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Abstract  

There is an increasing awareness of the advantages of multi-modal neuroimaging. Networks 

obtained from different modalities are usually treated in isolation, which is however 

contradictory to accumulating evidence that these networks show non-trivial 

interdependencies. Even networks obtained from a single modality, such as frequency-band 

specific functional networks measured from magnetoencephalography (MEG) are often 

treated independently. Here, we discuss how a multilayer network framework allows for 

integration of multiple networks into a single network description and how graph metrics 

can be applied to quantify multilayer network organisation for group comparison. We 

analyse how well-known biases for single layer networks, such as effects of group 

differences in link density and/or average connectivity, influence multilayer networks, and 

we compare four schemes that aim to correct for such biases: the minimum spanning tree 

(MST), effective graph resistance cost minimisation, efficiency cost optimisation (ECO) and a 

normalisation scheme based on singular value decomposition (SVD). These schemes can be 

applied to the layers independently or to the multilayer network as a whole. For correction 

applied to whole multilayer networks, only the SVD showed sufficient bias correction. For 

correction applied to individual layers, three schemes (ECO, MST, SVD) could correct for 

biases. By using generative models as well as empirical MEG and functional magnetic 

resonance imaging (fMRI) data, we further demonstrated that all schemes were sensitive to 

identify network topology when the original networks were perturbed. In conclusion, 

uncorrected multilayer network analysis leads to biases. These biases may differ between 

centres and studies and could consequently lead to unreproducible results in a similar 

manner as for single layer networks. We therefore recommend using correction schemes 

prior to multilayer network analysis for group comparisons.  

 

Keywords: functional connectivity, functional networks, structural networks, multilayer 

networks, graph theory, multi-modal imaging, minimum spanning tree, network 

comparison. 

 

Abstract word count: 276  
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Introduction 

The human brain is widely considered to be a complex network that can be studied by graph 

theoretical approaches. In such a description, nodes in the network correspond to 

anatomical regions and links typically refer to either structural or functional connections 

between those regions. Graph or network theory has been applied successfully to networks 

derived from a wide range of modalities, for example from functional magnetic resonance 

imaging (fMRI) (Bassett et al., 2008), magnetoencephalography (MEG) (Stam, 2014), 

electroencephalography (EEG) (Stam et al., 2007), diffusion tensor imaging (Iturria-Medina 

et al., 2008) and structural covariance (He et al., 2007). A key advantage of such an 

approach is that network theory enables characterisation of both the spatial organisation 

and the strength of the network connections (Bassett and Sporns, 2017). Various metrics, 

describing both nodal and global topological network characteristics, have been shown to 

provide useful quantitative descriptions of networks in order to reveal common pathways 

across diseases (Crossley et al., 2014), and to differentiate brain states during cognitive tasks 

(Braun et al., 2015; Micheloyannis et al., 2006). Despite its potential, the application of 

network theory to neuroimaging comes with several challenges, including: 1) How do we 

integrate information from networks across different neuro-imaging modalities from the 

same subject or group? 2) How do we compare networks between groups and experimental 

conditions in an unbiased way?  

 

One of the advantages of network theory is the fact that it is modality invariant, i.e. the 

same network concepts can be applied to a wide range of data obtained from different 

modalities. However, networks obtained from different imaging modalities or from different 

frequency bands in the same subjects are usually treated in isolation using a single layer 

network approach. Yet, the field is increasingly acknowledging and elucidating how different 

types of networks are interrelated in a non-trivial way (Garcés et al., 2016). For instance, 

relationships between anatomical and functional networks are now established and often 

studied using computational models (Hlinka and Coombes, 2012). Moreover, recent studies 

suggest that functional networks are shaped by both monosynaptic and polysynaptic walks 

in the underlying structural network (Mehta-Pandejee et al., 2017; Meier et al., 2016a; 

Robinson, 2012). Likewise, covariance in cortical myeloarchitecture and in fMRI connectivity 

matrices can be explained by a nonlinear combination of MEG functional connectivity 

matrices (Hunt et al., 2016; Tewarie et al., 2016a). Importantly, for MEG and EEG, there is no 

reason why different frequency-specific networks would operate independently from one 

another (Tewarie et al., 2016b). All of this evidence advocates an integrative approach. 

 

A generic framework that enables integration of information from different networks is the 

multilayer network approach. A multilayer network can be considered as a ‘network of 

networks’, which consists of individual network layers that are interconnected (Boccaletti et 

al., 2014; Van Mieghem, 2016). Thus, a given node in the multilayer network can be 

involved in different types of interactions. Multilayer networks can show non-trivial 
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properties that are not merely the result of the sum of its layers (Kivelä et al., 2014; Nicosia 

et al., 2013; Sahneh et al., 2015). This approach has been applied effectively to several 

networks, such as social networks, transportation networks, and synthetic networks, 

demonstrating that empirical systems can be better understood when the influence of 

interacting networks are considered (De Domenico et al., 2013; Granell et al., 2013; 

Hernández et al., 2014). Multilayer network approaches have recently been introduced to 

the field of neuroscience (Brookes et al., 2016; Buldú and Porter, 2017; Crofts et al., 2016; 

De Domenico et al., 2016; Tewarie et al., 2016b; Yu et al., 2017), where different layers can 

correspond to different frequency-band specific networks or networks from different 

modalities. Lately, motif analysis of a multilayer network – where individual layers were 

made up of DTI and fMRI networks – was reported by (Battiston et al., 2017). Using the 

multilayer framework an MEG study extracted meaningful connectivity differences between 

patients with schizophrenia and healthy controls (Brookes et al., 2016). Another study 

demonstrated a non-trivial relationship between frequency-band specific MEG networks for 

intermediate regimes of coupling between layers (Tewarie et al., 2016b). Furthermore, a 

multilayer network approach has also been applied successfully to the connectome of the C. 

elegans, where gap junctions and neuromodulator layers were grouped into different layers 

(Bentley et al., 2016; Nicosia and Latora, 2015; De Domenico et al., 2015a). 

 

Despite the obvious promise of these approaches, a key issue in the application of network 

theory is comparison between groups or conditions. Group comparison at the level of single 

layer networks can be challenging and biased by, for example, link density (van den Heuvel 

et al., 2017; Van Wijk et al., 2010). In other words, network measures depend on non-

organisational properties of the network such as link density and average connectivity. As a 

result, it proves to be challenging to differentiate between alterations in the underlying 

ground truth that are due to an experimental manipulation or a disease process from those 

that are due to experimental choices. This can potentially inflate false positives or false 

negatives when comparing networks between groups, which we refer to here as the bias in 

group comparisons. There are no reasons why multilayer networks would be exempted 

from these biases. Given the recent studies on multilayer networks in different diseases 

(Brookes et al., 2016; De Domenico et al., 2016; Guillon et al., 2016; Yu et al., 2017), it is 

now crucial to elucidate how to compare multilayer networks between groups. For single 

layer networks, several sampling methods or schemes have been proposed to correct for 

the biases in estimates of topology that are due to link density or average functional 

connectivity for unweighted and weighted networks respectively (Van Wijk et al., 2010). 

Examples of schemes that result in an unweighted subnetwork are multi-threshold 

permutation correction (Drakesmith et al., 2015), the minimally connected component 

(MCC) (Jalili, 2016), balance between network efficiency and costs (ECO) (Fallani et al., 

2017), a clustering optimization approach (Smith et al., 2015), the minimum spanning tree 

(MST) (Stam et al., 2014; Tewarie et al., 2015) and the union of shortest path trees (USPT) 

(Meier et al., 2015). The MCC is based on a thresholding scheme, where a threshold is 
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chosen just above the level where the network gets disconnected into components. For 

ECO, a threshold is chosen that maximises the ratio between network efficiency and link 

density, whereas the MST corresponds to the tree (a loop-less subnetwork) with the 

minimal sum of all weights that spans the original network. The USPT corresponds to the 

union of shortest path trees rooted at each node in the graph. While these approaches to 

extract unweighted networks have demonstrated their value for single layer networks, it 

remains unclear whether these approaches generalise to multilayer networks. Approaches 

for weighted networks (Wang et al., 2010), such as normalising by the mean or range of 

connectivity values have so far been less promising (Van Wijk et al., 2010). In the current 

study, we introduce a simple approach to correct for differences in average connectivity 

between groups for weighted networks, based on singular value decomposition of the 

multilayer connectivity.  

 

This paper is organised in the following way. We start with a theoretical section (1) on the 

basic mathematical concepts and metrics for multilayer networks, followed by a short 

description of generative models for multilayer networks. These generative models allow us 

to evaluate correction schemes for a given ground truth. We then show that multilayer 

network metrics are biased in a similar fashion as single layer network metrics (2), and 

evaluate existing and two new approaches as solutions to correct for biases in link density 

and average connectivity (3). We then demonstrate how sensitive a given approach is in 

revealing the true changes in network topology (4) since correction schemes are only useful 

if changes in the underlying topology can still be detected after the correction. We use 

synthetic networks based on generative models (e.g. a nonlinear preferential attachment 

model and a generative model for multilayer community networks) as ground truth, and we 

also apply the approaches to empirical MEG and fMRI data. Lastly, (5) we analyse how 

sensitive multilayer network metrics can detect group differences after application of the 

correction schemes.  
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Theory: multilayer network metrics 

A multilayer network is the generic name for a complex network structure consisting of 

multiple networks. Nodes exist in a set of layers that correspond to different important 

features of the system under consideration, and links encompass connections between all 

possible combinations of nodes and layers. Specific widely-used special cases include: multi-

weighted graphs, multilevel or multi-scale networks, multiplex networks, multi-relational 

networks or hyper-networks (Boccaletti et al., 2014). These different types of networks all 

fall under the multilayer network framework and can be obtained after applying specific 

constraints (Boccaletti et al., 2014). Here it is worth noting that multilayer network 

approach does not assume that the different layers are necessarily integrated. The 

multilayer framework leaves space to quantify the balance between distinctness and 

commonality among layers. There are several review papers for mathematically oriented 

readers on multilayer networks, please see (Boccaletti et al., 2014; De Domenico et al., 

2013; Kivelä et al., 2014; Wang et al., 2013; Wider et al., 2016). For a recent review on 

multilayer networks applied to neuro-imaging datasets see De Domenico (2017). Here, we 

focus on the aspects of multilayer networks that can be readily translated to neuroimaging 

(Figure 1).  

 

A convenient representation of a multilayer network is its corresponding block adjacency 

matrix (Gomez et al., 2013; De Domenico et al., 2013; Van Mieghem, 2016). An f-layered 

multilayer network written in terms of a block adjacency matrix reads (Sahneh et al., 2015) 

 

� = ���
� �� ��� … ��
��� �� ⋮⋮�
� … ⋱ �
 
��

�
,             (1) 

 

where �� corresponds to a symmetric, square adjacency matrix of a layer α, 1 ≤ � ≤ �, and ��� to the coupling matrix between the layers k and l, where 1 ≤ �, � ≤ �. �� has the same 

dimensions for all layers (n x n). This means that every layer has the same number of nodes 

or brain regions. The between layer coupling matrix ��� can take any form, e.g. fully 

connected or a diagonal matrix (e.g. 	��� = ��, where c is a constant and I the identity 

matrix). In view of the focus of recent theoretical studies, we concentrate on the following 

case where coupling matrices are special diagonal matrices (��� = ��), i.e. only introducing 

links between the same node (brain region) over all layers. In other words, we ignore cross-

frequency coupling between distant areas for now, but note that the subsequent metrics 

can also be applied to the case of fully connected interlayer coupling.     

 

The available topological metrics can be divided into: 1) distance class metrics 2) connection 

class metrics 3) spectral class metrics and 4) between layer dependency metrics (Hernández 

and Van Mieghem, 2011). Spectral class metrics correspond to properties related to the 
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eigenvalues of the network of interest (Van Mieghem, 2010). Distance class metrics are 

metrics where the geodesic distance or hops play a crucial role, where a hop refers to a link 

along a path. Connection class metrics refer to cohesive subgroups of nodes or the 

connectedness of a single node in the network. Between layer dependency metrics 

correspond to metrics that quantify relationships between layers.  

 

1) Distance class metrics  

Similar to single layer networks, characteristic path length, S, and global efficiency, G, are 

measures of integration in the network and can be similarly defined as (Boccaletti et al., 

2014) � = ��(�!�)∑ #$%$,%,$&%          (2a) ' = ��(�!�)∑ �()*$,%,$&% ,         (2b) 

    

where the distances #$%  refer to the number of hops (links) that you must traverse to travel 

from one node i to another node j along the shortest path between them, and where + = ,�. Distances can be obtained using Dijkstra’s algorithm (Dijkstra, 1959). The global 

efficiency G can also be evaluated for a subnetwork consisting of only the neighbours of 

node i. This results in the metric local efficiency for every node, which is usually averaged 

across nodes in the neuroscience literature, yielding a single value per network (Rubinov 

and Sporns, 2010).  

 

2) Connection class metrics 

Several metrics exist in this class, such as metrics that quantify the “importance” or 

“hubness” in a network and other metrics that quantify clustering and community structure. 

A basic measure for “importance” for a given node i in multilayer networks is the multilayer 

degree d. This metric was introduced in its general form by (De Domenico et al., 2013), and 

for the special case of multiplex networks by (Battiston et al., 2014). We assume a node 

labelling such that node i belongs to the l-th block row in A (Van Mieghem, 2016) 

 -$ = ∑ (��.)$
�/� + ∑ ∑ (�1�.)$
�/�;�&�
1/�,1&� = ∑ -$�
�/� + ∑ ∑ (�1�.)$
�/�;�&�
1/�,1&� 	, (3) 

 

where -3�  is the degree of node i in the multilayer network layer l, (�4�.)3	are the inter-

layer links from node i towards nodes at layer k, and u is the all-one vector. This multilayer 

degree metric is the extension of the degree from single layer networks. Extensions for 

eigenvector centrality to a multilayer framework also exist (Solá et al., 2013; Solé-Ribalta et 

al., 2014), as well as other more sophisticated measures, such as versatility of nodes and 

multilayer pagerank (De Domenico et al., 2015b; Halu et al., 2013). Multilayer pagerank is a 

metric based on biased random walks in a multilayer network. A very recent metric related 

to multilayer pagerank is functional multilayer pagerank (Iacovacci et al., 2016). This metric 

uses the concept of a multilink 5667$% = 89$%� , 9$%� , … , 9$%
 : and 5667 = (5�, 5�, … ,5
), where 9$%�  
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refers to a connection between node i and j in layer l. The functional multilayer pagerank Xi 

depends on a tensor z with elements ;<6667, and captures the probability �=	with which a 

random walker in the multilayer network jumps from one node i to a neighbour j (first term 

in Eq. 4a) or to any other node in the multilayer network (second term in Eq. 4a) 

 >$(?) = �= ∑ @$%<6667)*A%/� ;<6667)* �B* >% + CD$.       (4a) 

 

The first term contains the matrix @, which is called the multi-adjacency matrix  

 @$%<6667 = ∏ F5�9$%� + (1 − 5�)81 − 9$%� :H
� ,       (4b) 

 

and reflects the neighbours of a node that are connected through a multilink. The 

probability that a random walker hops to a neighbour i is normalised by the following 

expression  I% = ∑ @$%<6667)*A%/� ;<6667)* + JK,∑ L)*M66667)*N*OP QM66667)* ,      (4c) 

 

where J1,R corresponds to the Kronecker delta function. The product CD$ in Eq. 4a describes 

a random jump to any other connected node in the network  

 C = �A ∑ S(1 − �=) T1 − JK,∑ L)*M66667)*U*OP QM66667)*V + JK,∑ L)*M66667)*U*OP QM66667)*W >%A%/�    (4d) 

D$ = X Y∑ @$%<6667)*A%/� ;<6667)* + ∑ @%$<6667*)A%/� ;<6667)*Z.      (4e) 

 

Here, X corresponds to the Heaviside function. By tuning z, different versions of >$(?) can 

be obtained, however, in our case we are interested in the global ranking of the nodes, i.e. 

we are interested in >$∗ = max>$ (?). This maximum value can easily be found by 

expressing z in spherical coordinates (Iacovacci et al., 2016). The input to Eq. 4 can also be in 

the form of weighted adjacency matrices (Iacovacci et al., 2016).    

  

The clustering coefficient on single layer networks has been generalised to multilayer 

networks. This metric captures the amount of segregation in the network in terms of 

triangles. In the multilayer version of the clustering coefficient Ci, a triangle can be formed 

by links in different layers (Battiston et al., 2014) 

 _$ = ∑ ∑ ∑ `)*a `**bc `*b)a*d),*bd)cdaa (
!�)∑ e)a 8 e)a !�:a ,        (5) 

 

where 9$%�  refers to a connection between node i and j in layer l. We note in passing that the 

multilayer clustering coefficient given by Eq. 5 can be extended to analyse (for example) 
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structural–functional network relationships, and in particular their divergence under certain 

dynamical system conditions, in directed networks of relevance to neural systems (Crofts et 

al., 2016). Such ideas can be extended to weighted temporal (e.g. frequency band) 

networks. 

 

Community detection algorithms have been widely applied to single layer brain networks. 

Community structure in fMRI networks has been shown to reveal similar clusters as resting-

state networks obtained from independent component analysis (Crossley et al., 2013; 

Meunier et al., 2010). Details on multilayer community structure can be found in (Bassett et 

al., 2013; Mucha et al., 2010). Communities gi are usually obtained after optimisation of a 

quality function, e.g. modularity (Newman, 2006), that quantifies within-community 

connections relative to connections between communities. The multilayer variant of 

modularity is expressed as (Bassett et al., 2013) 

 f = ��ghih ∑ ST��,$% − j� e)a e*a�∑ e)a) J��V + J$%���,%W Jk)a,k*c$%�� ,    (6) 

 

where .�l�  corresponds to the total link weight in the network, j� to the resolution 

parameter, m$� stands for the community assignment of node i in layer l. Another way to 

extract communities is motif partitioning explained in (Benson et al., 2016), which has been 

applied to directed MEG networks in (Meier et al., 2016b; Märtens et al., 2017).  

 

3) Spectral class metrics 

Spectral metrics are based on the (eigen)spectrum of the block-matrix A or on the Laplacian 

Q of the multilayer network, obeying fn = on, where x and µ are an eigenvectors and 

eigenvalues (Van Mieghem, 2010), respectively, of Q, which is defined as  

 

f = p∆� − �� 0 … 00 ∆� − �� ⋮⋮0 … ⋱ 0∆
 − �

s + ��

��∑ ���� −��� … −��
−��� ∑ ���� ⋮⋮−�
� … ⋱ ∑ �
�� 
�
��, with (7a) 

∆�= diag( -�� , -�� , … , -A� ),                     (7b) 

 

where -3�  (1 ≤ 3 ≤ ,) is the degree of node i in layer l (remember that every layer has n 

nodes). Let o� ≥ o� ≥ ⋯ ≥ o�  be the ordered set of eigenvalues of Q, where + = ,�. The 

second smallest Laplacian eigenvalue o�!� is called the algebraic connectivity. This metric is 

related to the time to synchronize phase oscillators in a network and also to the robustness 

of a network: a higher algebraic connectivity means a higher inter-twined subgraph 

structure, which makes it harder to fragment the graph (Hernández et al., 2014). A relatively 

novel way to capture topological information from the network is to analyse the pseudo-
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inverse fy	of the Laplacian (Ellens et al., 2011; Van Mieghem et al., 2017). The effective 

graph resistance z{|  and the zeta vector can be obtained from this pseudo-inverse 

 z{| = +	trace(fy)         (8a) � = 8f��y , f��y , … , f��y :                     (8b) 

 

The effective graph resistance captures the overall transport ability: the lower z{| , the lower 

the resistance for flow in the network (Van Mieghem et al., 2017). The zeta vector captures 

the information of nodal spreading within the network. The effective graph resistance z{|  

and the zeta vector are defined in both weighted and unweighted graphs. 

 

4) Between layer dependency 

In addition to well-known metrics for single layer networks, multilayer networks can also be 

characterised by their between-layer relationships, examples are: entropy of multilayer 

degree, multilayer participation coefficient, conditional probability of finding a link in layer α 

given a link in layer α’, degree correlations (Battiston et al., 2014; Wider et al., 2016). 

Entropy of multilayer degree follows the definition of Shannon entropy with the probability 

replaced by -3� /-3. Multilayer participation coefficient is related to the entropy and 

quantifies whether links of a given node i are uniformly distributed among layers (Battiston 

et al., 2014) 

�_$ = 

!� �1 − ∑ T e)ae) V�
�/� �.       (9) 

 

Lastly, between layer degree correlations (DC) can be quantified by computing a Pearson 

correlation between the degree sequences of different layers (Battiston et al., 2014; Wang 

et al., 2014). These between layer dependency metrics allow one to capture whether 

individual layers act independently, in coherence with each other or in a regime between 

these two extremes, as recently demonstrated in (Tewarie et al., 2016b).   
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Theory: generative models for multilayer networks 

Non-linear preferential attachment for multilayer networks 

The first model we used is a nonlinear preferential attachment model (Nicosia et al., 2014). 

Here, the initial conditions are a small connected multilayer network consisting of n0 nodes 

and with f layers. Then, for every time step during the reconstruction of the network, a node 

i is added to the multilayer network and connected to another node j with probability Pr$→% 

based on the multilayer degrees  

 Pr$→% ∝ �8 -%� , -%� , … , -%
 :.       (10) 

 

If we consider the case of a two-layered multilayer network (duplex, f=2) we can choose the 

function f as 

 �8 -%� , -%� : = 8 -%� :�8 -%� :�	.      (11) 

 

By tuning α and β, different network configurations can be obtained, for example by tuning 

α or β from negative to positive we can construct layers with different correlations between 

their degrees (i.e. correlation between the degree sequence layer one vs degree sequence 

layer two). For the results section, we create a two-layer multilayer network consisting of 

200 nodes and tune β to alter the interlayer dependency.   

 

Synthetic multilayer community networks 

The second generative model we used creates multilayer communities with tuneable 

between-layer dependency of these communities; details of the algorithm can be found in 

(Bazzi et al., 2016). In short, the algorithm consists of two sequential steps. First, a 

multilayer partition is constructed: Partitions in each layer are initialised independently and 

updated iteratively according to a user-defined interlayer dependency tensor. Then, a 

random multilayer network is generated using the previously defined multilayer 

partitioning. This is done using a generalisation of stochastic block models to multilayer 

networks (Karrer and Newman, 2011). A link is added in the multilayer network based on a 

probability that is proportional to the product of the partition, expected number of links 

between communities (user-defined), and the expected number of links within 

communities. In addition, the multilayer networks can be constructed with a fraction of 

random links. In the simulations presented in the results section the similarity of 

communities in the different layers is tuned by altering the interlayer dependency tensor.  
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Methods 

Empirical MEG and fMRI networks 

We make use of a previously published MEG/fMRI dataset (Tewarie et al., 2016a). A total of 

15 participants (mean age 27.7 ± 6.5, 60% female) were used for analysis in this study. The 

study was approved by the University of Nottingham Medical School Ethics Committee, and 

all subjects gave written informed consent prior to participation. 

 

MEG data were acquired using a 275 channel CTF MEG system (MISL, Coquitlam, Canada), at 

a sampling rate of 600 Hz and using a 150 Hz low pass anti-aliasing filter. Data were 

recorded during a task-free, eyes-open condition for 10 min with the subject in a supine 

position. Subjects were asked to fixate on a red cross throughout. The surface of the head 

was digitised using a 3D digitiser (Polhemus Inc., Vermont). Co-registration was achieved 

using surface matching of the digitised head shape to an equivalent head shape extracted 

from an anatomical magnetic resonance (MR) image. MEG data were inspected for artefacts 

and trials deemed to contain excessive interference were removed. Lead fields were based 

on equivalent current dipole models (grid spacing of 4mm) and a multiple local sphere head 

model (Huang et al., 1999). Lead fields, the parcellated individual’s cortex (automated 

anatomical atlas (AAL); (Gong et al., 2009; Tzourio-Mazoyer et al., 2002)), and sensor level 

MEG data were fed into a scalar beamforming approach (Hillebrand et al., 2012). Data 

covariance was computed within a 1-150Hz frequency window and regularisation was 

applied to the data covariance matrix using the Tikhonov method with a regularisation 

parameter of 5%. Dipole orientation was determined using a non-linear search for optimal 

signal-to-noise-ratio. Beamformer timecourses were sign-flipped where necessary to 

account for the arbitrary polarity introduced by the beamformer source orientation 

estimation. Beamformer timecourses within a parcellated region were averaged using a 

Gaussian weighting function to obtain a representative timecourse for every region. This 

complete process resulted in 78 electrophysiological time courses, each representative of a 

separate cortical AAL region. Time courses were frequency filtered into five frequency 

bands: delta (1–4 Hz), theta (4–8 Hz), alpha (8–13 Hz), beta (13–30 Hz), gamma (30–48 Hz). 

This was followed by a multivariate orthogonalisation to correct for signal leakage 

(Colclough et al., 2015). Finally, a functional connectivity matrix was reconstructed by 

computing amplitude envelope correlations between leakage-corrected frequency-filtered 

timecourses (Brookes et al., 2011a).  

 

MRI data were collected using a 7 T-MRI system (Philips Achieva) with a volume transmit 

and 32 channel receive head coil. The anatomical MR image (used for MEG source 

reconstruction as well as fMRI processing) was acquired using an MPRAGE sequence (1 mm 

isotropic resolution, TE = 3 ms, TR = 7 ms, flip angle = 8°). Bias fields were corrected using 

SPM8 and brain extraction for the MPRAGE was achieved using the Brain Extraction Tool 

(BET v2.1, FSL (FMRIB's Software Library, http://www.fmrib.ox.ac.uk/fsl)) (Smith et al., 

2004). Resting-state fMRI data were acquired using a gradient-echo echo planar imaging 
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sequence (TR = 2 s, TE = 25 ms, flip angle = 75°, voxel dimensions = 2 × 2 × 2 mm3
, 150 

volume acquisitions). Participants were asked to keep their eyes open during the scan and 

to fixate on a cross presented on a back-projection screen and viewed via a mirror. Data 

were motion corrected using SPM8 (Ashburner et al., 1999). Subject-specific masks of grey 

matter, white matter, and cerebrospinal fluid (CSF) were obtained via automatic 

segmentation of the MPRAGE data (FAST v4.1 FSL (Smith, 2002)). The AAL atlas was used to 

parcellate the cortex into the same 78 regions of interest (ROIs) as used for the MEG data. 

The fMRI data were registered to the corresponding MPRAGE image, which was in turn 

registered to the MNI-152 template brain (FLIRT v5.5, FSL). Inverse transformations were 

calculated and used to register a grey matter mask and the AAL ROIs to the functional space 

for each subject. To maintain the consistency between the fMRI and MEG pipeline, a 

weighted average fMRI signal was computed to obtain a single signal for every ROI. We then 

regressed out average cerebrospinal fluid signal, average white matter signal, motion and 

2nd order polynomials (i.e. low frequency trends) from each regional BOLD timecourse using 

a general linear model to remove non-neuronal signals. For each subject, pairwise Pearson 

correlation coefficients (absolute values) were computed between all possible 78 fMRI AAL 

signal pairs to obtain a connectivity matrix.  

 

 
 
Figure 1: A schematic of the analysis pipeline including construction of MEG specific multilayer network and a multimodal 

(fMRI-MEG) multilayer network. Note that we are treating a special case of multilayer networks: multilayer networks with 

one-to-one between layer coupling. rs: Resting state, fc: Functional connectivity 
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Schemes for the correction of network biases 

For now, we consider a special case of multilayer networks, for which the interlayer coupling 

matrix ��� = �� (i.e. no cross-frequency coupling between different nodes). Here, c is a 

constant and � the identity matrix. Figure 1 shows two possible ways to construct a 

multilayer network, one can either stack different frequency-band specific MEG networks as 

layers into a multilayer network or one can stack two networks from two different 

modalities, e.g. beta band MEG network (most similar to fMRI networks (Brookes et al., 

2011a; Tewarie et al., 2016a)) and the fMRI network, into a multilayer network. There are of 

course other possible ways to construct multilayer networks (e.g. all MEG networks 

together with a structural network and fMRI network) that will be adressed in the 

discussion, but here we will restrict the analysis to the former two cases.   

 

When treating a multilayer network based on different MEG connectivity matrices obtained 

with the same connectivity metric, the weights contain meaningful information. We 

therefore argue that a correction scheme should take the information regarding weight 

differences between the frequency bands into account. In the context of multilayer 

networks this is important with respect to layer dominance (Sahneh and Scoglio, 2014; 

Wang et al., 2014), i.e. one layer could be a stronger driver of multilayer network 

characteristics than other layers. Therefore, we propose a correction scheme that should be 

applied to the block-adjacency matrix (A), rather than a correction scheme that is applied to 

the adjacency matrices of every layer (Aα) separately. However, when treating a multilayer 

network based on different modalities, or based on different metrics using the same 

modality, the range of the link weights can be very different, and thus the differences in link 

weights for the different layers are artificial. Therefore, in such cases, we propose that a 

correction scheme should be applied to the individual layers (Aα) separately. 

 

We employ four network correction schemes: the minimum spanning tree (MST), efficiency 

cost optimisation (ECO) and two new methods: effective graph resistance cost minimisation 

and network normalisation based on singular value decomposition (SVD). The first three 

approaches usually result in unweighted networks and correct for biases due to average 

degree or link density and aim to only include the backbone of the network. The SVD 

approach corrects for differences in average connectivity between groups and results in a 

weighted network (scaled version of the original network).  

1) MST: the minimum spanning tree is a loop-less subnetwork that spans the original 

network using the minimum possible sum of link weights (Kruskal, 1956). The 

number of links in a tree is always equal to n-1 (or nf-1 for multilayer networks), 

and therefore no biases due to (differences in) link densities exist. After extracting 

the MST, link weights in this subnetwork are set to one. Furthermore, as long as 

the weight ordering is maintained, the MST is unaffected by manipulations of the 

original network. Strictly speaking, the MST gives a reduced topology rather than a 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

15 
 

correction, such as ECO. However, to remain consistent across all approaches, we 

also consider the MST as a correction scheme here.  

2) ECO: efficiency cost optimisation is based on optimising the function � =(' + �)/�, where G and Y are the global and local efficiency of the network (see 

Eq. 2) and ρ the link density (fraction of links). It has been demonstrated 

analytically that the maximum for this function for different types of network 

topologies obeys � ≈ 3/(, − 1), where n is the number of nodes (Fallani et al., 

2017). In the case of multilayer networks this becomes � ≈ 3/(,� − 1). Therefore, 

for all subsequent analyses, we only show results for this analytically obtained link 

density.  

3) Effective graph resistance cost minimisation: Since there is evidence that large-

scale communication in the brain is not merely shaped by efficiency, as inferred by 

a function of the shortest paths (Goñi et al., 2014; Meier et al., 2016) and because 

of the risk of disconnected networks, we propose a different version of ECO. 

Instead of efficiency cost optimisation, we propose an effective graph resistance 

cost minimisation � = z{|/�. Since there is no analytical expression to determine 

the optimum value for F, we follow a numerical approach to find the minimum 

(this entails computing F for a range of link densities to determine the threshold 

that minimises F). This scheme is based on Eq. 8 and thus the correction scheme is 

applied to the block-adjacency matrix rather than to the individual layers 

separately.  

4) SVD normalisation: For any matrix (block adjacency matrix A or adjacency matrix 

Aα) we can apply a singular value decomposition � = �Λ��, where U and V 

contain the left and right singular vectors and Λ the singular values of A. To correct 

for average connectivity/average link weight we can rescale Λ by the largest 

singular value ��. The rescaled matrix would thus become �� = � Y�K�P ΛZ��. The 

multiplication by 10 is used to ensure that the range of values in �� is not too small 

and varies between 0 and 1. If A is a symmetric and square matrix, then a singular 

value decomposition returns the eigenvalues and eigenvectors. However, an 

eigenvalue decomposition can result in complex eigenvalues if A is non-symmetric 

and square (directed network) and therefore a singular value decomposition can 

be used to exclude potentially complex eigenvectors and eigenvalues1. 

 

 

 

  

                                                 
1
 In general, the SVD is the eigenvalue decomposition of the Gram matrix, thus of A

T
A (where A is an n x m 

matrix, and m can be different from n). In fact, for non-square matrices, the SVD was originally used (Golub 
and Van Loan, 2012). 
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Results 

Uncorrected multilayer networks are affected by average link weight or link density 

To show the biases that can be introduced when a correction scheme is not applied, we first 

demonstrate how multilayer metrics vary as a function of link density (ρ) or average 

connectivity strength (<FC>: sum of weighted degrees) of an empirically based multilayer 

network. This multilayer network has two layers, corresponding to the group averaged 

alpha and beta band MEG networks. We applied different proportional thresholds, tuned 

the average functional connectivity strength, and subsequently computed four multilayer 

network metrics: degree correlation between layers (DC), mean functional multilayer 

pagerank (X), mean multilayer participation coefficient (PC) and multilayer modularity (Q).  

   
Figure 2. Metrics are affected by changes in link density (A) and average connectivity (B). The plots show that tuning 

arbitrary link density (i.e. an arbitrary threshold), or the average connectivity, affects most of the metrics. However, this is 

not the case for DC and PC for changes in average connectivity. ρ = density, DC: degree correlation, X: functional multilayer 

page rank, PC: participation coefficient, Q: multilayer modularity, <FC>: average functional connectivity. The solid line and 

shaded areas show the mean and standard deviation across subjects, respectively. 

 

Figure 2A shows the different multilayer network metrics as a function of link density. 

Different thresholds for link density can non-trivially influence network metrics. Thus, 

choosing an arbitrary threshold for groups with different densities can artificially induce 

significant group differences in terms of multilayer network metrics. Figure 2B shows the 

different multilayer network metrics as a function of average connectivity. Q is affected, 

since it is optimised in terms of the degrees, which scale with connectivity. Other metrics 

such as based on computing a correlation (DC) or ratios (PC) are naturally unaffected by 

differences in scale. However, to safely use all multilayer metrics on a weighted network, 

one would have to correct for average connectivity.   
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Applying correction schemes to multilayer networks as a whole 

We apply four correction schemes to the block-adjacency matrix of the multilayer network 

in the previous section: MST, ECO, effective graph resistance cost minimisation and SVD 

normalisation. The multilayer network has two layers viz., alpha and beta band. First, MSTs 

are usually unaffected by a threshold, if a threshold applied to a network does not discard 

links that would be included in the MST, the MST computed on a thresholded network 

would be unaffected. However, this stability is not observed in the case for MSTs computed 

on a multilayer network (Figure 3A), where the MSTs computed for different link densities 

are not the same. The lack of uniqueness for the MST comes from the non-unique values of ��� = �� (c is chosen as the mean of the connections across all layers Aα). Furthermore, for 

most link densities, one of the individual layers can become disconnected (denoted by red 

dots in Figure 3A). In Figure 3B, we illustrate this, from layer one in this multilayer network, 

it can be inferred that not all nodes within a layer form a fully connected set in that layer, 

i.e. there are two connected components within the layer. Results for ECO are more stable 

compared to the MST. If the link density is above � ≈ 3/(,� − 1), then the network with 

exactly this density is extracted. However, even after applying ECO, the resultant multilayer 

network can be disconnected either on the level of individual layers or the whole multilayer 

network (denoted by green dots in Figure 3A). In Figure 3D, we show effective graph 

resistance cost minimisation as a function of link density. Recall that the lower z{|  the lower 

the resistance for flow in the network. There is apparently no clear minimum for z{| , but z{|  

reaches a plateau at around � = 0.3. Results for the SVD normalisation are shown in Figure 

3C. SVD normalisation leads to stable values for Q as a function of average functional 

connectivity (compare with Figure 2B, right panel). The other metrics do not vary as a 

function of average connectivity either. 

 

Figure 3. The multilayer network made from participants’ alpha and beta band networks. A) MST correction scheme on 

the multilayer network. This may result in a network that is connected but with disconnected individual layers, denoted by 

the multiple red dots and illustrated in (B). ECO correction scheme on the multilayer network (A). This can also lead to 

disconnected networks denoted by multiple green dots. C) SVD correction scheme on the whole multilayer network. D) 
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Effective graph resistance cost minimisation. The solid line and shaded areas show the mean and standard deviation across 

subjects, respectively. ρ = density, <FC>: average functional connectivity, DC: degree correlation, X: functional multilayer 

page rank, PC: participation coefficient, Q: multilayer modularity, F: effective graph resistance cost minimisation. 

 

Applying correction schemes to individual layers in multilayer networks 

We consider the case of a two-layered multilayer network, consisting of layers obtained 

from a subject’s beta band MEG network, and their fMRI network, i.e. from different 

modalities. Again, we show results based on individual subjects for which we illustrate the 

mean and standard deviation (Figure 4). Instead of applying correction schemes to the 

block-adjacency matrix, we apply the four correction schemes to the individual layers. 

Figure 4A shows the MST (red) and the ECO based networks (green) for different link 

densities. The stability of multilayer network metrics after applying the correction schemes 

MST and ECO. Unlike for the correction to the whole block-adjacency matrix (Figure 3A), the 

MST does not depend on the non-unique values of ���, and therefore the weights for 

calculating the MST are unique, which results in stable and unique MSTs. Note though that 

non-unique link weights within individual layers can lead to non-unique MSTs. The SVD 

normalisation again results in a correction for biases in average connectivity (Figure 4B). For 

effective graph resistance cost minimisation, a plateau is reached for layer 1 (beta band 

MEG) for � = 0.6 and � = 0.25 for layer 2 (fMRI network). Again, no local minimum is 

observed in this domain for �. Lastly, the choice of correction scheme might affect the 

ability to detect group differences (i.e. larger variability might hide genuine group 

differences). The sensitivity to detect changes in network topology is therefore assessed in 

the next paragraphs.  

 
Figure 4. The multilayer network made from participants’ beta band MEG and fMRI networks. A) MST and ECO correction 

schemes applied to the individual layers. B) SVD correction scheme applied to individual layers. CD) Effective graph 

resistance cost minimisation in the two layers. The solid line and shaded areas show the mean and standard deviation 

across subjects, respectively. ρ = density, <FC>: functional connectivity, DC: degree correlation, X: functional multilayer page 

rank, PC: participation coefficient, Q: community structure, F: effective graph resistance cost minimisation. 
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Nodal community assignment in multilayer networks after applying correction schemes 

The SVD correction scheme applied to the whole multilayer network and the SVD, MST and 

ECO applied to individual layers are able to adequately correct for differences in average 

connectivity or link density. However, the magnitude of Q for instance gets altered after 

applying correction schemes. It is therefore important to assess to what extent the 

underlying communities change after applying a correction schemes. In Figure 5 we show 

the community assignment for every node on a brain plot for the original multilayer 

network (empirical alpha and beta band network) and the community assignment for a 

node after applying the correction schemes. A sensorimotor network (green) and a visual 

network (red) can clearly be identified, which are dominant patterns in the beta and alpha 

band respectively. It can be observed that only SVD is able to correctly identify the original 

networks. Lastly, one should be cautious with community assignment in a tree (MST) with 

conventional methods, i.e. there will never be more links within a module than between 

modules. An alternative is the hierarchical clustering method evaluated in (Yu et al., 2015). 

The latter was not applied in the current work to keep consistency for all correction 

schemes. 

 

Figure 5. Community assignment of multilayer networks (alpha and beta band) after applying correction schemes.  

Nodes that have the same colour belong to the same community (shown for the first layer here). On the outmost left, the 

original community assignment for every node is shown and further to the right the assignment after applying correction 

schemes is visualized. Only SVD applied on the whole multilayer (SVDm) and on the individual layers (SVDi) are able to 

correctly identify the communities. ECO and MST applied to the individual layers distort community assignments of nodes.  

 

Sensitivity to genuine alterations in multilayer network organisation – correction applied to 

multilayer networks as a whole 

Given the ability of some of the schemes to correct for non-topological biases, we now 

analyse the sensitivity of network metrics to changes in network topology after applying 

correction to the block-adjacency matrix. Sensitivity in this context is referred as the ability 

of multilayer graph metrics to detect changes in the ground truth. Analysis is only 

performed for the SVD normalisation, since results from the previous paragraph showed 

that MSTs computed on the entire multilayer network resulted in non-unique MSTs, the 

ECO approach resulted in disconnected networks, and effective graph resistance cost 

minimisation did not yield a unique global minimum that could serve as a plausible link 

density. First, we use the multilayer community model and the nonlinear preferential 

attachment model to construct two layered synthetic multilayer networks with a known 
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ground truth. In each model, we tune between-layer dependencies, which influences the 

similarity in communities or degree sequences across the two layers, respectively. This is 

done by altering the interlayer dependency tensor for the multilayer community model or 

by tuning β for the nonlinear preferential attachment model. Figure 6A shows the behaviour 

of the modularity Q as a function of between layer dependency in the original multilayer 

network and in the SVD corrected version. By applying SVD normalisation, there is a 

reduction in sensitivity to similarity in communities between layers and an overestimation 

of Q (Q from the corrected network is higher than from the ground truth). Although, the Q 

values based on SVD normalisation still correlate strongly with the underlying ground truth 

(Figure 6C). Figure 6B shows the degree correlation as a function of between layer 

dependencies. The SVD normalisation clearly follows the degree correlation of the 

underlying multilayer network. This can also be observed from the strong correlation 

between ground truth and degree correlation after SVD normalisation (Figure 6D). 

 

In addition to applying the correction scheme to synthetic data, we now use empirical MEG 

data to analyse the sensitivity of SVD normalisation to underlying changes in network 

organisation. The multilayer networks are again two layered networks with a subject’s alpha 

and beta band networks as layers. We alter a subject’s given network organisation in these 

empirical multilayer networks by adopting a rewiring scheme. For a given probability P, we 

randomly swap matrix elements within the layers without preserving the degree 

distribution. Figure 6E shows how multilayer network community structure alters as a 

function of increasing rewiring probability for original multilayer networks and SVD 

corrected multilayer networks. The SVD obtained Q values correlate strongly with the Q 

values obtained from the original multilayer networks (Figure 6G). The same is also 

observed for degree correlation, i.e. SVD corrected DC values correlate strongly with the 

original DC values (Figures 6F, H).  
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Figure 6. 1

st
 row: sensitivity of network metrics to changes in network organisation of the (synthetic) multilayer networks 

before and after applying SVD. A) Synthetic modular multilayer networks: modularity (Q) as a function of between layer 

dependency on the ground truth (blue) and SVD corrected networks (red). B) Synthetic scale free multilayer networks: 

degree correlation (DC) as a function of between layer dependency on the ground truth (blue) and SVD corrected networks 

(red) (both are completely overlapping). C) Correlation between Q as obtained before and after SVD. D) Correlation between 

DC as obtained before and after SVD. 2
nd

 row: sensitivity of network metrics to changes in network organisation of the 

(empirical) multilayer networks. E) Q as a function of rewiring probability (P) for original networks (blue) and SVD corrected 

networks (red). F) Degree correlation (DC) as a function of rewiring probability for original networks (left) and SVD corrected 

networks. G) Correlation between Q as obtained before and after SVD. H) Correlation between DC as obtained before and 

after SVD. The shaded areas in A and B show the mean and standard deviation across realisations (A, B) or subjects (E, F).  
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Sensitivity to genuine alterations in multilayer network organisation – correction applied to 

individual layers in multilayer networks 

We now demonstrate the sensitivity of network metrics after correction has been applied to 

individual layers. For both generative models, we again tune interlayer dependency and 

analyse how sensitive the correction schemes are (MST, ECO, SVD normalisation). Effective 

graph resistance cost minimisation was not used any further since previous analysis (see 

Figure 4CD) did not yield in plausible link density for F. Figure 7A shows Q for the synthetic 

modular multilayer networks for both the ground truth and correction schemes. All 

correction schemes overestimate Q and this overestimation is especially the case for MST 

and ECO. Figure 7C shows the correlation between Q obtained from the ground truth and 

the correction schemes, and the slopes for MST and ECO are smaller than for SVD, indicating 

that the latter correction scheme is more sensitive to changes in community structure of the 

underlying ground truth. Figure 7B and 7D show the degree correlation between layers as a 

function of between-layer dependency and the correlation between ground truth DC and 

DC obtained after application of the correction schemes. DC values for all schemes are 

almost exactly preserved after applying the correction schemes and correlate strongly to the 

underlying ground truth.  

 

In addition to synthetic networks, we again use empirical data to analyse the sensitivity of 

network metrics changes in network organisation after correction using SVD normalisation, 

MST and ECO. Again, corrections were applied to individual layers. The multilayer networks 

consist of subjects’ beta band MEG network and their fMRI network. We follow a rewiring 

scheme equivalent to that described in the previous section. Figures 7E, G show Q as a 

function of rewiring probability for the original multilayer network and Q values obtained 

after application of the correction schemes. A good linear fit is obtained between the 

modularity values for the original network and the values obtained after application of the 

different correction schemes (Figure 7G), although the range of values for Q obtained after 

correction is very different compared to those obtained for the original empirical multilayer 

network. Since MST and ECO include less weak connections, less influence of noisy 

connections is potentially driving up Q. Again, for DC, we clearly see that correction schemes 

follow the original DC values (Figure 7F, H).  
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Figure 7. Sensitivity of metrics to changes in network organisation of the (synthetic) multilayer networks. Synthetic modular 

multilayer networks: Community (Q) as a function of between layer dependency on the ground truth and on corrected 

networks (A). Synthetic scale free multilayer networks: degree correlation (DC) as a function of between layer dependency 

on the ground truth and corrected networks (B). Correlation between modularity as obtained before and after correction 

schemes (C). Correlation DC as obtained before and after correction schemes (D). Sensitivity of solutions to changes in 

network organisation of the (empirical) multilayer networks. Empirical multilayer networks: Community (Q) as a function of 

rewiring probability (P) for original networks (black) and corrected networks (E). Empirical multilayer networks: degree 

correlation (DC) as a function of rewiring probability (P) for original networks (black) and corrected networks (F). 

Correlation between modularity as obtained before and after correction schemes (G). Correlation of DC as obtained before 

and after correction schemes (H). The shaded areas show the mean and standard deviation across realisations (A-B) or 

subjects (E-F).  
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Sensitivity for identification of group differences 

Figures 6ACEG and 7ACEG indicate how sensitive multilayer network metrics are to changes 

in network topology after applying correction schemes. However, such curves are usually 

not obtainable in empirical studies where the interest lies in the detection of group 

differences. We therefore simulate two different distributions of Qs, based on the 

generative model for multilayer community networks, and analyse if these differences in 

distributions can be detected after applying correction schemes. Analysis for DC is omitted 

since Figure 6BDFH and 7BDFH show that DC values are almost exactly preserved after 

applying correction schemes. We simulate two conditions: I) two sets of multilayer networks 

with a between layer dependency of 0.6 and 10% and 14% random links, respectively; II) 

two sets with 10% random links, but with a between-layer dependency of 0.4 and 0.7, 

respectively. Each set consists of 200 multilayer network realisations. Figure 8 shows two 

sets of Qs for the original networks and for the networks obtained after applying the 

correction schemes: Q after correction on the whole multilayer SVDm, Q after correction on 

individual layers SVDi, and Q after MST and ECO applied to individual layers. All metrics 

computed after correction schemes can detect group differences for condition I and II 

(Figures 8A, B). However, note that most of the correction schemes change the shape of the 

original distributions (black). Furthermore, note that the two distributions for the SVDm 

groups overlap more than the groups for the other correction schemes, which is in line with 

the smaller slope in Figure 6A (red one) compared to the slopes in Figure 7C.  

 
Figure 8 Distributions of Q for two groups. Group differences of multilayer network community structure for the ground 

truth (black), SVD approach (blue), MST (red), and ECO (green). Both whole multilayer network correction as well as 

individual layer correction are applied for SVD, the former is denoted as SVDm and the latter as SVDi. A and B refer to two 

different conditions: I) different number of random links for the two sets; II) different between layer dependency for the two 

sets.   
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Discussion 

Multilayer network framework allows for integration of information from different 

modalities in a unified network, where each layer of the network corresponds to network 

obtained from different neuro-imaging modalities or in the context of M/EEG data, to each 

frequency band (Brookes et al., 2016; Tewarie et al., 2016b). Firstly, we evaluated four 

different correction schemes to correct for biases in multilayer network metrics that are due 

to differences in link density and average connectivity. We examined two cases: 1) 

multilayer networks based on frequency band specific MEG networks; 2) multilayer 

networks based on networks from different modalities (fMRI and beta band MEG). For case 

one: only the SVD normalisation sufficiently corrected for biases due to average 

connectivity, while other schemes could not correct for biases sufficiently. For case 2: our 

results showed that the correction schemes MST, ECO and SVD normalisation all corrected 

successfully for biases due to link density or average connectivity, while effective graph 

resistance cost minimisation did not result in plausible link densities.  Second, we evaluated 

the sensitivity of these approaches to detect changes in network organisation of the 

underlying ground truth, after these correction schemes were applied. Results for case one 

showed that metrics computed after SVD normalisation were indeed sensitive in identifying 

alterations in underlying network organisation, while for case two, metrics computed after 

MST, ECO and SVD were all shown to be sensitive.  

 

For corrections applied to the entire multilayer networks, only the SVD approach resulted in 

appropriate correction for non-topological biases since this approach corrected for 

differences in average connectivity of the different layers. This approach can be applied to 

complete weighted multilayer networks where different link weight distributions in 

different layers contain relevant information. For example, in several cognitive experiments, 

gamma band connections can be more dominant and relevant in relation to the cognitive 

demand than other frequency bands (Doesburg et al., 2008; Fries, 2009; Senkowski and 

Gallinat, 2015). Thus, preserving the dominance of the gamma band in such conditions 

would be in line with the relevant task modulations. However, this is not strictly limited to 

modulations in gamma band. For example, a working memory task may lead to changes in 

theta band (Jensen and Tesche, 2002). Therefore, it is important that the representation of 

dominant frequency band (or layer) is preserved even at the network analysis stage. It is 

worth noting that in conditions where there is a dominant frequency band, individual layer 

normalisation would likely lead to equally important frequency bands in a multilayer 

network, this would in turn smear the underlying effects of interest.  

 

The three other correction schemes, applied to the multilayer networks as a whole, did not 

result in sufficient correction. The ECO correction scheme sometimes led to disconnected 

multilayer networks, which limits its applicability. The effective graph resistance cost 

approach led to a plateau of values rather than a local minimum, indicating that not a single 

link density can be selected as a threshold that maximises flow in the network. The MST 
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applied to the entire multilayer network did not yield unique MSTs. Reconstruction of the 

MST entirely depends on the ordering of the link weights and non-unique matrix elements 

can lead to arbitrary ordering. In our case, we encountered non-unique values as the 

interlayer coupling matrix was based on the identity matrix. The higher the threshold, the 

higher the probability of non-unique values, which leads to the scaling of MST metrics with 

link density in Figure 3A . In addition, the number of matrix elements in the block-matrix is 

equal to (,�)�, thus the more layers, the larger the probability to encounter matrix 

elements with the same values. This problem can be solved by estimation of, for example, 

one-to-one cross-frequency coupling. Another option is to place random numbers on the 

diagonal of the interlayer coupling matrices; however, this does not solve the problem, 

since different initialisations will result in different non-unique MSTs. Lastly, whilst the MST 

of the whole multilayer network is by definition connected, its application can lead to 

individual layers with unconnected components. Empirically, this means that the brain 

within a frequency band of interest, e.g. alpha band, does not form a connected network. 

Given the vast literature on electrophysiological networks (Bastos et al., 2015; Larson-Prior 

et al., 2013), this seems biologically implausible.  

 

Unlike for the whole multilayer network, most correction schemes applied to individual 

layers were successful in correcting for differences in average connectivity or link density. 

This approach is sensible when the natural range of link weights in different layers is 

distinct, due to, for example, usage of different connectivity metrics or the extraction of 

networks from different modalities. Only the effective graph resistance cost approach 

applied to individual layers was not successful, as this led, again, to a plateau of values 

rather than a local minimum, i.e. no single link density could be selected as a threshold to 

maximise flow in the network. In addition, the link density at which the plateau was reached 

was a lot higher than the density of connectomes obtained after ECO (see (Fallani et al., 

2017) . This indicates the arbitrary nature of this type of corrections. 

 

Metrics computed on the whole multilayer network after SVD correction correlated strongly 

to network topology of the underlying ground truth. This was more evident for empirical 

multilayer networks than synthetic multilayer networks (compare Figures 6A and E): 

although metrics computed on SVD corrected synthetic networks followed the direction of 

change of the underlying topology, there was a decrease in sensitivity to changes in 

topology, i.e. the red curve (SVD) has a less steep increase than the blue curve (original 

network) in Figure 5A. The reason for this decrease in sensitivity in synthetic networks is 

that the SVD approach applied to a sparse network (as was the case for the synthetic 

networks) can lead to an artificially small noise floor for links that were initially zero in the 

original network. This is, however, not the case for the fully connected networks found 

empirically, and as can also be seen from Figures 5EG, where metrics computed on SVD 

corrected empirical networks correlated strongly to metrics computed on the original 

networks. Metrics computed on multilayer networks after individual layer correction all 
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correlated strongly to network topology of the underlying ground truth. This maintenance 

of sensitivity also resulted in the sensitivity to detect group differences.  

 

Some methodological choices and findings warrant some further discussion.  

1. The drawback of the SVD correction scheme is that it does not filter potentially noisy 

connections. It leads to a rescaling that adequately corrects for differences in 

average connectivity, but does not lead to sparse networks like the MST or ECO. 

There are methods in image processing to perform noise reductions for matrices 

based on SVD (De Moor, 1993); however, non-smoothness in a weighted adjacency 

matrix can be genuine and does not necessarily imply noise. If one is interested in 

obtaining a sparse multilayer network and when correction to the entire multilayer 

network is required, one potential option to solve the problem of noisy connections 

could be a sequential correction: first a link weight normalisation based on SVD on 

the whole multilayer network followed by extracting an MST or applying ECO on 

individual layers with preservation of the link weights.  

2. If a weighted adjacency matrix is symmetric, then an SVD approach is equivalent to 

an eigenvalue-decomposition approach. This would mean that we are normalising 

the eigenvalues of the weighted adjacency matrix by the largest eigenvalue. The 

advantage of SVD, however, becomes apparent when directed networks are treated, 

since these networks correspond to non-symmetric matrices for which an 

eigenvalue-decomposition approach could lead to complex eigenvalues.  

3. Here we treated multilayer networks based on either different MEG frequency-band 

specific networks obtained using the same connectivity metric or a two-layered 

network consisting of MEG and fMRI networks. However, the flexibility of the 

multilayer network also allows the construction of networks of various kinds. 

Correction of such networks can be performed by combining the currently explored 

methods. Examples of different flavours of multilayer networks can be: a number of 

frequency-band specific MEG networks obtained with a connectivity metric, stacked 

with a number of MEG networks obtained with a different connectivity metric or a 

multilayer network consisting of different frequency-band specific MEG networks 

together with an fMRI and structural network. In these cases, one could apply 

correction schemes to specific subsets before joining the sets together. For example, 

apply an SVD to all layers obtained with a single metric as a whole, apply SVD on the 

individual fMRI network layer, and apply SVD on an individual structural network 

layer.  

4. Fourth, in the current setting and for simplicity, we evaluated one-to-one coupling 

between layers, but there is no methodological hurdle to apply the explored 

approaches to multilayer networks with richer and more realistic between-layer 

coupling matrices.  

5. Figure 7F shows the correlation between the degrees of MEG beta band networks 

and fMRI network from individual subjects. These values are very low, but can be 
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explained by the fact that similarity between fMRI and MEG networks are much 

more apparent when averaging over subjects (Brookes et al., 2011b; Tewarie et al., 

2016a). 

6. Note that all multilayer network results from empirical data will be influenced by 

methodological choices prior to calculation of multilayer network metrics such as the 

connectivity metric of choice (Colclough et al., 2016), source localization method and 

forward model for MEG (Hincapié et al., 2017) and  the parcellation scheme (Proix et 

al., 2016; Lord et al., 2016). 

7. It is important to realise that any correction scheme or sampling method comes with 

the risk of leaving out genuine connections. Filtering can therefore influence group 

differences after applying correction schemes. In addition, applying correction 

schemes can leave the relative response to a perturbation intact, but the magnitude 

of the network metrics may change.  

8. Lastly, although a fair number of network metrics were enumerated and evaluated, 

our choice of metrics could have influenced the stability of the results. It is important 

to stress that the proposed correction schemes have been evaluated within the 

limits of the current datasets, pipelines and network metrics. The evaluation of other 

network metrics and approaches in the context of other generative models and 

connectivity metrics also deserves further attention in future work.  

 

We used a specific set of four correction schemes in the current study, despite the presence 

of more proposals in the literature. The reason to restrict ourselves to this specific set of 

approaches is for clarity of the paper and the ease by which these approaches can be 

applied. Other approaches not explored in the current study include a recently introduced 

statistical method to test the null-hypothesis that a sample of networks are generated by 

the same random process (Fujita et al., 2017), a multi-threshold permutation correction 

method (Drakesmith et al., 2015), a clustering optimisation approach  (Smith et al., 2015), 

the union of shortest paths (Meier et al., 2015) and the minimally connected component 

(Jalili, 2016). The disadvantage of the latter is, however, that connectedness of the network 

is not guaranteed. In the current study, some of the explored approaches (ECO and MST) 

guarantee a fixed link density, which avoids biases due to differences in link density 

between groups. The union of shortest paths does, however, the exact opposite: A specific 

topological network is fixed, which allows one to detect for which density this topology 

emerges. 

 

To conclude, similar to single layer networks, multilayer networks are also affected by non-

topological biases of the network such as differences in link density and average 

connectivity. Whenever these biases are left uncorrected, this could lead to a risk of 

unreproducible results between centres and studies in a similar manner as for single layer 

networks. We therefore recommend using correction schemes prior to multilayer network 

analysis for group comparisons. Given the current explorations to correct for non-
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topological biases such as link density and average connectivity we recommend the 

following correcting approaches for multilayer networks: whenever a multilayer network 

consisting of networks obtained from different modalities is in question, one can apply 

either MST, ECO or SVD correction schemes to its individual layers. However, when treating 

a multilayer network where the layers correspond to complete networks obtained from the 

same modality and connectivity metric (based on the present analysis) SVD is a 

recommended approach. Future studies should explore the applicability of other existing 

approaches in the context of multilayer networks. 
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