t0)〉, (3)

where the U (t, t0) is given by

U (t, t0) = exp

(
i

h̄

∫ t

t0

dt ′
∫

d3r j(r, t ′) · Â(r, t ′)+iϕ(t, t0)

)
.

(4)

The phase ϕ(t, t0) is a real number, which arises from the
classical interaction between the currents. It is independent
of the state on which the propagator acts, and cancels in the
calculation of equal-time matrix elements. Since the current
density commutes with the vector potential, one can write the
time evolution in the form of a displacement operator, which
is given by

D({α(k, σ )}) = exp

[∑
σ

∫
d3k [α(k, σ )â†(k, σ )

− α∗(k, σ )â(k, σ )]

]
,

(5)

where α(k, σ ) can be found as

α(k, σ ) = i

h̄

(
h̄

16π3ε0c|k|
)1/2 ∫ t

t0

dt ′
∫

d3r j(r, t ′) · ε(k, σ )

× exp(ic|k|t ′ − ik · r). (6)

The α(k, σ ) also depends on t and t0. We assume that for
t0 → −∞ we have the vacuum state |{0}〉 for all modes. For
a deterministic current density, |ψ (t )〉 is a tensor product of
coherent states,

|ψ (t )〉 = |{α(k, σ )}〉 = D[{α(k, σ )}]|{0}〉. (7)

One can introduce the Fourier transform (FT) of the current
densities and take the t ′ integral immediately [43]. We intro-
duce the Fourier decomposition of current density as

j(r, t ′) = 1√
2π

∫ ∞

−∞
dω̃ j̃(r, ω̃) exp(iω̃t ′). (8)

Then we can write α(k, σ ) in the form

α(k, σ ) = i

h̄

(
h̄

32π4ε0c|k|
)1/2

×
∫ t

−∞
dt ′
∫

d3r
∫ ∞

−∞
dω̃ j̃(r′, ω̃) · ε(k, σ )

× exp(ic|k|t ′ − ik · r) exp(iω̃t ′). (9)

Taking the integral over t ′ gives

α(k, σ ) =−
(

1

32π4ε0ch̄|k|
)1/2

×
∫

d3r
∫ ∞

−∞
dω̃ j̃(r, ω̃) · ε(k, σ ) exp(−ik · r)

× exp[i(ω̃ + c|k|)t]

iε − c|k| − ω̃
. (10)
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FIG. 1. An interferometer, with n antennas, separated by a
distance R from the source plane. The Teff (x, y) is the position-
dependent effective temperature in the source plane that one wants
to measure. The field â(k, σ ) propagating from the source enters the
receiver on the interferometer and is partly reflected back into the
modes b̂(k, σ ). Single b̂i exit the receiver and are combined in a
preprocessing step, while other single modes âi are scattered back
from the preprocessing step. The preprocessing of modes allows a
nonlocal measurement by combining the modes b̂i with beam split-
ters and phase shifters. We denote the origin of the coordinate system
on the detection plane as O. All the components of the vectors are
donated in the coordinate system R = (O, êx, êy, êz ).

We introduced a shift in the denominator “iε” that is necessary
for the integral to converge at t = −∞.

B. State received by the antennas

The electromagnetic field is received by an interferometer
that has an array of antennas, localized at positions ri in a
plane. The detection plane of antennas is parallel to the source
plane and separated from it by a distance R (see Fig. 1).
Each antenna is connected at its output to a waveguide that
channels the received electromagnetic field radiation towards
the measurement instruments. Receiver “i” consists of an-
tenna “i” combined with its output waveguide. Its output,
possibly after filtering, is assumed to be single mode with
discrete annihilation operator b̂i. We call the modes received
by the antennas “spatial field modes” since each mode b̂i is
specific to a location on the detection plane. Single modes
with discrete annihilation operator âi are reflected from the
preprocessing stage. On the antenna side, we represent incom-
ing plane waves in the interferometer by â(k, σ ) and scattered
outgoing plane waves by b̂(k, σ ) (see Fig. 1). One can use
the scattering matrix formalism to find the relation between
incoming and outgoing modes.

Furthermore, the modes b̂i are separated by distances
substantially larger than the central wavelength λ. And the
collection area of each antenna AD is assumed to be AD ∼ λ2,
where λ is central wavelength. These constraints make the
modes for different receivers orthogonal and simplifies the
form of the scattering matrix. A scattering matrix connects

incoming and outgoing modes, and one can write it as [62,63]

S =
[
S (scat ) S (trans)

S (rec ) S (refl )

]
. (11)

This matrix acts on the vector [{â(k, σ )}{k,σ }, {âi}{i}]T ,
where {a(k, σ )}{k,σ } is the vector of continuous plane-wave
operators with continuous k and two polarizations. {âi}{i} is
the vector of modes with i ∈ {1, . . . , n} for an n-mode in-
terferometer. The first block, S (scat ), describes the scattering
of incoming plane waves to outgoing plane waves from the
interferometer. A receiver can receive or transmit the signal.
The off-diagonal block S (rec) describes the coupling of the
incoming plane waves â(k, σ ) into the receiver modes b̂i,
and S (trans) describes scattering of reflected receiver modes
âi into outgoing plane waves b̂(k, σ ). The matrix S (refl ) rep-
resents the scattering (reflection) between the receivers, and
will be neglected, S (refl ) ∼ 0. One can also verify that if the
receivers have only incoming and outgoing modes, the receiv-
ing and transmitting pattern of the receivers will be the same
S (trans)(k, σ ; j) = S (rec)( j; k, σ ) and we can denote them as
simply S j (k, σ ). Formally, the input-output relations read as

b̂(k, σ ) =
∑
σ ′

∫
d3k′S (scat)(k, k′, σ, σ ′)â(k′, σ ′)

+
∑

j

S j (k, σ )â j (12)

and

b̂i =
∑

σ

∫
d3k Si(k, σ )â(k, σ ). (13)

For a lossless system we assume that S†S = I . Then we write
S (scat)(k, k′, σ, σ ′) = (S (scat) )T (k′, k, σ ′, σ ). The field oper-
ators â(k, σ ) from the state that we have for Eq. (7) can
be replaced by the following relation for n different receiver
modes:

â(k, σ ) =
n∑
j

S∗
j (k, σ )b̂ j

+
∑
σ ′

∫
d3k′S∗(scat)(k′, σ ′, k, σ )b̂(k′, σ ′). (14)

The interferometer does not have any access to modes b̂(k, σ ).
Assuming that all antennas are identical in terms of their
receiver pattern, except for their position ri on the detection
plane, each scattering function may be written as [62,63]

Si(k, σ ) = ei(k·ri−ωti )S (k, σ ), (15)

where ti is the time at which we consider the state of the ith
antenna. Since we are only interested in spatial modes, we
assume that relative time differences between any pair of an-
tennas is zero. Then we write ti ≡ t̄ , with t̄ the time when the
signal from (r, t ) arrives at central antenna. And S (k, σ ) is the
function describes scattering to the central receiver. According
to (14), t is the last time the current densities to be sensed
imprint their information the coherent state labels α(k, σ ).
Further, the commutation relation of different receiver modes
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can be written as

[b̂i, b̂†
j] =

∑
σ

∫
d3k Si(k, σ )S∗

j (k, σ ) ≈ δi j, (16)

where we have used the canonic commutation relation of
â(k, σ ) and we assumed that |S (k, σ )| varies slowly com-
pared to the oscillations of the exponential factor exp[ik ·
(ri − r j )] for i �= j. Since b̂i commutes with b̂(k, σ ), using
Eq. (14) we can write the coherent state in Eq. (7) as

|ψ (t )〉 = D({βi})D[{β(k, σ )}]|{0}〉, (17)

where D[{β(k, σ )}] can be defined similarly to Eq. (5) and
β(k, σ ) is the eigenvalue of the scattered plane-wave modes
with annihilation operator b̂(k, σ ). Since the interferometer
does not have any access to these modes, we can safely trace
them out. The displacement operator for the spatial modes of
the interferometer can be written in the form

D({βi}) =
n⊗
i

exp[βib̂
†
i − β∗

i b̂i]. (18)

Then we have a coherent state for spatial modes of the inter-
ferometer,

ρ ′ = |{βi}〉 〈{βi}| , (19)

where

βi =
∑

σ

∫
d3k Si(k, σ )α(k, σ ). (20)

Si(k, σ ) depends on the type of receivers. Let us assume that
each receiver is characterized by a filter function w(ω) with
central frequency ω0 and bandwidth B � ω0:

w(ω) =
{

1 for ω0 − B/2 � ω � ω0 + B/2,

0 elsewhere. (21)

For simplicity we assume S (k, σ ) ∝ √
ωw(ω)ε(k, σ ) · û, and

normalized according to Eq. (16) as

S (k, σ ) =
(

3c3ω

8πω3
0B

)1/2

w(ω)ε(k, σ ) · û, (22)

where ω = c|k| and û is the unit polarization direction of
the corresponding receiver mode. Since we are using a filter
function and S (k, σ ) is normalized, choosing

√
ω or with a

different power will not change the result in Eq. (28). Yet,
in Eq. (25) we have the term ∼ωj̃t (r, ω) by this choice and
it is consistent with the van Cittert–Zernike theorem given in
Ref. [42]. Then we have

βi =−
(

3c3

28h̄ε0π5ω3
0B

)1/2 ∫
d3r

∫ ∞

−∞
dω̃

×
∑

σ

∫
d3k w(ω)j̃(r, ω̃) · ε(k, σ )ε(k, σ ) · û

× ei(ω̃t+ωt−ωt̄ )e−ik·(r−ri )

iε − c|k| − ω̃
. (23)

To take the integral over d3k we align the kz axis with the
vector (r − ri ). In spherical coordinates in k space we have
d3k = ω2/c3dω d�, where ω = |k|c and k = (ω/c)n̂(�)

with n̂(�) = (sin θ cos φ, sin θ sin φ, cos θ ). The frequencies
will be filtered out by the filter function w(ω) and later
only the integral over the surface from a distance R will be
considered in the far-field regime (Rω0/c � 1). Then in this
step, we can drop the terms of order 1/ f 2 and 1/ f 3 with
f ≡ ω|r − ri|/c. Taking the integral over �, summing over
two polarizations, considering that our problem is limited to
far field we have

βi = i

(
3cμ0

64h̄π3ω3
0B

)1/2 ∫
d3r
∫ ∞

−∞
dω̃

∫ ∞

0
dω w(ω)ω

× j̃t (r, ω̃) · û
eiω|r−ri|/c − e−iω|r−ri|/c

|r − ri|
ei(ω̃t+ωt−ωt̄ )

iε − ω − ω̃
,

(24)

where j̃t (r, ω̃) is the locally transverse component of the
current density defined as j̃t = j̃ − (j̃ · êr )êr with unit vector
êr = (r − ri )/|r − ri|. For R � |ri|, we have êr ≈ r/|r|, with
corrections modifying only slightly the prefactors, not the
phases. One can extend the lower bound of the integration
range of the ω integral to −∞ using the definition of w(ω),
and evaluate the ω integral with the help of the law of residues.
Since t̄ > t − |r − ri|/c, the pole at ω = −ω̃ + iε contributes
to the term exp (iω|r − ri|/c). For exp (−iω|r − ri|/c) the
contour must be closed in the lower half-plane and there is no
pole to contribute. In the end one should send ε → 0. Then βi

simplifies to

βi = −
(

3cμ0

16π h̄ω3
0B

)1/2 ∫ ∞

−∞
dω w(−ω)ω

∫
d3r

× j̃t (r, ω) · û
e−iω(t̄−|r−ri|/c)

|r − ri| , (25)

where we drop the “∼” from ω̃. The state in Eq. (7) is writ-
ten for a deterministic current density distribution. In reality,
these current densities fluctuate. Before we move forward,
we describe the properties of this current density distribution.
We assume that it is a complex symmetric Gaussian process
with current densities uncorrelated in positions, directions,
and frequencies [43,64,65],

〈 j̃l (r, ω) j̃∗m(r′, ω′)〉 = l3
c

τc
δlmδ(ω − ω′)δ(r − r′) 〈| j̃l (r, ω)|2〉 ,

〈 j̃l (r, ω) j̃m(r′, ω′)〉 = 0, 〈 j̃∗l (r, ω) j̃∗m(r′, ω′)〉 = 0. (26)

The length scale lc and timescale τc are introduced for di-
mensional grounds and the polarizations are indexed by l, m
taking values x, y, z. For the classical white-noise currents
Eq. (26) is a standard model, and appears in many places
in the literature [66–68]. One can also derive Planck’s law
for the energy density of an electromagnetic field in ther-
mal equilibrium from it (see Appendix of Ref. [43]). We
choose the unit polarization vector of the receiver û as one
of the basis vectors of the coordinate system R parallel to
the detection plane, in either x or y direction. Then, we write
〈j̃t (r, ω) · ûj̃∗t (r, ω) · û〉 = 〈| j̃t,l (r, ω)|2〉. Using Eq. (19) and
introducing the distribution of the current density P( j̃(r, ω)),
the state for the interferometer ρint with n receivers can be
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written as

ρint =
∫

d2 j̃ P( j̃(r, ω))|{βi}〉〈{βi}|. (27)

The integral is over the complex j̃ plane. Since it is a cir-
cularly symmetric Gaussian process, P( j̃(r, ω)) is assumed
through its moments given in Eq. (26). Gaussian states
are completely characterized by their mean displacement
�i = Tr[ρbi] and covariance matrix with elements �i j =
1
2 Tr[ρ(b̃ib̃ j + b̃ j b̃i )], where b = [b1, b†

1, b2, b†
2, . . . , bn, b†

n]
and b̃i = bi − �i [26,69–73]. The mean displacement for
our state is zero �i = 0 considering Eq. (26). To find the el-
ements of the covariance matrix, we need to calculate 〈b†

i b j〉.
The integral over ω can be taken using the filter function of
bandwidth B. With this we find

〈b†
i b j〉 = K

∫
d3r

〈| j̃t,l (r, ω)|2〉 eiω0(|r−r j |−|r−ri|)/c

|r − ri||r − r j |

× sinc
[ B

2c
(|r − r j | − |r − ri|)

]
, (28)

where K = 3cμ0l3
c /(16π h̄ω0τc) and sinc[x] ≡ sin x/x. For a

very narrow bandwidth sinc[. . . ] ≈ 1. Then, Eq. (28) for i =
j becomes

n̄ = K
∫

d3r
〈| j̃t,l (r, ω)|2〉

|r − ri|2 , (29)

where we defined n̄ ≡ 〈b†
i bi〉 without any index since the

mean photon number is the same for all interferometer modes
in the far-field approximation, and for i �= j it becomes

ξi j = K
∫

d3r
〈| j̃t,l (r, ω)|2〉 eiω0(|r−r j |−|r−ri|)/c

|r − ri||r − r j |
(30)

with ξi j ≡ 〈b†
i b j〉. The integral over Earth’s surface is

parametrized by r = (x, y, R) with respect to the coordinate
system of the detection plane. Further, we write |r − r j | −
|r − ri| ≈ �ri j · r/|r| for |�ri j | � R, where �ri j = r j − ri

connects two different receiver modes. In the denomina-
tor, we approximate |r − ri| ≈ R/ cos θ̃ (x, y) with θ̃ (x, y) the
polar angle the angle between the z axis and the vector
(x, y, R). One can relate the average amplitude of current
density to brightness temperature TB(x, y) by 〈| j̃t,l (r, ω)|2〉 =
K1TB(x, y) cos θ̃ (x, y)δ(z − R) with a constant defined as
K1 = 32τckB/(3l3

c μ0c) (see Appendix A). We define the effec-
tive temperature as Teff (x, y) ≡ TB(x, y) cos3 θ̃ (x, y) and a new
constant κ = K1K ≡ 2kB/(π h̄ω0) where κ has the dimension
of inverse temperature with SI units “1/K.” Then we can
simplify Eq. (29) for i = j as

n̄ = κ

R2

∫
dx dy Teff (x, y), (31)

and for i �= j as

ξi j = κ

R2

∫
dx dy Teff (x, y)e2π i(vi j

x x+v
i j
y y), (32)

where

vi j
y = �xi j

λR
, vi j

x = �yi j

λR
. (33)

We used ω0/c = 2π/λ. These two equations suffice to deter-
mine the covariance matrix elements of the Gaussian states
for the general interferometer with an array of antennas. All
spatial field modes received by the interferometer undergo a
preprocessing before measurement. This processing can be
understood as a linear combination of all spatial modes in such
a way to achieve the optimal POVM for the best estimation of
the parameter we are interested in (see Sec. II C). We use the
values of the SMOS for the rest of the paper which leads to
κ ∼ 9.4 1/K.

C. Quantum Cramér-Rao bound

A lower bound of an unbiased estimator of a deterministic
parameter is given by the Cramér-Rao bound (CRB), which
states that the variance of any such estimator is equal or
greater than the inverse of the Fisher information. The quan-
tum analog of the CRB is the quantum Cramér-Rao bound
(QCRB), given by the inverse of the QFI. The significance of
the QCRB lies in the fact that in the case of a single parameter
to be estimated the bound can in principle be saturated in
the limit of infinitely many measurements when choosing
the optimal quantum measurement and maximum-likelihood
estimation. Let us consider a quantum state ρμ that depends
on a vector of l parameters, μ = (μ1, μ2, . . . , μl )T . One can
generalize the single-parameter QCRB [4,5] to the multipa-
rameter QCRB [74] given for a single measurement by

Cov(μ̃) � F (μ)−1, Fi j (μ) = 1
2 tr (ρμ{Li,L j}), (34)

where Cov(μ̃) is a covariance matrix for the locally unbiased
estimator μ̃(x) [48,53], the {·, ·} means the anticommuta-
tor, and Li is the symmetric logarithmic derivative (SLD)
related to parameter i, which is defined similarly to the single-
parameter case 1

2 (Liρμ + ρμLi ) = ∂iρμ. For any given
positive weight matrix W , the estimation cost is bounded
by Tr[W Cov(μ̃)] � Tr[WF (μ)−1] ≡ CS (μ,W ). Contrary
to the single-parameter case, the multiparameter QCRB can
in general not be saturated. This problem was realized by
Holevo [52]. He proposed a tighter and more fundamental
bound CH (μ,W ), which is upper bounded by 2CS (μ,W )
[75,76]. In case of the asymptotically classical models, where
SLD operators for different parameters commute on aver-
age Tr(ρμ[Li, Lj]) = 0, the Holevo CRB is equivalent to the
QCRB and it can be saturated asymptotically with a collective
measurement on an asymptotically large number of copies
ρ⊗N

μ [53,76].
The SLD and the elements of QFI matrix are given

in Ref. [71] for any Gaussian state. The SLD can be
written as

Li = 1
2M

−1
αβ,γ δ (∂i�

γδ )(bαbβ − �αβ ), (35)

where the summation convention is used. In our case, the
mean displacement of Gaussian state is zero. Thus, we can
simplify further the elements of the QFI matrix in [71] to

Fi j = 1
2M

−1
αβ,γ δ∂ j�

αβ∂i�
γδ, (36)

where

M ≡ � ⊗ � + 1
4� ⊗ �, (37)
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and � =⊕n
k=1 iσy. Using the properties of the Gaussian state

(circularly symmetric and with zero mean) we can write the
SLD for n-mode interferometers as

Li =
n∑
j

gj
i b̂

†
j b̂ j +

n∑
j<k

(
gjk

i b̂†
j b̂k + (gjk

i

)∗
b̂†

kb̂ j
)+ C, (38)

where C is a constant term. In the single-parameter case,
the optimal POVM is the set of projectors onto eigenstates
of Li. It allows one to saturate the QCRB in the limit of
infinitely many measurements and maximum-likelihood es-
timation [4,77,78]. For the diagonalization of the SLD, the
constant C is not important and we can drop it from the
beginning. We construct a Hermitian matrix Mi

Mi =

⎡
⎢⎢⎣

g1
i g12

i . . . g1n
i

(g12
i )∗ g2

i . . . g2n
i

. . . . . . . . . . . .

(g1n
i )∗ (g2n

i )∗ . . . gn
i

⎤
⎥⎥⎦, (39)

where the diagonal elements are real-valued functions which
can be defined as gj

i = M−1
αβ,γ δ (∂i�

γδ ) with α = 2 j and β =
2 j − 1. The off-diagonal elements are complex-valued func-
tions which are defined as gjk

i = M−1
αβ,γ δ (∂i�

γδ ) with α = 2 j
and β = 2k − 1 and k > j. Further, we can define a new set
of operators b̄† ≡ [b̂†

1, b̂†
2, . . . , b̂†

n] and b̄ ≡ [b̂1, b̂2, . . . , b̂n]T .
Then the SLD becomes

Li = b̄†Mib̄. (40)

Since Mi is a Hermitian matrix, it can always be uni-
tarily diagonalized by Mi = V†

i DiVi with V†
i Vi = I . A

new set of operators can be defined as d̄†
i = b̄†V†

i where
d̄†

i = [d̂†
i1, d̂†

i2, . . . , d̂†
in]. The optimal POVM for the single-

parameter case (i = 1, which we drop in the following)
can be found as a set of projectors in the Fock ba-
sis {|m1, m2, . . . , mn〉 〈m1, m2, . . . , mn|}{m1,m2...mn} of the d̂l

with d̂†
l d̂l |m1, m2, . . . , mn〉 = ml |m1, m2, . . . , mn〉, where l ∈

{1, . . . , n}. The d̂l will be called “detection modes.” In the
case of multiparameter estimation, one needs to check the
compatibility conditions to saturate the SLD-CRB. Thus, we
give the general commutation relation of SLD in Appendix B
for an n-mode interferometer. We see that the SLDs for n < 3
commute on average, Tr [ρint[Li,L j]] = 0, for any parameter
estimation.

III. RESULTS

A. Single receiver

In this section, we consider the case of the simplest esti-
mation of the parameters of the sources with a single receiver
with mode b̂. Then the covariance matrix for the state can be
written as

� =
[

0 χ

χ 0

]
. (41)

The QFI matrix elements for single mode can be found as

Fi j = 4∂iχ∂ jχ

4χ2 − 1
, (42)

and, up to the irrelavant constant, the SLD becomes

Li = 4∂iχ

4χ2 − 1
b̂†b. (43)

Since the SLD is already diagonal in the basis of b̂†b̂, the
detection mode can be considered as b̂. We write the POVM
obtained from the SLD as a set of projectors in the Fock basis
{|m〉 〈m|}{m} which is the eigenbasis of b̂†b̂, b̂†b̂ |m〉 〈m| =
m |m〉 〈m|. To compare, we consider the POVM from het-
erodyne detection. The heterodyne detection uses a classical
local oscillator to make a measurement locally on the basis of
coherent states. For a single mode, its POVM elements can be
written as E (ν) = |ν〉 〈ν| /π where |ν〉 is coherent state and∫

d2ν E (ν) = 1. The probability that E (ν) triggers reads as

P(ν|μi ) = 1

π (1 + n̄)
exp

[
− |ν|2

(1 + n̄)

]
, (44)

with n̄ given by Eq. (31). The classical Fisher information
(CFI) for parameter μi can be written as

Fi =
∫

d2ν
1

P(ν|μi )

(
∂P(ν|μi )

∂μi

)2

. (45)

Resolution of a uniform circular source. Consider a source
defined as a circular disk with radius a and with uniform
temperature T located under the interferometer at a distance R
[r = (0, 0, R)]. We are interested in estimating a or T . While
estimating one of them, we will assume that the other param-
eter is known to sufficiently large precision. The temperature
distribution on the source plane becomes

Teff (x, y) = T circ(x, y), (46)

where the symbol circ(·) stands for the circular function, de-
fined as

circ(x, y) �
{

1,
√

x2 + y2 � a
0,

√
x2 + y2 > a.

(47)

We assume a � R. Then only small angles are involved
and one can set cos3 �(x, y) ≈ 1. This corresponds to one of
the approximations characteristic of the far-field regime [79].
Using Eq. (31), we have n̄ = πa2κT /R2 and χ = 1/2 + n̄.
The QFI for estimating a becomes

Fa = 4πT κ

R2 + a2πT κ
. (48)

Then we can write the SLD for estimating the a ignoring the
constant term as

La = 2R2

aR2 + a3πT κ
b̂†b̂. (49)

The CFI of the heterodyne detection becomes

Fa = 4a2π2T 2κ2

(R2 + a2πT κ )2
. (50)

In Fig. 2, we compare the QFI with the CFI of heterodyne
detection. As one can see, for small source sizes, the Fisher
information from heterodyne measurement vanishes. How-
ever, the QFI tends to a constant. For instance, in the limit
a → 0, for T = 300 K we have QFI for estimating a as
Fa ∼ 6.16 × 10−2 1/km2, which gives a smallest standard
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FIG. 2. (a) The QFI (solid blue line) and the CFI (dotted-dashed
red line) from the heterodyne measurement to estimate the source
size as a function of a. Both results are dimensionless and scaled
with the 4πT κ/R2, considering T = 300 K. (b) The QFI (solid
blue line) and the CFI (dotted-dashed red line) from the heterodyne
measurement to estimate the temperature as a function of a. Both
results are in units of 1/K2, and we consider T = 300 K.

deviation of about 4 km. Thus, we can conclude that the
photon-number measurement on the complete basis of Fock
states in the detection mode b̂ helps us to get better resolution
than heterodyne measurement. If a becomes larger, we can see
that the QFI and CFI get close to each other at some point. To
estimate a, we assumed that we know exactly the temperature
of the source. Further, we find the QFI for estimating the
temperature as

FT = πa2κ

R2T + a2πT 2κ
, (51)

with a SLD given by

LT = R2

T R2 + a2πT 2κ
b̂†b̂. (52)

The optimal POVM is a set of projectors in the Fock basis
{|m〉 〈m|}{m} for both estimating a and T . The CFI from het-
erodyne detection to estimate temperature becomes

FT = π2a4κ2

(R2 + a2πT κ )2
. (53)

In Fig. 2(b), we plot both QFI and CFI for heterodyne
detection for temperature estimation. Both have very close
functional behavior. They vanish for a → 0 and they approach
each other when we have a large source size.

The off-diagonal matrix element of the QFI matrix for
multiparameter estimation reads as

FaT = 2aπκ

R2 + a2πT κ
. (54)

By sampling the same state N times, the standard deviation
of the estimator decreases proportional to 1/

√
N . The SMOS

satellite moves at a constant speed v � 7 km/s and takes the
time τ = L/v to fly over a distance L. For each sample there is
a lower bound for the detection time given by tD ∼ 1/B (see
Appendix A). In practice, the effective detection time might
be much larger, due to, e.g. dead times of the detectors, slow
electronics, etc. In addition, zero temperature of the detector
and modes bi is implicitly assumed in our calculations, but
would require cooling down to temperatures much smaller
than h̄ω0. If the actual detection time is t eff

D , the sample size
becomes N = τ/t eff

D . In this paper we intend to establish the

ultimate theoretical bounds and hence assume that the mini-
mal detection time tD = 1/B can be achieved, in which case
the sample size becomes N ∼ LB/v. To estimate the source
size one can assume that L ∼ a, and the QCRB for estimating
a becomes δa � 1/

√
NFa. Since N depends also on a one

can find the optimum bound in the sense of a minimal δa
at a = R/

√
πκT . For T = 300 K, we find a ∼ 7.9 km and

δa � 1.0 m. The bound for estimating T , assuming all other
parameters known, can be written as δT � 1/

√
NFT . Using

the same parameters as before and the same sample size, we
have δT � 0.08 K. Thus, increasing the sample size to the
theoretically maximally possible value, the spatial resolution
improves by a factor of order 35 000 compared to the reso-
lution of SMOS, and the radiometric resolution by factor of
order 500. One can also increase the resolution by increasing
the number of antennas, which we present in the following
sections.

B. Two-mode interferometer

The optimum measurement with a two-mode interferome-
ter for temperature estimation of a black body was considered
in Ref. [80] and experimentally demonstrated in Ref. [81].
Further, the spatial resolution of two equally bright point
sources with a similar setup was recently studied in Ref. [35].
In the previous section, we only considered a single receiver
with mode b̂. It is obvious that we may get additional informa-
tion from the cross correlations of an n-mode interferometer.
An analytical calculation of the QFI matrix for n-mode inter-
ferometer generally becomes untractable for n > 2 and one
has to rely on numerical calculation (see Sec. III C). In this
section, we consider two receivers with modes b̂1 and b̂2 to
analyze the estimation of a single uniform circular disk for its
size a and temperature T and two uniform circular disks with
different temperatures for their the spatial resolution (source
separation si and centroid ti with i ∈ {x, y}). We write b as
b� = (b̂1, b̂†

1, b̂2, b̂†
2). Since, the mean displacement is �i = 0,

the covariance matrix � of the state ρint becomes

� =

⎡
⎢⎣

0 χ 0 ξ

χ 0 ξ ∗ 0
0 ξ ∗ 0 χ

ξ 0 χ 0

⎤
⎥⎦, (55)

where χ = 1/2 + n̄ and ξ = 〈b†
2b1〉. We give the general re-

sult for the QFI elements in Appendix C. Further, one can
write the matrix Mi as

Mi =
[

g1
i |g2

i |eiδi

|g2
i |e−iδi g1

i

]
, (56)

where g1
i , g2

i are given in Appendix C in terms of χ and ξ ,
and δi is the phase difference between two modes in the SLD.
Using the eigenvectors of Mi, we can write the unitary Vi as

Vi = 1√
2

[
1 eiδi

1 −eiδi

]
. (57)

We see that Vi does not depend on the magnitude of the
elements of the matrix Mi for a two-mode interferometer. The
detection modes can be found as d̂1 = (b̂1 + b̂2eiδi )/

√
2 and

d̂2 = (b̂1 − b̂2eiδi )/
√

2. The preprocessing to combine these
two modes can be done by a phase delay on one of the modes
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FIG. 3. (a) The QFI (solid blue) and the CFI (dotted-dashed red) from the heterodyne measurement to estimate the source size as a
function of a. Both of the results are scaled with Eq. (59). In the limit a → 0, for T = 300 K we have Fa ∼ 0.117 1/km2, which gives us a
standard deviation around 2.92 km. (b) The QFI Fa for estimating the size of the circular disk as a function of �r (spatial separation of two
receivers) for different source sizes a = (0, 10, 20, 30) km with T = 300 K. Data are scaled by the maximum values of the QFI, which are
∼0.117, ∼ 0.070, ∼ 0.030, ∼ 0.015 1/km2, respectively. (c) The QFI Fa for estimating the size of the circular disk as a function of separation
of two antennas �r, for different temperatures T .

and then combining these modes by a beam splitter before
any measurement. Then the POVM for the optimum mea-
surement can be written as a set of projectors again in Fock
basis as {|m1, m2〉 〈m1, m2|}{m1,m2} which is the eigenbasis of
d̂†

l d̂l , d̂†
l d̂l |m1, m2〉 = ml |m1, m2〉. We check the weak com-

patibility condition for the SLD operators for general ith and
jth parameters of two-mode interferometer in Appendix B.
We find that the SLD operators commute on average on ρint,
Tr[ρint[Li,L j]] = 0 for the two-mode interferometer. In this
case, CH (μ,W ) = CS (μ,W ) ∀ W and the SLD-CRB can be
saturated asymptotically by a collective measurement on an
asymptotically large set of copies ρ⊗N

int of ρint. To compare
this POVM with the classical approach, we consider hetero-
dyne detection (see Appendix D).

Resolution of uniform circular source. Let us assume that
on the source plane, we have a circular disk of radius a with
uniform temperature T located at r = (x0, y0, R). Then the
temperature distribution over the surface on the source plane
can be written as Teff (x, y) = T circ(x − x0, y − y0). We want
to estimate again a and T . The QFI for estimating the source
size is given by Eq. (E4) for a two-mode interferometer. The
expression is quite complicated. However, we can analyze it
numerically, or we can look at certain limits. Estimating the
size of the circle Fa depends on �r (the separation of the
two antennas). Physically we assumed this separation to be
greater than the central wavelength �r > λ. Mathematically,
one can take the limit �r → 0, in which case the additional
information from the phase difference between two antennas
vanishes. In this limit, the QFI for estimating the source size
becomes

Fa
�r→0−−−→ 8πκT

R2 + 2πa2κT
. (58)

If we have 2πa2κT � R2, the QFI for estimating a is Fa ∼
4/a2; for high temperatures or large a, the error of estimating
the size of the source linearly increases with its size. Fig-
ure 3(b) shows how the QFI changes when we decrease the
source size. In the limit of a → 0, the QFI for estimating the
source size becomes

Fa
a→0−−→ 8πκT

R2
. (59)

Comparing with the single receiver the QFI is doubled for
two-mode interferometers in the limit a → 0. We can still
have nonvanishing QFI for a → 0, as we can see from the
black line in Fig. 3(b), which is the limit as in Eq. (59). The
black line (∼0 km source size) is scaled with ∼0.117 1/km2,
which corresponds to a standard deviation of ∼2.92 km for
the interferometer with two modes. We give the CFI for het-
erodyne detection in Eq. (E14). For small source size, we can
ignore the higher-order terms in a, and we can simplify it as

Fa ≈ 16π2κ2T 2a2

R4
. (60)

As we can see, for a → 0, the CFI for heterodyne detection
tends to zero. Thus, the resolution of the source size with
heterodyne detection becomes arbitrarily bad in that limit [see
Fig. 3(a)]. However, for large source sizes, we can see from
Fig. 3(a) that CFI and QFI become equivalent. Therefore,
constructing a POVM from the SLD can beat Rayleigh’s reso-
lution curse, even for estimating the source size. To construct
the POVM for estimating the source size we give the elements
of matrix M in Eqs. (E9) and (E10). The phase delay is found
as δa = x0vx + y0vy, with vi defined as vx = �r cos ϕ/(λR),
vy = �r sin ϕ/(λR). Thus, once we have the information of
the location of the source centroid, we can combine these two
interferometer modes by using a phase delay to get the POVM
that saturates the QCRB. We plot the QFI as a function of �r
in Fig. 3(c) for different temperatures. We can see that when
the effective temperature of the circular source increases, the
QFI also increases. Moreover, when we increase �r, the QFI
for estimating a increases up to a maximum around �r ∼ 6 m.
The reason for this is additional information coming from the
phase differences in the two antennas. The QFI in Eq. (59) is
doubled compared to QFI for single receiver in Eq. (48) in the
limit a → 0.

In the limit �r → 0, the QFI for estimating T becomes

FT → 2πa2κ

T (2πa2κT + R2)
. (61)

Since we assume we are in a microwave regime kBT � h̄ω0,
we can not take the limit T → 0. Instead, we can verify that
the QFI for estimating the temperature depends on the source
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size for a finite temperature. Now, for T = 300 K and 30 km
source size we have the QFI around 2 × 10−5 1/K2 which
gives a very high standard deviation around 221 K. We show
in the next section that the QFI also increases if we increase
the number of spatial modes. For instance, for 20 antennas, we
have QFI around 1.5 × 10−4 1/K2, and the standard deviation
is 79 K for a single measurement.

In the limit �r → 0, the CFI from heterodyne detection
becomes

FT → 4π2a4κ2(πa2κT + R2)(3πa2κT + R2)

(2πa2κT + R2)4 . (62)

To compare with the QFI we assume the brightness temper-
ature T = 300 K and source size a = 30 km. This gives a
CFI around 8 × 10−6 1/K2 which give us a standard deviation
around 350 K. Compared to the QFI information, the CFI is
around 2.5 times smaller. Therefore, combining the spatial
modes (receivers) and measuring photon number in the Fock
basis of d̂1, d̂2, as expected, is more advantageous even for
estimating the temperature.

So far, we only gave the diagonal elements of the QFI
matrix, relevant for estimating each parameter individually,
assuming all other parameters are known. The single indepen-
dent off-diagonal element of the QFI matrix regarding a and
T is given in Eq. (E7). In the limit �r → 0 it simplifies to

FaT = 4πaκ

2πa2κT + R2
. (63)

Then one can construct the QFI matrix to find the QCRB
for multiparameter estimation. Further, we can estimate the
source location considering the two parameters x0, y0. The
QFI matrix elements for estimating the source locations can
be written as

Fi0 j0 = 8π2�r2κT J2
1 viv j

π�r2(πa2κT + R2) − κλ2R2T J2
1

, (64)

where i, j ∈ {x, y}. The QFI for estimating the source location
depends on source size and source temperature. Since the
elements Fi0a and Fi0T of the QFI matrix are zero, source size
and location can be estimated simultaneously. And the neces-
sary phase delay for POVM can be found as δi0 = δ + π/2
from Eq. (E13).

Spatial resolution of two-point sources. Recently, the spa-
tial resolution of two equally bright strong point sources was
studied in [35] by considering the sources aligned parallel to
the two-mode interferometer.

In this section, we consider a similar model with two circu-
lar disk sources on the surface of the source plane at locations
r1 = (x1, y1, R) and r2 = (x2, y2, R) but with different effec-
tive temperatures T1 and T2, and same sizes a. We assume
that in the far field {xi, yi} � R and a � R. We analyze two
cases: when the sources are aligned or not aligned with the
two antennas. For two circular sources with equal size, the
temperature distribution over the surface can be written as

Teff (x, y) =
∑

i={1,2}
Ticirc(x − xi, y − yi ). (65)

Then we can define the four parameters that we want to es-
timate as source separation (sx = x1 − x2), (sy = y1 − y2) and
centroid of the two sources [tx = (x1 + x2)/2], [ty = (y1 +

y2)/2]. In Appendix F, we express the QFI matrix elements for
all four parameters. Since these equations are quite compli-
cated, we check the important limits. Since we want to resolve
the two-point sources even for very small separation, we
check the limit sx, sy → 0. Then we have QFI matrix elements
for estimating the source separation as Fsi → 4π2v2

i ηκT and
Fsxsy → 4π2vxvyηκT , if T1 = T2 = T .

If we assume two sources aligned parallel to the two-
mode interferometer [y1 = 0, y2 = 0 and ϕ = 0 → v = vx =
�r/(Rλ) and sx → s, tx → t] we can simplify our problem
to a single dimension. We show the dependence of the QFI
matrix elements on average temperature [T = (T1 + T2)/2]
and temperature difference �T = T1 − T2 assuming T1 � T2.
In Fig. 4(a), we plot Fs with respect to source separation
s for different average temperatures. As expected, when the
temperature increases, the QFI for estimating the separation
also increases. For T = 300 K and �r = 4 m, we have a
QFI around 0.027 1/km2 which corresponds to a standard
deviation of 6 km for only two receivers for the separation
estimation. In Fig. 4(b), we see that, as we increase the tem-
perature difference between the two-point sources, the QFI
becomes less oscillatory and at �T → 2T , the oscillatory
behavior disappears. In the limit �T → 2T , or s → 0 the QFI
for estimating s becomes

Fs → 4π2v2ηκT , (66)

which is the limit given by the solid black line in Fig. 4(b).
We calculated the CFI from heterodyne detection to estimate
the source separation in Eq. (F14). If the size of the sources
is very small and in the limit ηκT � 1 the CFI for estimating
the source separation simplifies to

Fsi

ηκT �1−−−−→ 8π2η2κ2T 2v2
i sin2[π (sxvx + syvy)]. (67)

When the source separation goes to zero (sx, sy → 0), Fsi

tends to zero. We compare the QFI with CFI in Eq. (F14)
from heterodyne detection in Fig. 4(c). As we can see, the CFI
goes to zero for small source separation. Therefore, we can
conclude that Rayleigh’s curse limits heterodyne detection.
The POVM from the SLD eliminates that limitation. We give
the elements of the matrix Ms, g1

s , and g2
s in Appendix F.

The phase difference for combining two spatial modes of the
interferometer can be found as δs = 2π (txvx + tyvy) − π . As-
suming the alignment of the spatial mode separation parallel
to source separation, it becomes δs = 2πtv − π .

The QFI matrix elements for estimating the centroid is
given in Eq. (F6). We assume that the two sources aligned
again parallel to two spatial modes of the interferometer
[y1 = 0, y2 = 0 and ϕ = 0 → v = vx = �r/(Rλ) and sx →
s, tx → t] and Ftx,tx → Ft . In Fig. 4(d), we see that the Ft

increases when we increase the temperature. For T = 300 K
and �r = 4 m, we have a QFI Ft ∼ 0.11 1/km2 which cor-
responds to a standard deviation of 3 km for estimating the
centroid. When sv ∼ 0.5, Ft goes to zero for equally bright
sources. In Fig. 4(e) we see that it is not zero for sv ∼ 0.5,
if �T �= 0, and the oscillation of Ft decreases when we
increase the temperature difference. In the limit s → 0, Ft

simplifies to

Ft → 32π2v2ηκT (68)
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FIG. 4. (a) The QFI Fs of estimating the separation of two-point sources as a function of source separation s for different average
temperatures with �T = 0 and �r = 4 m. (b) The QFI Fs with respect to s for various temperature differences �T for T = 300 K. (c) The
QFI Fs (red dotted-dashed) and CFI for heterodyne detection (blue dashed) for estimating the separation of two-point sources with same
temperatures T as a function of s. Both the QFI and the CFI scaled by 4π2v2ηκT . (d) The QFI Ft respect to s for different average temperature
T . (e) The QFI Ft respect to s for various temperature difference �T for T = 300 K. (f) The QFI Ft (red dotted-dashed) and CFI for
heterodyne detection Ft (blue dashed) for estimating the centroid of two-point sources with same temperatures T as a function of s (both the
QFI and the CFI scaled by 32π 2v2ηκT ). For (a), (b), (d), and (e), v is fixed by taking the separation �r of the two antennas 4 m and we have
η ∼ 10−4. The curves are ordered by increasing value of the QFI from solid black to green dotted-dashed lines in (a) and (d), and from blue
dashed to solid black lines in (b) and (d).

for �T = 0. The CFI for heterodyne detection is given in
Eq. (F13). For small sources we consider again the limit
ηκT � 1, and we ignore the higher-order terms of ηκT . Then
we have

Fti
ηκT �1−−−−→ 32π2η2κ2T 2vi

2 cos2[π (sxvx + sxvy)]. (69)

If the source separation goes to zero (sx, sy → 0), we still have
a finite Fti , unlike the CFI for source separation. In Fig. 4(f),
we compare Ft with Fti . When the source separation goes to
zero, both Fisher information goes to a constant, and both go
to zero at sv → 0.5. However, the QFI is five times larger than
the CFI from heterodyne detection. Again the phase difference
for the POVM from the SLD can be found as δt = 2πtv +
π/2.

Both QFIs, for source separation and centroid, are periodic
functions with a period of 1/v in the case of two point sources
(see Ref. [35]). The information on the position of the sources
is only encoded in phases. The QFIs are maximum at s = 0
or at s = 1/v = λR/�r. The fact that sv = 1

2 the QFI has a
minimum (or even vanishes for the centroid estimation) has
its origin in destructive interference. For this value of sv, the
two waves from the centroid position to the two receivers
have a phase difference of π that makes that the off-diagonal
matrix element in the correlation matrix 〈b̂†

i b̂ j〉 vanish. Hence,
the QFI has to drop from the finite value at sv = 0 to this
minimum.

C. 1D n-mode interferometer arrays

The previous section considered a two-mode interferom-
eter for analytical calculations and compared the QFI with
its POVM and CFI for heterodyne detection. To compare our
results with SMOS, we extend the two-mode interferometer to
a 1D array of n single-mode receivers. We investigate numer-
ically how the QFI changes when increasing the number n of
interferometer modes. We assume the antenna array aligned
with the x axis on the detection plane and denote the maxi-
mum baseline separation of the two most distant antennas by
�rmax.

Resolution of two-point sources for n-mode interferometer
array. We assume that both sources have the same sizes and
temperatures (�T = 0 and T1 = T2 = T ) and that they are
parallel to the antenna array. In Fig. 5(a), we see that when we
increase the number of receivers, the behavior of Fs changes.
It is still oscillatory as a function of sv with a period of 2π .
However, for each oscillation, we have n − 2 additional max-
ima. Moreover, in Fig. 5(b), we see that Fs increases gradually
when we increase the number of receivers and the maximum
baseline increases as �rmax = (n − 1)�r. For �r = 1 m and
T = 300 K, the standard deviation for estimating the source
separation is ∼23 km for the two-mode interferometer. For
the 20-mode interferometer, we find a standard deviation of
around 0.65 km. Further, if we keep the baseline fixed as 4 m,
the QFI increases linearly with the number of receivers, as we

012601-10



QUANTUM-ENHANCED PASSIVE REMOTE SENSING PHYSICAL REVIEW A 106, 012601 (2022)

FIG. 5. (a) The QFI Fs as a function of s for 2,3,4,5,6 mode interferometers and each curve is scaled by its maximum values which are
∼1.7 × 10−3,∼ 6.9 × 10−3, ∼ 17.3 × 10−3,∼ 34.7 × 10−3, ∼ 60.8 × 10−3 1/km2, respectively. (b) The QFI Fs with respect to a number
of interferometer modes n. (c) The QFI Fs with respect to a number of interferometer modes n. (d) The QFI Ft as a function of s for
2,3,4,5,6 mode interferometers. Each curve is scaled by its maximum values which are ∼0.67 × 10−2, ∼ 2.78 × 10−2, ∼ 6.96 × 10−2, ∼
13.9 × 10−2, ∼ 24.3 × 10−2 1/km2, respectively. (e) The QFI Ft with respect to a number of interferometer modes n. [For all, the separation
of two nearest antenna �r is 1 m, and η ∼ 10−4. The maximum baseline is �rmax = (n − 1)�r.)] (f) The QFI Ft with respect to a number of
interferometer modes n. For both (c) and (f), the maximum baseline is fixed by �rmax = 4 m, in this case, separation of two nearest antenna is
�r = �rmax/(n − 1), and η ∼ 10−4. The curves are ordered by increasing value of the modes (n) from two-mode interferometer (solid black)
to six-mode interferometer (purple dotted-dashed) in (a) and (d).

can see in Fig. 5(c). In this case, for a two-mode interferom-
eter, we have a standard deviation of around 6 km, and for a
20-mode interferometer, we have 3 km.

We also checked the centroid estimation for the n-mode
interferometer. It leads to similar results as for source sep-
aration. From Fig. 5(d) we see that for sv = 0.5 the centroid
uncertainty for the two-mode interferometer diverges (Ft ∼ 0
at sv ∼ 0.5). This is no longer the case for the array of n
receivers. In Fig. 5(e), we see that Ft also increases with the
number of modes. For the two modes, the standard deviation
for estimating the centroid was ∼12 km. For the 20 modes,
we have a standard deviation of around 0.32 km considering
�r = 1 m and �rmax = (n − 1)�r for average temperature
T = 300 K. If we keep the baseline fixed, as we can see
from the Fig. 5(f), Ft increases linearly by n. By fixing the
�rmax = 4 m, we have a standard deviation of ∼3 km for the
two-mode interferometer; for 20 modes we have a standard
deviation of ∼1.5 km. Thus, instead of sampling the state in
time, we can increase the number of receivers to increase the
QFI, and both methods can be combined as well.

Spatial resolution of single circular source for n-mode
interferometer array. To analyze the effect of n for source
size estimation, we consider a single circular source as given
in Eq. (46). In Fig. 6, we show how the QFI for estimating
a changes with n. For a → 0, Fa increases linearly with n.
We have Fa ∼ 6.16 × 10−2 1/km2 for single receiver which
corresponds to a standard deviation of 4 km and for higher n,
we have approximately Fa ∝ n for small values of a. If we

have an array of 20 antennas, Fa ∼ 1.23 1/km2 which gives
a standard deviation of 0.9 km for estimating a. When we in-
crease the source size a, we see that there is extra information
coming from the phase differences as given by the solid lines
for �rmax = 6 m and dashed lines for �rmax = 4 m. One can
also see that as expected the dotted lines, corresponding to
the limit �rmax → 0, get close to the solid black line, which
corresponds to a single receiver, for large values of a.

FIG. 6. The QFI Fa as a function of a for 1,2,3,4 mode inter-
ferometers, which are given by black (the lowest single) curve, blue,
red, and green (the top) curves, respectively. The maximum baseline
difference is given by �rmax → 0 for dotted lines, �rmax = 4 m for
dashed lines, and �rmax = 6 m for solid lines. The black solid line
corresponds to single receiver and T = 300 K.
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As a mathematical limit, we can take �rmax → 0. Then the
additional information from phase differences of a receiver
pair will vanish [see Figs. 2(a) and 3(a)]. One can also com-
pare the QFI in Eq. (48) for a single mode with the QFI in
Eq. (59) for a two-mode receiver. In the limit a → 0, we
see that the QFI for estimating a is doubled. Yet, the FI for
estimating a from heterodyne detection in Eqs. (50) and (60)
always vanishes in this limit a → 0. In Fig. 6, the QFI to es-
timate a linearly increases with n. But the FI from heterodyne
detection is zero for the small source sizes in the limit a → 0
even for n → ∞. Thus, we see that resolution is limited for
heterodyne detection for small source sizes. To get the quan-
tum super-resolution for estimating the image, one needs to
linearly combine the modes b̂i of the n-mode interferometer.
For that aim, one needs to calculate the elements of the matrix
Mi numerically. Each normalized eigenvector of Mi maps to
a set of operators d̄ by linear combination of the operators in
b̄ with corresponding weights and phases. One can design a
setup using these weights and phases in the eigenvectors to
achieve the resolutions for a chosen parameter given in this
section.

IV. CONCLUSION

In summary, we studied possible quantum advantages
in passive microwave remote sensing. Starting from a mi-
croscopic current density distribution in the source plane
corresponding to a position-dependent brightness temperature
Teff (x, y), we derived the general partially coherent state re-
ceived by an array of antennas. From the dependence of that
partially coherent states on parameters that characterize the
sources, such as the radius a and brightness temperature T
of a uniform circular source, we obtained the QFI and hence
the QCRB for the smallest possible uncertainty with which
these parameters can be estimated based on measurements
of the multimode state of the antennas. We showed how the
optimal measurements allowing one to estimate a single pa-
rameter can be obtained for a general array interferometer
with antennas placed at arbitrary positions. In general, the
optimal measurements correspond to photon-detection in cer-
tain detector modes that can be obtained from the original
receiver modes by mode mixing via beam splitters and phase
shifters. For single-mode and two-mode interferometers, we
gave explicit analytical results for the best possible resolution
of one or two uniform circular sources, both in a and T and
demonstrated a clear quantum advantage over the classical
strategy corresponding to direct heterodyne measurements of
the receiver modes. In the limit of small source sizes, we
recover known results for the measurement of the centroid

and separation of two-point sources. We benchmarked our
results with the performance of the SMOS mission, which
achieves about 35-km resolution with 69 antennas deployed
on three 4-m long arms arranged in a Y shape, operating at
21 cm the wavelength, and flying at a height of 758 km above
Earth. As an example, we showed that by using the optimal
measurements, a single arm of length 4 m with 20 antennas
and a single measurement would allow a spatial resolution of
about 1.5 km. With a smaller satellite, a more than 20-fold
increase of resolution compared to SMOS could be achieved.
By increasing the size of the array to 19 m, the 20 antennas
should give rise to a spatial resolution down to 300 m. Sub-
stantially better resolutions can be achieved if we allow more
measurements. If we assume that the number of samples is
given by the time the satellite flies over the object whose size
one wants to estimate divided by the inverse bandwidth, even
with a single receiver a spatial resolution down to a few meters
and a radiometric resolution of a fraction of a Kelvin become
possible in principle.

Our results generalize previous approaches to quantum-
enhanced imaging based typically on weak sources (photon
numbers on average smaller than 1 per mode) or point sources,
and pave the way to quantum metrological sensitivity en-
hancements in real-world scenarios in passive microwave
remote sensing. Several challenges remain. Experimentally,
single-photon detection in the microwave regime is still
difficult but starts to become available [82], and even number-
resolved photon detection in the microwave regime has
meanwhile been demonstrated [83]. It requires very low tem-
peratures for operating superconducting qubits that would
have to be maintained on a long timescale on the satellite.
From the theoretical side, an extension to a many-parameter
regime requiring adaption of the optimal measurements will
be crucial for true imaging. Post-measurement beam synthesis
that is common in interferometric astronomy does not work
here, as already the detection modes depend on the pixel in the
image that one wants to focus on. Nevertheless, the substantial
quantum advantages demonstrated here theoretically in a rel-
atively simple but real-world scenario give hope that quantum
metrology can help to significantly improve the resolution of
passive Earth observation schemes, with corresponding posi-
tive impact on the data available for feeding climate models,
weather forecasts, and forecasts of floodings.
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APPENDIX A: BRIGHTNESS TEMPERATURE AND CURRENT DENSITY FLUCTUATIONS

The number of photons that pass through a certain antenna area AD in a certain time tD can be found from n̄ = ADtD�,
where � is the photon flux. For a given intensity I , the photon flux for frequency ω0 can be found by � = I/(h̄ω0). If the
total energy density on the antenna is UD, then the intensity can be written as I = UDc. Then n̄ becomes n̄ = ADtDUDc/(h̄ω0).
In the microwave regime h̄ω � kBT , the energy density (energy per unit volume per frequency) from black-body radiation at

012601-12



QUANTUM-ENHANCED PASSIVE REMOTE SENSING PHYSICAL REVIEW A 106, 012601 (2022)

frequency ω with a temperature distribution T (x, y) on the surface of radiation at the ith antenna position is given by [43]

uD(ω) = kB

2π3c3

∫
dx dy ω2 TB(x, y) cos θ̃ (x, y)

|r − ri|2 , (A1)

where the brightness temperature is defined as TB(x, y) ≡ T (x, y)B(x, y; ω, θ̃ , ϕ̃). Earth is rather a gray than a black body,
therefore, the emissivity B(x, y; ω, θ̃, ϕ̃) of the patch in the direction of the satellite given by polar and azimuthal angles is
introduced. One can take the integral over ω using the filter function in Eq. (21) to find the total energy density (energy per
volume) and it becomes

UD = kBω2
0B

2π3c3

∫
dx dy

TB(x, y) cos θ̃ (x, y)

|r − ri|2 . (A2)

Then the photon number on the receiver becomes

n̄ = 2kB

π h̄ω0

(AD

λ2

)
(tDB)

∫
dx dy

TB(x, y) cos θ̃ (x, y)

|r − ri|2 . (A3)

For simplicity of the receivers scattering function, we set AD ∼ λ2 and tD ∼ 1/B. Comparing Eq. (A3) with (29), we define
〈| j̃t,i(r, ω)|2〉 ≡ K1TB(x, y) cos θ̃ (x, y)δ(z − R) with a constant K1 = 32τckB/(3l3

c μ0c) which agrees with the result in Ref. [43].

APPENDIX B: COMMUTATION RELATIONS OF SLD’S FOR n-MODE INTERFEROMETER

The SLD for the ith parameter is given in Eq. (38) for the n-mode interferometer. To find the [Li,L j] we write

Ai =
n∑
j

gj
i b̂

†
j b̂ j, Bi =

n∑
j<k

[
gjk

i b̂†
j b̂k + (gjk

i

)∗
b̂†

kb̂ j
]
. (B1)

Using [b̂l , b̂†
k] = δkl , one can write b̂†

kb̂l b̂†
mb̂p = b̂†

mb̂pb̂†
kb̂l + b̂†

kb̂pδlm − b̂†
mb̂lδkp. Then, we find the rest of the commutation

relations as follows:

[Ai,A j] =
n∑
kl

gk
i g

l
j (b̂

†
l b̂kδkl − b̂†

kb̂lδkl ) = 0, (B2)

[Ai,B j] =
n∑

l<m

[(
gl

i − gm
i

)
glm

j b̂†
l b̂m + (gm

i − gl
i

)(
glm

j

)∗
b̂†

mb̂l
]
, (B3)

[Bi,A j] = −
n∑

l<m

[(
gl

j − gm
j

)
glm

i b̂†
l b̂m + (gm

j − gl
j

)(
glm

i

)∗
b̂†

mb̂l
]
, (B4)

[Bi,B j] =
n∑

k<l<m

(
gkl

i glm
j − glm

i gkl
j

)
b†

kbm + [(glm
i

)∗(
gkl

j

)∗ − (gkl
i

)∗(
glm

j

)∗]
b†

mbk

+
n∑

k<min(l,p)

[(
gkl

i

)∗
gkp

j b̂†
l b̂p − gkl

i

(
gkp

j

)∗
b̂†

pb̂l
]+ n∑

{k,m}<l

[
gkl

i

(
gml

j

)∗
b̂†

kb̂m − (gkl
i

)∗
gml

j b̂†
mb̂k
]
, (B5)

where
∑n

k<min(l,p) ≡∑n
l

∑n
p

∑min(l,p)−1
k and

∑n
{k,m}<l ≡∑n

l

∑l−1
m

∑l−1
k . For the two-mode interferometer (n = 2), the diagonal

elements of Mi are the same for any parameter estimation due to the central symmetry of two antenna. Then, we have
[Ai,B j] = [Bi,A j] = 0, the first summation vanishes, and we have [Bi,B j] = [g12

i (g12
j )∗ − (g12

i )∗g12
j ](b̂†

1b1 − b̂†
2b̂2). Since

〈b†
1b1〉 = 〈b†

2b2〉 = n̄, we obtain Tr [ρint[Li,L j]] = 0.

APPENDIX C: GENERAL QFI AND THE ELEMENTS OF THE MATRIX M FOR A TWO-MODE INTERFEROMETER

In this Appendix, we give the general results for the elements of the QFI and the matrix Mi for a two-mode interferometer,
assuming that all the elements of the covariance matrix depend on the parameter μi that we want to estimate. Using the covariance
matrix for a two-mode interferometer one finds the QFI matrix elements as

Fi j = 8

D

{
∂iξ

∗∂ jξ [(1 − 4χ2)2 − 4(1 + 4χ2)|ξ |2] + ∂iξ∂ jξ
∗[(1 − 4χ2)2 − 4(1 + 4χ2)|ξ |2]

+ 4ξ∂iξ
∗[ξ∂ jξ

∗(1 + 4χ2 − 4|ξ |2) + 2χ∂ jχ (1 − 4χ2 + 4|ξ |2)] + 4ξ ∗∂iξ [ξ∂ jξ
∗(1 + 4χ2 − 4|ξ |2)

+ 2χ∂ jχ (1 − 4χ2 + 4|ξ |2)] + 2∂iχ (−1 + 4χ2 − 4|ξ |2)[−4χ (ξ∂ jξ
∗ + ξ ∗∂ jξ ) + ∂ jχ (−1 + 4χ2 + 4|ξ |2)]

}
, (C1)
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where the denominator is given by

D = (−1 + 4χ2 − 4|ξ |2)[16χ4 + (1 − 4|ξ |2)2 − 8χ2(1 + |ξ |2)]. (C2)

Using the SLD given in Eq. (38) we find the diagonal elements of the matrix Mi given in Eq. (56) as

g1
i = 2(4∂iχ |ξ |2 + 4∂iχχ2 − 4∂iξξ ∗χ − 4∂iξ

∗ξχ − ∂iχ )

16χ4 − 8χ2(4|ξ |2 + 1) + (1 − 4|ξ |2)2
, (C3)

where the two diagonal elements are the same due to the symmetry with respect to the center of the two antennas, and

g2
i = 2

D
{−∂iξ (16|ξ |2χ2 + 4|ξ |2 − 16χ4 + 8χ2 − 1) − ∂iξ

∗[4ξ 2(4|ξ |2 − 1) − 16ξ 2χ2] − ∂iχ[32ξχ3 − 8ξχ (4|ξ |2 + 1)]},
(C4)

where D is given in Eq. (C2).

APPENDIX D: POVM FOR HETERODYNE DETECTION

The POVM for heterodyne detection is given in Ref. [34], and the CFI analyzed for the weak thermal sources. Here we briefly
introduce the POVM for heterodyne detection. Then, we compare our results for the QFI with the CFI for heterodyne detection.
The POVM is given as

E (ν1, ν2) = 1

π2
|ν1, ν2〉〈ν1, ν2|, (D1)

where |ν1, ν2〉 is a coherent state with normalization given by
∫

d2ν1d2ν2E (ν1, ν2) = 1. The covariance matrix for a two-mode
interferometer is given in Eq. (55). Using the corresponding state for the two-mode interferometer we can find the observation
probability for any parameter μi, in terms of the elements of the covariance matrix as

P(ν1, ν2|μi ) = 1

π2[(1 + n̄)2 − |ξ |2]
exp

[
(−|ν1|2 − |ν2|2)(1 + n̄) + ξν∗

1ν2 + ξ ∗ν∗
2ν1

(1 + n̄)2 − |ξ |2
]
. (D2)

The Fisher information for the parameter μi can be found as

Fi =
∫

d2ν1d2ν2
1

P(ν1, ν2|μi )

(
∂P(ν1, ν2|μi )

∂μi

)2

=
∫

d2ν1d2ν2P(ν1, ν2|μi ) f (ν1, ν2)

= 〈 f (ν1, ν2)〉, (D3)

where f (ν1, ν2) is a polynomial function of second- and fourth-order correlations of ν1 and ν2, defined as

f (ν1, ν2) ≡ {∂μi ln [P(ν1, ν2|μi )]}2 = 1

[P(ν1, ν2|μi )]2

(
∂P(ν1, ν2|μi )

∂μi

)2

. (D4)

With Wick’s theorem for Gaussian states, the fourth-order statistic can be written as

〈x1x2x3x4〉 = 〈x1x2〉 〈x3x4〉 + 〈x1x3〉 〈x2x4〉 + 〈x1x4〉 〈x2x3〉, (D5)

where xi ∈ {ν1, ν
∗
1 , ν2, ν

∗
2 }. We can also write 〈|ν1|2〉 = 〈|ν2|2〉 = 1 + n̄ and 〈ν∗

1ν2〉 = ξ , 〈ν∗
2ν1〉 = ξ ∗.

APPENDIX E: UNIFORM CIRCULAR SOURCE FOR A TWO-MODE INTERFEROMETER

We find the elements of the covariance matrix describing the state of two-mode interferometers in Eq. (55). Then for a circular
source with size a located at position (x0, y0, R) with the assumption x0, y0 � R in the source plane we have

n̄ = κT

R2

∫
dx dy circ(x − x0, y − y0)

= πa2κT

R2
, (E1)
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and χ and ξ become

χ = 1

2
+ πa2κT

R2
, (E2)

ξ = 〈b†
2b1〉 = κT

R2

∫
dx dy circ(x − x0, y − y0) exp [2π i(xvx + yvy)]

= κTa2

R2

J1

(
2πa

√
v2

x + v2
y

)
a
√

v2
x + v2

y

exp [2π i(x0vx + y0vy)], (E3)

where vx = �r cos ϕ/(λR), vy = �r sin ϕ/(λR), with �r = �r(cos ϕ, sin ϕ, 0). Note that
√

v2
x + v2

y = �r/(λR).

1. Quantum Fisher information: The uniform circular source

We found the QFI for estimating a is as

Fa =8π2a�r2κT

Da

[
πa�r2(πa2κT + R2)(J2

0 + 1) − 2�rλR(2πa2κT + R2)J0J1 + aκλ2R2T (J2
0 + 1)J2

1

]
, (E4)

where

Da = (π2a2�r2 − λ2R2J2
1

)[
�r2(πa2κT + R2)2 − κ2λ2R2T 2J2

1

]
, (E5)

and Ji( 2a�rπ
Rλ

) are the Bessel functions of the first kind and ith order. The QFI for estimating T becomes

FT = 2κa2
[
π�r2(πa2κT + R2) − κλ2R2T J2

1

]
T
[
�r2(πa2κT + R2)2 − a2κ2λ2R2T 2J2

1

] . (E6)

The other elements regarding the source size and the temperature of the circular source can be found as

FaT = 4πa�rκ[�r(πa2κT + R2) − aκλRT J0J1]

�r2(πa2κT + R2)2 − a2κ2λ2R2T 2J1
2

. (E7)

The QFI matrix elements for estimating the source locations can be written as

Fi0 j0 = 8π2R2λ2κT J1
2viv j

π�r2(πa2κT + R2) − κλ2R2T J1
2
, (E8)

where i, j ∈ {x, y}.

2. Elements of the matrix Mi for a two-mode interferometer: The uniform circular source

To combine two modes of the receivers for the optimum measurements, we calculate δ as given in Eq. (57). We find the matrix
elements of Ma as

g1
a = 2π�r2R2

Da
{πa�r2(πa2κT + R2) + λRJ1[aκλRT J1 − �r(2πa2κT + R2)J0]}, (E9)

g2
a = 2π�r2R2

Da
{aJ0[π�r2(πa2κT + R2) + κλ2R2T J2

1 ] − �rλR(2πa2κT + R2)J1}e−iδ, (E10)

where δ = vxx0 + vyy0. For the temperature estimation we get the elements of MT as

g1
T = �r2R2(πa2κT + R2)

�r2T (πa2κT + R2)2 − a2κ2λ2R2T 3J2
1

, (E11)

g2
T = − a�rκλR3J1e−iδ

a2κ2λ2R2T 2J2
1 − �r2(πa2κT + R2)2 . (E12)
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Finally, for the source location we found(
g2

x0

g2
y0

)
= − 2π�r2R2J1ei(−δ+π/2)

a
[
π�r2(πa2κT + R2) − κλ2R2T J2

1

](cos(ϕ)
sin(ϕ)

)
, (E13)

and g1
x0

= g1
y0

= 0.

3. Classical Fisher information for heterodyne detection: The uniform circular source

Since we calculated the elements of the covariance matrix in Eqs. (E1) and (E2) we can calculate Eqs. (D2) and (D4). Using
the CFI for the heterodyne detection in Eq. (D3), we can write the result for estimating the source size as

Fa = 8π2a2κ2T 2�r3(πa2κT + R2)

Da

[
4a5κ5λ5R5T 5J0J1

5 − 2a2�r3κ2λ2R2T 2(πa2κT + R2)3(J0
2 + 1)J2

1

+�r5(πa2κT + R2)5(J0
2 + 1) − 4a�r4κλRT (πa2κT + R2)4J0J1

− 7a4�rκ4λ4R4T 4(πa2κT + R2)(J0
2 + 1)J1

4 + 16a3�r2κ3λ3R3T 3(πa2κT + R2)2J0J3
1

]
, (E14)

with

Da = [�r2(πa2κT + R2)2 − a2κ2λ2R2T 2J2
1

]
4. (E15)

The estimation of the temperature becomes

FT = 2a2�r2κ2(πa2κT + R2)

DT

[
π2a2�r6(πa2κT + R2)5 − a4κ4λ6R6T 4(3πa2κT + 7R2)J6

1

+�r4λ2R2(πa2κT + R2)3(−5π2a4κ2T 2 − 2πa2κR2T + R4)J2
1 + a2�r2κ2λ4R4T 2(7π3a6κ3T 3

+ 19π2a4κ2R2T 2 + 10πa2κR4T − 2R6)J4
1

]
, (E16)

where

DT = [�r2(πa2κT + R2)2 − a2κ2λ2R2T 2J2
1

]
4. (E17)

APPENDIX F: TWO-POINT SOURCES FOR A TWO-MODE
INTERFEROMETER

The temperature distribution of two circular sources with
equal size a at locations (x1, y1, R) and (x2, y2, R) is given in
Eq. (65). We assume that {|xi|, |yi|, a} � R. The elements of
the covariance matrix in Eq. (55) for two-point sources with
different temperature can be found using Eqs. (31), (32), and
(65) as

χ = 1

2
+
∑

i

πa2κTi

R2
= 1

2
+ 2πa2κT

R2

= 1

2
+ 2ηκT, (F1)

where η = πa2/R2, and

ξ = 〈b†
1b2〉 = κπa2

R2

2J1
(

2πa�r
Rλ

)
2πa�r

Rλ

(T1e2π i(vxx1+vyy1 )

+ T2e2π i(vxx2+vyy2 ) )

= κηη2

2
[(2T − �T )e2π i(vxx1+vyy1 )

+ (2T + �T )e2π i(vxx2+vyy2 )], (F2)

where the average temperature is defined as T ≡ (T1 + T2)/2,
and the temperature difference of the sources as �T ≡ T2 −
T1 with T2 � T1 assumed, while the parameter η2 is given by

η2 = 2J1
(

2πa�r
Rλ

)
2πa�r

Rλ

, (F3)

which is related to the source size. In Fig. 7, we can see
the behavior of η2 with respect to the source size. For point
sources one can approximate η2 ≈ 1.

FIG. 7. Plot showing the behavior of η2 with respect to the radius
of the circular disk source with �r = 2 m.
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1. Quantum Fisher information: Two-point sources

We found the elements of the QFI matrix for estimating the source separation as

Fsis j = 2π2ηκviv j

Dsxsy

(η2κ2(4T 2 − �T 2){(4T 2 − �T 2) cos[4π (sxvx + syvy)] + 16T 2 cos[2π (sxvx + syvy)]}

−η2κ2(�T 4 − 24�T 2T 2 + 80T 4) − 128ηκT 3 − 32T 2), (F4)

where i, j = {x, y} and the denominator is given by

Dsxsy = ηκ (4T 2 − �T 2){η2κ2(�T 2 − 4T 2) cos[4π (sxvx + syvy)]

+ 4[ηκ (−�T 2ηκ + 4ηκT 2 + 6T ) + 1] cos[2π (sxvx + syvy)]}
− 3η3κ3(�T 2 − 4T 2)2 + 24η2κ2T (�T 2 − 4T 2) + 4ηκ (�T 2 − 20T 2) − 16T . (F5)

The elements of QFI matrix for estimating the centroid becomes

Ftit j = 16π2viv jηκ

Dt
[(4T 2 − �T 2) cos (2π (sxvx + syvy)) + �T 2 + 4T 2], (F6)

where the denominator is

Dt = 4T + 4ηκT 2 − �T 2ηκ − ηκ (4T 2 − �T 2) cos [2π (sxvx + syvy)]. (F7)

Off-diagonal elements of the QFI matrix can be found as

Fsit j = 32π2�T ηκT viv j

�T 2ηκ + ηκ (4T 2 − �T 2) cos[2π (sxvx + syvy)] − 4ηκT 2 − 4T
. (F8)

If we align two antennas parallel to the source separation, vx → v and vy → 0. In the limit where �T → 0 the QFI for the
source separation simplifies to

Fs → 4π2v2ηκT [ηκT cos (2πsv) + 3ηκT + 1]

[1 + 4ηκT + 2η2κ2T 2 − 2η2κ2T 2 cos (2πsv)]
, (F9)

and the QFI for the centroid simplifies to

Ft → 32π2v2ηκT cos2 (πsv)

1 + ηκT − ηκT cos (2πsv)
, (F10)

which agrees with the results in Ref. [35] for (�T = 0, vy = 0, sy = 0, ty = 0) as expected.

2. Elements of the matrix Mi for a two-mode interferometer: Two-point sources

For simplicity let us assume that �T → 0. Then we have the elements of the matrix Mi for a two-mode interferometer for
estimating the source sizes as

g1
si

= πvi(4ηκT + 1) cot[π (sxvx + syvy)]

{1 + 4ηκT + 2η2κ2T 2 − 2η2κ2T 2 cos[2π (sxvx + syvy)]} ,

g2
si

= πvi{ηκT cos[2π (sxvx + syvy)] + 3ηκT + 1} csc[π (sxvx + syvy)] exp(−iδs)

{1 + 4ηκT + 2η2κ2T 2 − 2η2κ2T 2 cos[2π (sxvx + syvy)]} ,

(F11)

and

g1
ti = 0,

g2
ti = 2πv cos[π (sxvx + syvy)] exp(−iδt )

1 + ηκT − ηκT cos[2π (sxvx + syvy)]
, (F12)

where δs = 2π (txvx + tyvy) − π and δt = 2π (txvx + tyvy) + π/2.

3. Classical Fisher information for heterodyne detection: Two-point sources

Using the CFI given for the heterodyne detection in Eq. (D3), and assuming that both sources have the same temperature
(�T → 0), one can find the CFI for estimating the centroid as

Fti = 32π2η2κ2T 2vi
2(2ηκT + 1)2 cos2[π (sxvx + syvy)]

{−2η2κ2T 2 cos[2π (sxvx + syvy)] + 2ηκT (ηκT + 2) + 1}2 . (F13)
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Again assuming (�T → 0), we can find the CFI for estimating the source separation as

Fsi = 1

Ds
8π2η2κ2T 2v2

i sin2[π (sxvx + syvy)](2ηκT + 1)2(1 − 14η4κ4T 4 cos[4π (sxvx + syvy)]

− 4η2κ2T 2 cos[2π (sxvx + syvy)][2ηκT (9ηκT + 2) + 1] − 2ηκT {ηκT [ηκT (21ηκT − 8) − 10] − 4}), (F14)

where the denominator is given by

Ds = {1 + 4ηκT + 2η2κ2T 2 − 2η2κ2T 2 cos[2π (sxvx + syvy)]}4. (F15)
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ibility in multiparameter quantum metrology, Phys. Rev. A 94,
052108 (2016).

[54] C. Oh, S. Zhou, Y. Wong, and L. Jiang, Quantum Limits of
Superresolution in a Noisy Environment, Phys. Rev. Lett. 126,
120502 (2021).

[55] M. Gessner, C. Fabre, and N. Treps, Superresolution Limits
from Measurement Crosstalk, Phys. Rev. Lett. 125, 100501
(2020).

[56] Y. L. Len, C. Datta, M. Parniak, and K. Banaszek, Resolution
limits of spatial mode demultiplexing with noisy detection, Int.
J. Quantum Inf. 18, 1941015 (2020).

[57] K. J. Blow, R. Loudon, S. J. D. Phoenix, and T. J. Shepherd,
Continuum fields in quantum optics, Phys. Rev. A 42, 4102
(1990).

[58] L. Mandel, E. Wolf, and P. Meystre, Optical Coherence and
Quantum Optics, Am. J. Phys. 64, 1438 (1996).

[59] R. J. Glauber, Coherent and Incoherent States of the Radiation
Field, Phys. Rev. 131, 2766 (1963).

[60] M. O. Scully, M. S. Zubairy, and I. A. Walmsley, Quantum
Optics, Am. J. Phys. 67, 648 (1999).

[61] R. Loudon and T. von Foerster, The Quantum Theory of Light,
Am. J. Phys. 42, 1041 (1974).

[62] J. Zmuidzinas, Cramér–Rao sensitivity limits for astronomical
instruments: Implications for interferometer design, J. Opt. Soc.
Am. A 20, 218 (2003).

[63] J. Zmuidzinas, Thermal noise and correlations in photon detec-
tion, Appl. Opt. 42, 4989 (2003).

[64] R. Kubo, The fluctuation-dissipation theorem, Rep. Prog. Phys.
29, 255 (1966).

[65] S. Savasta, O. Di Stefano, and R. Girlanda, Light quantiza-
tion for arbitrary scattering systems, Phys. Rev. A 65, 043801
(2002).

[66] E. A. Sharkov, Passive Microwave Remote Sensing of the Earth:
Physical Foundations (Springer, Berlin, 2011).

[67] L. D. Landau, E. M. Lifshits, L. P. Pitaevsk, L. D. Landau, and
L. D. Landau, Statistical Physics (Pergamon, Oxford, 1980),
Vols. 5, 9.

[68] R. Carminati and J.-J. Greffet, Near-Field Effects in Spatial Co-
herence of Thermal Sources, Phys. Rev. Lett. 82, 1660 (1999).

[69] D. Braun, P. Jian, O. Pinel, and N. Treps, Precision measure-
ments with photon-subtracted or photon-added Gaussian states,
Phys. Rev. A 90, 013821 (2014).

[70] G. Adesso, S. Ragy, and A. R. Lee, Continuous variable quan-
tum information: Gaussian states and beyond, Open Syst. Inf.
Dyn. 21, 1440001 (2014).

[71] Y. Gao and H. Lee, Bounds on quantum multiple-parameter
estimation with Gaussian state, Eur. Phys. J. D 68, 347
(2014).

[72] S. Olivares, Quantum optics in the phase space: A tutorial on
Gaussian states, Eur. Phys. J.: Spec. Top. 203, 3 (2012).

[73] C. Weedbrook, S. Pirandola, R. García-Patrón, N. J. Cerf, T. C.
Ralph, J. H. Shapiro, and S. Lloyd, Gaussian quantum informa-
tion, Rev. Mod. Phys. 84, 621 (2012).

[74] M. Szczykulska, T. Baumgratz, and A. Datta, Multi-parameter
quantum metrology, Adv. Phys.: X 1, 621 (2016).

[75] M. Tsang, F. Albarelli, and A. Datta, Quantum Semiparametric
Estimation, Phys. Rev. X 10, 031023 (2020).

[76] F. Albarelli, M. Barbieri, M. Genoni, and I. Gianani, A perspec-
tive on multiparameter quantum metrology: From theoretical
tools to applications in quantum imaging, Phys. Lett. A 384,
126311 (2020).

[77] S. L. Braunstein and C. M. Caves, Statistical Distance and the
Geometry of Quantum States, Phys. Rev. Lett. 72, 3439 (1994).

[78] M. G. A. Paris, Quantum estimation for quantum technology,
Int. J. Quantum Inf. 07, 125 (2009).

012601-19

https://doi.org/10.1103/PhysRevLett.123.070504
https://doi.org/10.1103/PhysRevLett.107.270402
https://doi.org/10.1103/PhysRevA.104.022613
https://doi.org/10.1109/TGRS.2004.830940
https://doi.org/10.1109/TGRS.2004.830641
https://doi.org/10.1109/22.808964
https://doi.org/10.1016/S0031-8914(34)90026-4
https://doi.org/10.1016/S0031-8914(38)80203-2
https://doi.org/10.1088/0957-0233/27/1/015002
https://doi.org/10.1063/1.5017680
https://doi.org/10.1103/PhysRevA.47.3346
https://doi.org/10.1088/1751-8121/ab5d4d
https://doi.org/10.1103/PhysRevA.88.040102
https://doi.org/10.1109/JSTQE.2009.2024959
https://doi.org/10.1116/1.5119961
https://doi.org/10.1088/1751-8121/aaf068
https://doi.org/10.1103/PhysRevA.98.012114
https://doi.org/10.1103/RevModPhys.90.035006
https://doi.org/10.1016/0047-259X(73)90028-6
https://doi.org/10.1103/PhysRevA.94.052108
https://doi.org/10.1103/PhysRevLett.126.120502
https://doi.org/10.1103/PhysRevLett.125.100501
https://doi.org/10.1142/S0219749919410156
https://doi.org/10.1103/PhysRevA.42.4102
https://doi.org/10.1119/1.18450
https://doi.org/10.1103/PhysRev.131.2766
https://doi.org/10.1119/1.19344
https://doi.org/10.1119/1.1987930
https://doi.org/10.1364/JOSAA.20.000218
https://doi.org/10.1364/AO.42.004989
https://doi.org/10.1088/0034-4885/29/1/306
https://doi.org/10.1103/PhysRevA.65.043801
https://doi.org/10.1103/PhysRevLett.82.1660
https://doi.org/10.1103/PhysRevA.90.013821
https://doi.org/10.1142/S1230161214400010
https://doi.org/10.1140/epjd/e2014-50560-1
https://doi.org/10.1140/epjst/e2012-01532-4
https://doi.org/10.1103/RevModPhys.84.621
https://doi.org/10.1080/23746149.2016.1230476
https://doi.org/10.1103/PhysRevX.10.031023
https://doi.org/10.1016/j.physleta.2020.126311
https://doi.org/10.1103/PhysRevLett.72.3439
https://doi.org/10.1142/S0219749909004839


KÖSE, ADESSO, AND BRAUN PHYSICAL REVIEW A 106, 012601 (2022)

[79] J. W. Goodman, Statistical Optics (Wiley, New York, 1985),
Vol. 1, p. 567.

[80] M. E. Pearce, E. T. Campbell, and P. Kok, Optimal quan-
tum metrology of distant black bodies, Quantum 1, 21
(2017).

[81] L. A. Howard, G. G. Gillett, M. E. Pearce, R. A. Abrahao,
T. J. Weinhold, P. Kok, and A. G. White, Optimal Imaging of
Remote Bodies Using Quantum Detectors, Phys. Rev. Lett. 123,
143604 (2019).

[82] R. Lescanne, S. Deléglise, E. Albertinale, U. Réglade, T.
Capelle, E. Ivanov, T. Jacqmin, Z. Leghtas, and E. Flurin, Ir-
reversible Qubit-Photon Coupling for the Detection of Itinerant
Microwave Photons, Phys. Rev. X 10, 021038 (2020).

[83] C. S. Wang, J. C. Curtis, B. J. Lester, Y. Zhang, Y. Y. Gao, J.
Freeze, V. S. Batista, P. H. Vaccaro, I. L. Chuang, L. Frunzio, L.
Jiang, S. M. Girvin, and R. J. Schoelkopf, Efficient Multiphoton
Sampling of Molecular Vibronic Spectra on a Superconducting
Bosonic Processor, Phys. Rev. X 10, 021060 (2020).

012601-20

https://doi.org/10.22331/q-2017-07-26-21
https://doi.org/10.1103/PhysRevLett.123.143604
https://doi.org/10.1103/PhysRevX.10.021038
https://doi.org/10.1103/PhysRevX.10.021060

