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Recent experiments have illustrated that long range two-body interactions can be induced by
laser coupling atoms to highly excited Rydberg states. Stimulated by this achievement, we study
supersolidity of lattice bosons in an experimentally relevant situation. In our setup, we consider
two-component atoms on a square lattice, where one species is weakly dressed to an electronically
high-lying (Rydberg) state, generating a tunable, soft-core shape long-range interaction. Interactions
between atoms of the second species and between the two species are characterized by local inter-
and intra-species interactions. Using a dynamical mean-field calculation, we find that interspecies
onsite interactions can stabilize a pronounced region of supersolid phases. This is characterized
by two distinctive types of supersolids, where the bare species forms supersolid phases that are
immersed in strongly correlated quantum phases, i.e. a crystalline solid or supersolid of the dressed
atoms. We show that the interspecies interaction leads to a roton-like instability in the bare species
and therefore is crucially important to the supersolid formation. We provide a detailed calculation
of the interaction potential to show how our results can be explored under current experimental

conditions.
I. INTRODUCTION

A supersolid is a translational symmetry breaking su-
perfluid occurring in a solid. It was predicted to exist in
bulk helium over forty years ago [1], but its observation
has remained a challenge [2]. To reach supersolidity, one
typically relies on long-range two-body interactions to
break the translational invariance of a homogeneous sys-
tem. Recent experiments have observed supersolid orders
where translational symmetry is broken by cavity photon
assisted [3] or spin-orbit coupling enabled [4] momentum
transfer. To achieve supersolids induced purely by two-
body interactions, enormous efforts have been spent on
polar molecules [5, 6], magnetic [7] and Rydberg atom-
s [8, 9], due to the available long-range atom-atom inter-
action as well as high precision control over their internal
and motional states. However, a current challenge is that
theoretical proposals typically examine regimes that are
difficult to achieve experimentally.

In this work, we study supersolids of a two-species
bosonic mixture on a two-dimensional (2D) square lat-
tice, where one of the species is weakly coupled to an elec-
tronically high-lying (Rydberg) state by an off-resonant
laser (the level scheme is depicted in Fig. 1a). Uniquely,
this setting is recently realized experimentally at Mu-
nich [10] in the study of Rydberg dressed spin dynamic-
s [11]. The coupling laser induces strong and long-range
interactions between Rydberg dressed atoms on distances
well beyond typical lattice-site spacings (see Fig. 1b),
whose strength and sign can be controlled by the laser
(i.e. detuning and Rabi frequencies) and the choices of
Rydberg states [12]. The resulting Bose-Hubbard model
features a long-range interaction between dressed atom-
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FIG. 1. (Color online) (a) Two electronic ground states |b)
(blue) and |d) (red) and a Rydberg state |r) are considered.
An off-resonant laser (with Rabi frequency Q and detuning A)
weakly couples the state |d) to |r). (b) The soft-core shape
interaction potential V;; (red) between atoms in the Rydberg
dressed state |d). The soft-core radius R. can be larger than
the lattice spacing a. Here R. = 2a is shown. (c) SS of
the bare state when dressed atoms are in an ordered density
wave (DW). (d) Roton instability of the bare species. The Bo-
goliubov dispersion relation (along the k. axis) of phonons is
significantly modified by the interspecies interaction. A roton-
like instability emerges when the interspecies interaction Upq
is increased, indicating that the ground state phase changes
from a homogeneous superfluid to supersolid. In the figure
we show Upqe/U = 0 (dotted), Upq/U = 0.45 (dashed) and
Upa/U =1 (solid). Other parameters are k, = 0, V/U = 0.4
and t/U = 0.04. See text for details.



s while interactions between atoms of the two different
species and of the bare species are short ranged.

Employing real-space bosonic dynamical mean-field
theory (RBDMFT), we find that the system undergoes
a series of many-body phases, including Mott insulator
(MI), ordered density-wave (DW), supersolid (SS) and
superfluid (SF) phases. A key result is that the inter-
species interaction enables supersolid phases of the bare
species in regions where the dressed atoms are in DW or
SS phases (an example for a DW is depicted in Fig. 1c).
Using Bogoliubov theory, we reveal that a roton-like in-
stability emerges due to the interspecies interaction (see
Fig. 1d), which signifies a SF to SS transition [13]. Our
results open a new route to enhance the formation of SS
phases through the Rydberg dressing in two-component
atomic gases.

The paper is organised as follows. In Sec. IT we present
the two-component Bose-Hubbard model of the system,
in which the dressed atoms interact via a long-range soft-
core shape interaction. In Sec. III, ground state phase di-
agrams of the model are systematically examined at low
particle fillings using the RBDMFT. A key finding is that
the species with short range interactions exhibits a super-
solid state. In Sec. IV, the supersolid mechanism of the
bare species is studied, where a roton instability is found
due to interstate interactions. In Sec. V, we discuss how
one can engineer the required long-range interactions and
explore the interesting phases in cold atom experiments.
We conclude in Sec. VI.

II. THE HAMILTONIAN OF THE SYSTEM

In sufficiently deep lattices, our setting is described by
a single band, two-component Bose-Hubbard model,

H=- Z tff(gjai)jﬂ + H-C-) + ZVijmdﬁjd — Z ];A[i7
(ij),0

i<j i
where the single site Hamiltonian H; =
%EUU, Uso' i (Tigr — 0067) — Do HoTbie. (i, ) repre-

sents the nearest neighbour sites ¢, j. Index o(o’) = b,d
denotes bare, and dressed states, respectively. EIU (bio)
and n;, = lA);rulA)il, are the bosonic creation (annihilation)
operator for species ¢ and atomic density at site ¢. ¢ and
1o determine the hopping rate and chemical potential
for the two bosonic species. We assume the intra-species
interactions Uy, 4 are identical for both species [14].

In this model, we consider both short-range and
long-range interactions. U,, denotes the inter- and
intra-species short-range (onsite) interactions, which can
be tuned via e.g. Feshbach resonances [15] or state-
dependent optical lattices [16]. The long-range interac-
tion between site i and j is V;; = V/[(a/R.)®(i —5)® +1],
where V' = Cj/RS characterises the long-range interac-
tion at a distance R,. C’ﬁ, R, and a are the effective dis-
persion coefficient, soft-core radius, and lattice constant,
respectively. In the following, we choose the intraspecies

short-range interaction Uy 4 = U, which also sets the u-
nit of energy. Details of these parameters will be given
in Section V.

III. MANY-BODY GROUND STATE PHASE
DIAGRAM

In this section, we study the stability of quantum phas-
es of Rydbery-dressed systems in optical lattices for fill-
ings 0 < (n;) < 2. To determine the ground state phases,
we use RBDMF'T to capture both higher order quantum
fluctuations, strong correlations and arbitrary long-range
order in a unified framework [17, 18]. It provides a non-
perturbative description of many-body systems in two
and three spatial dimensions (the method is discussed in
Appendix A.). In the calculations, we typically consider
the lattice size as large as Ny, = 48 X 48 sites and an ex-
perimentally relevant soft-core radius R, = 3a [12]. The
superfluidity is characterised by the condensate order pa-
rameter ¢, = (l;a), and crystalline order by the real-
space density distribution n;, = (f;,) and total density
n; = Nip + niq. The coexistence of both condensate and
crystalline order parameters gives the supersolid phase.

A. Density dependent phase diagram of
Rydberg-dressed systems

In this section, we study features of the phase dia-
gram at various fillings. In the strong coupling limit
with Uy, > t, we find that the system favors Mott
insulating or density-wave phase with different types of
crystalline order in the individual species. Interestingly,
we observe a density-wave phase with a nonuniform to-
tal density which breaks lattice translational symmetry,
with densities n;, = 1 and n;q = 2, appears, as shown
in green region of Fig. 2. These density-waves exhibit
nonzero density fluctuations, as shown in Fig. 3. Howev-
er, quantum fluctuations as a result of higher-order tun-
neling processes are weak, due to the strong long-range
interactions. Actually, the density-wave of the dressed
species is also predicted in the single-species case [8].

Away from the deep MI regime, i.e. in the interme-
diate hopping regime, we observe two types of quantum
phase transition from MI to supersolid, i.e. the uncou-
pled ground-state species demonstrates a phase transi-
tion from MI to a supersolid (SS1) formed by the bare
species while the dressed atom is in a MI. Further increas-
ing the tunnelling rate ¢, both species are in a supersolid
state (SS2), as shown in the Fig. 2. Interestingly, we ob-
serve a pronounced region of supersolid appearing in our
simulations, as a result of the onsite interspecies inter-
actions, indicating a higher chance for directly observing
these phases in realistic experiments, compared to single-
species case [8]. Actually, we indeed observe the width of
SS1 and SS2 shrinks as a function of interspecies interac-
tions, as shown in Fig. 2(f), where SS1 clearly disappears
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FIG. 2. (Color online) Phase diagram on a square lattice for Rydberg dressed interaction V/U = 0.02 and 0.2, respectively,
demonstrating stable supersolid regions marked by the cyan (SS1) and pink color (SS2). In the Mott-insulating phase (MI) with
spatially uniform total density, the Rydberg dressed species exhibits different crystalline order, as shown in (a)-(d) for real-space
density nq, with lattice sizes being the square of the area of the unit cell of the Rydberg dressed species [Niay = 12 x 12(®);
Niag = 15 x 15 (®); Niax = 30 x 30 (©); and Niay = 34 x 34 (8)]. Inset: density-wave phase (DW) with density n, = 1 for the
ground-state species and ng = 2 for the Rydberg dressed state in the corresponding filled sites, respectively (e), and width of
supersolid phase [SS1 (blue) and SS2 (red)] d¢ = tc1 — tez as a function of interspecies interaction Uyq/U for Rydberg dressed
interaction V/U = 0.2 and chemical potential u/U = 0.4 (f). Other parameters are Upq = U, p/U = pup /U = pa/U — 0.05.
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FIG. 3. (Color online) Real-space density ny, 4 and density fluctuations Ay g = (np,a— (np.a))* in MI (a) and DW (b) phases, with
lattice sizes being the square of the area of the unit cell of the Rydberg dressed species [Nlat =15x15 (a)] and [Nlat =20 x 20

(b)], respectively. Other parameters are t/U = 0.03, V/U = 0.3, Upg = U, /U = 0.2 and puq/U = 0.7 (a), and t/U = 0.0023,
V/U = 0.02, Upg = U, /U = 0.98 and pa/U = 1.03 (b).

for smaller Upy. In addition, the long-range interaction
also shifts the phase transition between MI and SS1, even
though the bare species only possess onsite interactions.

Finally, in the weakly interacting regime with ¢ >
U,,, a superfluid phase with uniform total density dis-
tribution is found in our simulations, where both species
demonstrate homogenous density distribution. Here,
crystalline orders are destroyed by the large density fluc-
tuations, and the system only supports superfluidity with

uniform density.

Note that a similar model using dipolar gases has been
numerically investigated using a mean-field Gutzwiller
approach and by considering only the nearest-neighbor
part of the dipolar interactions [19]. In our calculations,
we take into account the whole range of the interaction
potential. As a comparison the phase diagram of dipolar
systems is given in Appendix B.
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FIG. 4. (Color online) Phase diagram of a mixture of ground-state component b and Rydberg dressed species d on a square lattice
in terms of hopping amplitude ¢t and Rydberg dressed interaction strength V. There are four stable phases in the diagram:
Mott insulator (MI) with spatially uniform total local density and crystalline density order for each species, homogeneous
superfluid (SF), and two types of supersolids (SS1 with Rydberg dressed species being in the crystalline phase, and SS2 with

both species being in the supersolid). Other parameters are Upyq = U and n, + nj = 1. (a)-(d):

Real-space density nj 4

and quasi-momentum-space density n{f,d distributions of different phases, with lattice sizes being the square of the area of
the unit cell of the Rydberg dressed species [MI, Nioy = 15 X 15(®); SS1, Niay = 15 X 15(®); SS2, Niay = 12 x 12(6); and
SF, Niay = 24 x 24 (®)], as shown by the markers in the main figure.

B. Supersolid phases at unit filling

In the following, we will focus on phases at unit filling
njq +nj, = 1. We start with the so-called strong cou-
pling limit when U,/ > t, where the 2D system favours
MI phases with uniform total particle densities. Crys-
talline orders in the MI region can be changed by vary-
ing the two-body interactions (i.e. V/U). One example
is depicted in Fig. 4a, which shows relative densities and
crystalline structures. Furthermore, when one increases
V/U continuously, the filling fractions fq = >, nia/Nat
of the dressed species can form a devil’s staircase struc-
ture (Fig. 5a). An open question here is whether the
staircase in this 2D system is complete. In 1D lattice
systems, the devil’s staircase and its completeness [20]
have been extensively studied [21]. Moreover, there are
very small regions occupied by DW phases (with a non-
uniform total density).

When the hopping rate increases at fixed interaction
V/U, we observe a pronounced region of supersolids. The
bare state first enters the supersolid phase (SS1) from an
insulating phase, while the dressed species is still crys-
tallized in this case (one example is depicted in Fig. 4b).

Further increasing ¢, both species are in supersolid phases
(SS2), as shown in Fig. 4¢, where non-zero peaks appear
for both species in addition to zero-momentum conden-
sate, indicating the coexistence of non-trivial diagonal
long-range order and off-diagonal long-range order asso-
ciated with phase coherence. A large supersolid region in-
dicates a higher chance for directly observing these phas-
es in realistic experiments, compared to the single-species
case [8].

One typically would not expect such supersolids as the
bare species alone can only form superfluid and MI phases
due to the short range two-body interactions [22]. The
underlying mechanism is that the flow of the bare species
is suppressed by the crystalline distribution of the dressed
species via the interspecies interaction. As a result, the
widths of the SS1 and SS2 phases will strongly depend
on the interspecies interaction Uyq. The numerical result
in Fig. bb shows that indeed the two SS phases shrink as
Upq decreases. The SS1 phase eventually disappears for
sufficiently small Upq.
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FIG. 5. (Color online) (a) Devil’s staircase pattern of the fill-
ing fraction f = >, nia/Nia for the Rydberg dressed species
in the zero-hopping limit. (b) Width of supersolid phase SS1
(blue) and SS2 (red) 0t = te1 —te2 as a function of interspecies
interaction Upq/U for Rydberg dressed interaction V/U = 0.1,
where tc1,2 denotes the critical value of the hopping amplitude
of the upper/lower phase boundary of each phase shown in
Fig. 4. (c) Density distribution of the dressed (red) and bare
species (blue). The dressed atoms form an oblique lattice
with lattice vector a1 and az2. This structure corresponds to
the configuration illustrated in Fig. 4b. (d) The first Brillouin
zone of the optical lattice (green) and oblique lattice (red) of
the dressed atom. As the lattice vector |a;| > a (j = 1,1),
the size and shape of the first Brillouin zone of the dressed
atoms differ significantly from the square reciprocal lattice of
the optical lattice potential.

IV. SUPERSOLIDITY MECHANISM OF THE
BARE SPECIES

In the rest of the work, we will develop a Bogoliubov
mean-field theory to understand how the interspecies in-
teraction enables the bare species to form SS phases. Our
discussion will focus on the SS1 phase, where the dressed
species is a DW. This allows us to write down wave func-
tions |[DWy) of the DW according to the crystalline struc-
ture. We also assume that the total wave function in the
ground state can be decoupled as |U,) ~ [DWy) ® |Ty),
where |¥;) is the wave function of the bare componen-
t. Then we can derive an effective Hamiltonian for the
bare species by tracing out the dressed atom part, i.e.
H, = (DW,4|H|DWy). Explicitly the effective Hamilto-
nian reads,

A o U
H, =— Zt(bjbj +H.c)+ ) Zﬁi(ﬁi —1)
(i5) ‘

= i+ Upa Y g,

{5}

where {j} denotes lattice sites occupied by dressed atom-
s. For convenience, we have omitted the index b of the

bare species. The last term gives the interspecies inter-
action, where the mean particle number per site of the
dressed atoms ng = 1 has been used explicitly. A con-
stant term, C' = (DW| ZKJ. Vijfiafja DWq) character-
izing the long-range interaction energy, is neglected in
the effective Hamiltonian.

The interaction with the dressed atoms (the last term
in the effective Hamiltonian) introduces a new spatially
periodic structure to the bare species, in addition to the
optical lattice. As an example, we consider parameters
corresponding to Fig. 4b. Here, the dressed atoms form
an oblique lattice, see Fig. 5¢ for a cartoon picture of
the 2D structure. The primitive cell of the new oblique
lattice is apparently larger than the original lattice. In
this example, the primitive lattice vectors are a; = (1, 4)
and ay = (4, 1), with which we obtain the area of the
primitive lattice A = |a; X ag| = 15, while the area of
the optical lattice is 1. In turn, the corresponding recip-
rocal lattice is smaller than that of the optical lattice.
To illustrate this, we plot the first Brillouin zone of the
two lattices in Fig. 5b. Apparently they overlap only in
a small central area (low momentum regions).

As a result, phonon excitations for momentum com-
ponents in and out of the overlap region will be very
different. To show this, we calculate the Bogoliubov
dispersion relation of the effective Hamiltonian (see
details in Appendix C). In the low momentum re-
gion (where the two Brillouin zones overlap), Ei =

Ver +2npUey, with g = —2t(coskza + coskya — 2).

Outside this region, the dispersion becomes E} =

\/(Ek — ﬁdUbd)z + 2n, U (Ek — ﬁdUbd). Here ny, (ﬁd> are
the mean population of the bare (dressed) componen-
t. Consequently, the dispersion is not continuous any
more at the boundary of the Brillouin zone of the oblique
lattice. The dispersion relation becomes complex when
Upgq > 2tng(2—cos kY a—cos k‘éb)a) where k{” and k@(,b) are
momenta at the boundary. In Fig. 1d, we plot the disper-
sion relation along the k, axis by varying the interspecies
interaction Upg, where the mode frequency becomes com-
plex at Upg = U. This so-called roton-like instability [13]
here indicates that the emergence of supersolids is indeed
induced by the strong interspecies interaction. Note that
the mechanism here is different from SS phases induced
by geometrically dependent hopping found in frustrated
lattices [23].

V. LASER ENGINEERING OF THE DRESSED
INTERACTIONS

The level structure used in the Rydberg dressing is
shown in Fig. la. The species |d) is coupled to a Ryd-
berg state by an off-resonant laser with Rabi frequency
Q and detuning A. Interactions between Rydberg atoms
are of van der Waals type V; = Cg/r%, where Cg is the
respective dispersion coefficient. The Rydberg dressing
gives the soft-core interaction V;; where the effective dis-
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FIG. 6. (Color online) The hopping rate ¢t and onsite interac-
tion U depend on the lattice depth Vo /E,. Increasing Vo /E,,
one can observe the phases discussed in the main text. The
inset shows changes of ¢/U (e) and V/U (x) individually as
a function of Vi /E,. Here we consider the Rydberg state 36S
of ¥ Rb atoms. Other parameters are A=1064 nm, as = 5.2
nm, Cs=241.6 MHz/um®, A =7 MHz and Q = 0.44 MHz.

persion coefficient Cg = (2/A)*Cy and soft-core radius
R. = (Cg/2A)Y/6. R, varies with the Rydberg states
and detuning. For example, one can choose the Rydberg
36S state of 8'Rb atoms (Cg = 241.6 MHz x umS) and
lattice constant a = 532 nm. When A = 7 MHz, we ob-
tain R, ~ 3a. With this fixed detuning A, the strength
of the soft-core interaction is now controlled by the Rabi
frequency €.

To probe different phases shown in Fig. 4, one
needs to change the parameters V, U and t togeth-
er or separately over certain ranges. One simple
way to achieve this is to tune the lattice potential
depth V,/E,.. In optical lattices, the onsite interac-
tion U depends on the lattice depth through U =
V/8/mkasE,.(Vo/E,)?* and the hopping rate ¢ through
t = 4/7E.(Vo/E,)3* exp[-2(Vo/E,)'/?] [24], where
k =2r/\, E, = h?/2m)%, X\ = 2a and ay are the wave
number, recoil energy, wavelength of the lattice potential
and s-wave scattering length, respectively. Upon varying
Vo/E, and fixing the other parameters, the ratios t/U
and V/U change continuously. One example is shown in
Fig. 6. One can see that the parameters cross the main
phases discussed in this paper.

VI. CONCLUSIONS

In conclusion, we have investigated crystalline phas-
es of ultracold binary bosonic gases on a square lattice,
with one species possessing a non-local interaction in-
duced by Rydberg dressing. We found two types of su-
persolid phases that are robust and occupy large param-
eter regions at zero temperature. We showed that the
supersolid phases of the bare species are stabilized by
the interspecies interaction. The existence of the different
phases predicted here could be directly observed by quan-
tum gas microscopy with single-site resolution [25-27] or
through measuring noise correlations [28]. Our results
demonstrate rich features of the Bose-Bose mixture with
long-range interactions, and indicate that this system is
well suited for exploring supersolidity in upcoming ex-
periments. As the crystalline structure (see Fig. 5a) can
be changed in the insulating region by tuning V/U, we
expect that supersolid phases with tunable density pat-
terns can be explored as well. Moreover, physics in the
SS2 region is not fully explored so far. It was shown that
interesting phases, such as super-counter-fluid [29], can
be created in a two-component Bose mixture. An open
question here is whether new many-body phases can be
expected when two supersolids coexist in the lattice sys-
tem.
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Appendix A: The real-space bosonic dynamical
mean-field method

1. RBDMFT equations

In deriving the effective action, we consider the limit of
a high but finite dimensional optical lattice, and use the
cavity method [1, 2] to derive self-consistency equations
within RBDMFT. In a more formal language, first we
map the Hamiltonian onto a set of individual single-site
problems each of which is described by a local effective
action [3]:

(A1)

G = 3 e (00650 (1) + 68, (16 (1))

(0j),0

t2 Z GO’O’ zg( )

(0),(05)

(=00 — o) +12 5 GL, () | (Y
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as the diagonal and off-diagonal parts of the connected Green’s functions, respectively, where (..

o denotes the

expectation value in the cavity system (without the impurity site) [3, 4].

2. Anderson impurity model

The most difficult step in the procedure discussed
above is to find a solver for the effective action. Howev-

J

to (6] obo.s +hoc.)

(0j)o oo’

+Z€lalal+z< JlalbOU+W0lalb(]U+hC)

where the chemical potential and interaction term
are directly inherited from the Hubbard Hamiltonian.
The bath of condensed bosons is represented by the
Gutzwiller term with superfluid order parameters ¢, for
each component. The bath of normal bosons is described
by a finite number of orbitals with creation operators
d; and energies ¢;, where these orbitals are coupled to
the impurity via normal-hopping amplitudes V;; and
anomalous-hopping amplitudes W, ;. The anomalous
hopping terms are needed to generate the off-diagonal
elements of the hybridization function. Note here that
in the high-dimensional limit inter-site interactions on-
ly contribute to the Hartree level [5]. In other words,
the Hartree term of the inter-site interaction will dom-
inate as the spatial dimension of the system increases.

2 —— b ,
Ginp oo (1wn) = 7 Z<m|ba|n><n|bg Im) E, — E,, + ilw,

Integrating out the orbitals leads to the same effective
action as in Eq. (Al), if the following identification is
made

Ao (iwn) =17 Y Goorijlin),  (AL0)

(04),(07)

where G, ;5 (iwy,) is the inverse Fourier transformation
of the Weiss Green’s function defined in Eq. (4) and (5),

1
+ 5 Z Uo(r’ﬁO,a(’ﬁ/O,U’ - 600’

(

er, one cannot do this analytically. To obtain RBDMFT
equations, it is better to return back to the Hamiltonian
representation. Here, each of the local effective action-
s (A1) is represented by an Anderson impurity Hamilto-
nian

g Vio(nj,a)fo,d — E 10,570,0

7(i#0)

(

This motivates us to keep only the Hartree contribution
of the inter-site interaction in our simulations as an ap-
proximation to the original Hamiltonian, i.e.

1 A A
3 Z Vijhi,dfj,.a = Z Vij (fi,a) (R

i#] 7]

o= 5 (.a) (A7)

We now turn to the solution of the impurity mod-
el. In practice, we start with an initial set of Anderson
paramters and local bosonic superfluid order parameter-
s ¢;.,(7). The Anderson Hamiltonian can straightfor-
wardly be implemented in the Fock basis, and the cor-
responding solution can be achieved by exact diagonal-
ization (ED) of DMFT [1, 6]. After diagonalization, the
local Green’s function, which includes all the information
about the bath, can be obtained from the eigenstates and
eigenenergies in the Lehmann-representation

e—BEn _ ¢—BEm

¢—BEn _ o—BEm

+ 8oy

+ B(ZSU(ZSU"

and the hybridization functions read:
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Hence, we obtain a set of local self-energies
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Then we employ the Dyson equation in real-space rep-
resentation in order to compute the interacting lattice
Green’s function
G (iw,) ™t = Goliw,) ™ — B(iwy,). (A13)
The site-dependence of the Green’s functions is shown by
boldface quantities that denote a matrix form with site-
indexed elements. Here G (iw,) ! stands for the inverse
non-interacting Green’s function
GO (iwn)fl =

( + iw,)1 — t. (A14)

In this expression, 1 is the unit matrix, the matrix el-
ements t;; are hopping amplitudes for a given lattice
structure. Eventually the self-consistency loop is closed
by specifying the Weiss Green’s function via the local
Dyson equation

(08 (iw)) " = (G (1))

where the diagonal elements of the lattice Green’s
function yield the interacting local Green’s function
Gg,(iwn) = (G0 (iwp))ii- This self-consistency loop
is repeated until the desired accuracy for superfluid or-
der parameters and Anderson parameters is obtained.

b s
+3% (iw,), (A15)

3. Energy within RBDMFT

Calculation of energy is not straightforward within
RBDMFT, since the kinetic energy kinetic is given in

J

> [GR(iws) (G

J

(iwn)]

= [tila -
J

Further using the self-consistency property of the impu-
rity Green’s function leads to

th (iwn)ji = Ai(iwn)Giliw,).

and we ﬁnally obtain

(A22)
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terms of non-local expectation values. It can be shown
that within the RBDMFT self-consistency conditions, ki-
netic energy can also be written in terms of Anderson
impurity hybridization functions and local Green’s func-
tions. A detailed derivation can be found in Ref. [7].

a. Kinetic energy

In terms of creation and annihilation operators for
bosons, szo— and b;,, respectively, kinetic energy has the
form

Hign == Y to(b] bjo + Hec).
(i)

(A16)

Thus expressing the total kinetic energy in terms of
real-space Green’s functions yields

Eign = — »_t7,(b} ;b (A17)
ij,0
o eiwne ) .
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(A18)

This expression can be further simplified by employing
both the local and lattice Dyson equations within RB-
DMFT

Gic(iwn)_l = iwno, + p+ A (iwy) — X (iwy,)
(A19)
[GR(iwn) ™ ij = tij1 + 6ij (iwnos + pl — Bi(iwn)),
(A20)
which yields
i (A (iwy) — Gy(iwn) ™) ] [G(iwn)] i (A21)

b. Total energy

The ground state within RBDMFT corresponds to the
solution with the lowest energy, where the corresponding
total energy of the impurity site which is given as follows:

E= Ekin + Eint- (A24)

For the Bose-Hubbard model of spin-1 bosons, the on-site
interaction term is given by:
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Appendix B: Numerical results of the dipolar system

FIG. 7. (Color online) Phase diagram for a mixture of
nondipolar species b and dipolar component d on a square
lattice for a dipolar interaction strength V/U = 0.1, exhibit-
ing pronounced regions of supersolid marked by the cyan
(SS1) and pink color (SS2). In contrast to nearest-neighbor
case [11], the system demonstrates various crystalline order,
as shown in a)-c) for the real-space density distribution of
the dipolar species. Note here that, in the DW, marked by
the green color, the total density distributes spatially nonuni-
form with a homogeneous density for the nondipolar species,
whereas, in the MI, the total density distribute spatially uni-
form. We observe a phase separation (PS) in the MI region
with a total filling n, + ng = 1, in addition to spatially uni-
form superfluid (SF). Other parameters are Upq = 0.9U, and
Hb,d = b

We have so far studied crystalline order in the Rydberg
dressed systems. Actually, the physics of these compet-
ing orders can also be exhibited in dipolar system loaded
in an optical lattice, along with quick developments in
the cooling and trapping of magnetic atoms [9] and di-
atomic molecules [10]. Recently, a Gutzwiller mean-field
phase diagram of a binary Bose mixture on a square opti-
cal lattice is studied, where one species possesses a non-
negligible dipole moment [11]. In their study, only the
nearest-neighbor part of the dipolar interactions was in-
cluded. To obtain a better understanding of the Rydberg
dressed system studied above and make a comparison, we
here study a mixture of dipolar and nondipolar bosons on
a square optical lattice, with real long-range interactions
beyond nearest-neighbor approximations. We study the
system by means of RBDMFT, which takes into account
quantum fluctuations and is actually a higher-order ex-
pansions of Gutzwiller mean-field theory.

In Fig. 7, we show the resulting phase diagram of dipo-
lar and nondipolar bosonic mixtures on a 2D optical lat-
tice. In general, there are also five phases in this dipo-
lar system, i.e. SF, MI, DW and two types of supersol-
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id. Compared to nearest-neighbor interaction and static
mean-field approximations [11], two big differences have
been observed. First, rich crystalline patterns appear in
the system, as shown in Fig. 7a)-c), with a filling factor
of 1/3, 1/4 and 1/8 for the dipolar species, respectively.
Second, we observe that the region of supersolid phase is
also altered. Note here that we recover the static mean-
field phase diagram with nearest-neighbor interactions
within Gutzwiller approximations in Ref. [11].

Appendix C: Bogoliubov spectra of the bare species
in the SS1 phase

Using Fourier transformation, Hamiltonian He is

changed to the momentum space,

H=— Z[,u + 2t(cos kya + cos k‘ya)]b%b,; +

k

U bt t

on Do bE Dk bry g b g, + UL Y bibe (CL)
FiFaks (F}

where NV is the total number of sites and Uy = ngUpq with
fig = ngNg/N. Ny is the number of sites occupied by
the dressed atoms, and {k} denotes momentum spanned
in the first Brillouin zone of the lattice occupied by the
dressed atoms. .
Expanding the Hamiltonian (C1) around |k| = 0 and
keeping only quadratic terms of the operators, this yields,

Him =3 1+ 2t(cos koa + cos kya) — 2Um] blby

k=0
Uny bt t
+— D bbb b+ U Y blbe, (€2)
k0 {k=0}

where E[B =H - Ey is the Hamiltonian of the phonons
and Ey = —UNZ/2N is the energy of the condensed
atoms, with Ny to be the number of condensed atoms
and p = —4t + Uny + Uy the chemical potential and the
mean occupation of the condensed atom 7i, = No/N.

As the interspecies interaction [the last term in E-
q. (C2)] only appears in the low momentum regions (Bril-
louin zone {k}), we will have two different forms of the
approximate Hamiltonian depending on values of the mo-
mentum. Substituting the chemical potential u, we get
the approximate Hamiltonian within the first Brillouin
zone of the dressed atom,

e~ iy, Ul ot

E#0 E#0
and the corresponding Bogoliubov spectrum is

Ei(k) = ver(er +2Uny),

with e, = —2¢t(coskgza + coskya — 2). The spectrum is
similar to the one of a weakly interacting Bose gas in a
square optical lattices.

(C3)



For momenta outside the first Brillouin zone of the
dressed atoms, we have a different form of the approxi-
mate Hamiltonian,

T _ ¥ Uny
Hg ~ Z [ex + Uy — Ur] bibg + =~ Z(b,;b_,; +H.c),
k=0 E#£0

the corresponding Bogoliubov spectra is

Ey(k) = /(e — U1)(ex — Uy +2Uny),  (C4)

which will be nonzero only at large momentum (outside
the first Brillouin zone).

The roton instability occurs at the boundary of the two
Bogoliubov spectrum. Using Eq. (C4), we can find the
spectrum becomes complex when e < U;. This allows
us to find the critical value of the tunneling rate ¢,

Ui
2[2 — cos EY) — cos kg(,b)] 7

te = (C5)

where kg(gb) and kéb) are values of the momentum at the

boundary of the first Brillouin zone of the oblique lattice.
The soft-core interaction will affect structures of the
oblique lattice. Therefore the critical ¢, will change as the
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interaction V' changes. As shown in Fig. 3 in the main
text, the first Brillouin zone is not of a regular shape,
such that the critical value ¢, will vary with both kéb)
and k:g(,b). To show this we evaluate the critical values
t. using the crystalline structure of the dressed atoms
at the SS1-SS2 phase boundary, which are obtained by
the full numerical calculation. For example, t. lies in a
range [0.087,0.094] if V' = 0.3. When the long range
interaction becomes strong, we find that the range of
critical t. increases. For example, t. € [0.085,0.11] when
V =04, and ¢, € [0.073,0.13] when V = 0.6. Although
these values are close to the numerical calculations, it is
apparent that one will not be able to determine phase
boundaries accurately using the Bogoliubov calculation.

Another limitation of this calculation is that areas of
the crystalline structure become smaller when V' is weak.
Long range correlations become important in determin-
ing the ground state phases, which prevents us to de-
couple the total wave function into two parts. In this
regime, the Bogoliubov calculation fails to capture the
many body physics.
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