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Abstract
We generalize the scattering approach to quantum graphs to quantum graphs
with piecewise constant potentials and multiple excitation modes. The free
single-mode case is well-known and leads to the trace formulas of Roth (1983 C.
R. Acad. Sci., Paris I 296 793–5), Kottos and Smilansky (1997 Phys. Rev. Lett.
79 4794). By introducing an effective reduced scattering picture we are able to
propose new exact trace formulas in the more general settings. The latter are
derived and discussed in details with some numerical examples for illustration.
Our generalization is motivated by both experimental applications and funda-
mental theoretical considerations. The free single-mode quantum graphs are an
extreme idealization of reality that, due to the simplicity of the model allows
to understand a large number of generic or universal phenomena. We lift some
of this idealization by considering the influence of evanescent modes that only
open above threshold energies. How to do this theoretically in a closed model
in general is a challenging question of fundamental theoretical interest and we
achieve this here for quantum graphs.
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1. Introduction

This article is dedicated to the memories of Fritz Haake and Petr Braun. Fritz has been an
outstanding personality. For me (Sven) he was my teacher, Doktorvater, mentor and friend. A
role model in science and in life. For me (Uzy) he was a friend, a colleague and a companion
in many events and inspiring discussions.

Metric graphs with a self-adjoint wave operator, known as quantum graphs, turned out to be
a paradigmatic model in the physics of complex wave systems (quantum chaos [2, 3]) and in
mathematical spectral theory [1, 4]. At the same time the model was applied to wave properties
of actual physical networks such as e.g., optical fibers, microwave cables or waveguides [5–11].
For most of these applications the quantum graph model suffices, in spite of its being a drastic
idealization of the complete physical system: it is limited to complex-valued scalar wave func-
tions that propagate freely along the edges and their scattering in the junctions (vertices) are
provided by appropriate boundary conditions. In spite of this idealization the quantum graph
models grasp the essential characteristics of the systems under study, and have the attractive
feature that they are simple in structure, and enable numerical simulations of a scale which is
prohibitive for more ‘realistic’ models. One of the most prominent successes of quantum graphs
is in providing a rich, versatile and non-trivial spectral theory. The main tool in this direction
was the use of a scattering approach [2] to derive a secular function whose zeros coincide with
the wave operator spectrum. Moreover, this secular function provides the basis for deriving a
trace formula [2, 3] for the spectral counting function N(E) = #{En ∈ σ(G) : En < E}, where
σ(G) is the spectrum of the wave operator on the metric graph G arranged in a non-decreasing
order. This trace formula describes the spectral counting function as a sum of two terms: (i)
a smooth one which accounts for the mean increase of N(E), known as the Weyl-term. For a
graph of total length Ltot it reads N̄(E) =

√
ELtot/π +O(1). (ii) An oscillatory term Nosc(E)

which can be written as a sum of amplitudes computed for all the periodic orbits in the graph.
Each amplitude here is an oscillating function of the wave number k =

√
E.

The purpose of the present work is to generalize the simple quantum graph model so as to
enable the study of realistic networks and at the same time to retain as much as possible the sim-
plicity of the quantum graph model. The main focus will be on providing a scattering approach
and an extended trace formula which surmounts the conceptual and technical difficulties posed
by the physical problem.

A realistic network is composed of waveguides and junctions where several waveguides are
connected. The waveguides are assumed to be straight, with a constant transversal cross section
([12, 13] are recommended for a detailed study of waveguides and networks). The longitudinal
and transversal degrees of freedom are separated and therefore, the wave functions in the edges
are super-positions of product functions

ΨE(x, y) =
∞∑

n=0

[
a+

n fn(y) exp (ikn(E)x) + a−
n fn(y) exp (−ikn(E)x)

]
, (1)

where E is the total energy, x stands for the longitudinal degree of freedom, and y stands for
the collections of transversal degrees of freedom. fn(y) are the transversal mode eigenfunctions
corresponding to energies εn. kn(E) =

√
E − εn is the wave number in the longitudinal direc-

tion if E > εn and the rate of exponential decay or increase if E < εn. The complex coefficients
a±

n are the amplitudes of the waves counter propagating (or decaying/increasing) in the longi-
tudinal direction. The main complication in this multi-mode (MM) approach is due to the fact
that the number of propagating modes (for which E > εn) increases by one whenever E crosses
the ‘threshold’ εn. As a result, the analytic structure of the wave functions is complicated in a
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drastic way. The quantum graph model is constructed by reducing the transversal size to zero,
thus pushing ε1 far away so that the range ε0 < E < ε1 becomes large, and one can ignore all
but the ground state mode. The approximation taken here is to truncate the infinite sum in (1) at
a finite number of modes Nm. Thus, one has to face the treatment of the singularities at thresh-
old—a challenge that is addressed in the present paper. Note that the transversal dynamics may
differ between different waveguides in the network so that the mode spectra can induce a rich
plethora of thresholds and singularities.

The other elements in the network are the junctions. They can be considered as cavities
which couple to the waveguides in a known way. The full computation of the spectrum for a
general network involves the spectrum in the entire enclosed volume which is practical only
for very simple networks. The engineering approach is to measure the scattering matrix of the
relevant junctions, and they are used in the further computation. This is also quite cumbersome.
The reduction of a network to a quantum graph solves this problem by reducing the size of the
junction cavity together with the reduction of the transversal size [13], which result in deriving
effective boundary conditions at the junctions (now vertices). The approximation chosen here is
to generalize the boundary conditions in an appropriate way—which ensures the conservation
of flux in the systems or expressing this in more mathematical terms ensures the self adjoint
nature of the wave operator.

The model which results from the two approximations—truncation of the number of modes,
and replacing the junction by boundary conditions at the vertices, is the multi-mode graphs
which appears in the title of the present article. This model will be denoted by MM (for multi-
mode) in the sequel.

As it stands, the MM model can be further reduced to the solution of quantum graphs in
which the edges e are endowed with constant potentials V(e). Then, an edge e allows free
propagation if E > V(e) and becomes evanescent otherwise. This model (to be denoted by
PCPs for piecewise constant potentials) needs to include the proper treatment of thresholds
as the MM model. The PCP model retains however only a single degree of freedom as is the
case for a standard quantum graph. The interaction between waves comes to play by taking
advantage of the freedom in the vertex boundary conditions in this quantum graphs. Thus, for
any MM quantum graph, one can construct a PCP quantum graph which has the same spectrum
as the MM graph and equivalent eigenfunctions. This is done by replacing each edge in the MM
model by Nm(e) parallel edges with potentials Vm(e) = εm(e). Due to this property, we shall
focus on the solutions of the PCP models, and indicate how to connect it to the desired MM
model using the wealth of allowed boundary conditions.

The study of the role of thresholds and evanescent modes was carried out in the literature
for a few systems [14–17]. While we are not aware of such a study for quantum graphs, our
derivation of a trace formula is based on an approach by Brewer et al [18] who considered
analogous generalizations in the context of an elastic network of plates which has many features
in common with quantum graphs.

This manuscript is organized as follows: in section 2 we discuss an interval with a potential
step as an introductory example that contains most of the essential ingredients of the more
general theory in a simple setting. In section 3 we define Schrödinger operators on PCP quan-
tum graphs. We then introduce the Schrödinger operator for MM quantum graphs, and show
that MM graphs can equivalently be described as PCP graphs on an enlarged metric graph. In
section 4 we develop the scattering approach for PCP (and hence MM) graphs which generally
leads to non-unitary scattering matrices and quantum maps due to the presence of evanescent
modes. Unitarity is replaced by a different set of symmetries that we derive from first princi-
ples. In section 5 we derive a trace formula for the spectral counting function for PCP graphs
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using the scattering approach and illustrate our results with some numerical examples. We con-
clude the paper in section 6 with an outlook on experimental and theoretical applications and
open questions.

2. Introductory example: an interval with a potential step

Before going into the full-blown theory we discuss a simple example that already contains some
of the main ideas: a quantum particle confined to an interval with a potential step described by
the stationary Schrödinger equation

−φ′′(x) + V(x)φ(x) = Eφ(x), (2)

on the interval x ∈ [0, L] of length L > 0. Here, V(x) is a piecewise constant potential with one
potential step. Writing L = L1 + L2 with L1 > 0 and L2 > 0 we write this potential step as

V(x) =

{
0 for x ∈ [0, L1)

V for x ∈ (L1, L],
(3)

with V > 0. (See [14] for a closely related treatment of this example. See also [15] where,
among other, the open variant of this model was discussed from a pure scattering point of view.)
At the ends of the interval we require Dirichlet conditions φ(0) = φ(L) = 0 and at x = L1 we
require that the wave function and its derivative are continuous, φ(L−

1 ) = φ(L+
1 ) and φ′(L−

1 ) =
φ′(L+

1 ) where the notation L±
1 indicates the limits from above and below. Our conditions imply

that the stationary Schrödinger equation describes a self-adjoint eigenvalue problem with a
purely positive spectrum. We thus assume E > 0 in the following. One may view this setting
as a quantum star graph with two edges of lengths L1 and L2 and edgewise constant potentials.
Accordingly we will refer to the subintervals [0, L1) and (L1, L] as edges and the position x = L1

as the central vertex. Let us introduce the wavenumbers

k1 =
√

E = k and k2 =
√

E − V , (4)

and note that k2 is real only if E � V while it is purely imaginary for small energies E < V .
In the latter case we choose to have a positive imaginary part k2 = i|k2|. We may construct
solutions starting from a superposition of plane waves with unit fluxes

φ(x) =

⎧⎪⎨
⎪⎩

1√
k1

(bin
1 eik1(x−L1) + bout

1 e−ik1(x−L1)) for x ∈ [0, L1),

1√
k2

(bin
2 e−ik2(x−L1) + bout

2 eik2(x−L1)) for x ∈ (L1, L],
(5)

where bin/out
1/2 are the (complex) amplitudes of in-/outgoing plane waves at the potential step

x = L1. Note that for E < V on the edge (L1, L] one has real exponents that describe exponential
decay or increase—in this case we have implicitly defined the direction of propagation as the
direction of decay. The conditions at the central vertex x = L1 may be now be written as

(
bout

1
bout

2

)
= σ(E)

(
bin

1

bin
2

)
, (6)
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with the energy dependent central vertex scattering matrix

σ(E) =

⎛
⎜⎜⎝

k1 − k2

k1 + k2

2
√

k1k2

k1 + k2
2
√

k1k2

k1 + k2
−k1 − k2

k1 + k2

⎞
⎟⎟⎠ . (7)

Furthermore the Dirichlet conditions at the outer vertices imply(
bin

1

bin
2

)
= τ (E)

(
bout

1
bout

2

)
, (8)

where the diagonal matrix

τ (E) =

(
−e2ik1L1 0

0 −e2ik2L2

)
, (9)

contains the phases that are acquired by going along the edge, being reflected and then coming
back to the center. It is straight forward to check that σ(E) and τ (E) are unitary for E > V .

Altogether the energy E �= V is an eigenvalue if and only if the consistency condition(
bin

1

bin
2

)
= U(E)

(
bin

1

bin
2

)
, (10)

with the quantum map

U(E) = τ (E)σ(E) =

⎛
⎜⎜⎝−k1 − k2

k1 + k2
e2iL1k1 −2

√
k1k2

k1 + k2
e2iL1k1

−2
√

k1k2

k1 + k2
e2iL2k2

k1 − k2

k1 + k2
e2iL2k2

⎞
⎟⎟⎠ =

(
U11 U12

U21 U22

)
,

(11)

is satisfied in a non-trivial way. This is equivalent to the condition that the secular function
ξ(E) vanishes, where

ξ(E) = det (I− U(E)) . (12)

The correspondencebetween energy eigenvalues and zeros of the secular function is one-to-one
for all real energies apart from the threshold energy E = V . At threshold one has U12 = U21 =
0 and U22 = 1 so ξ(V) = 0 but there is no corresponding eigenfunction. Indeed at this energy
the expression for the wavefunction at x > L1 contains a division by zero (one may avoid this
by normalizing in a different way but that will destroy unitarity of U above threshold which is
essential for our approach).

Above the critical energy E > V this quantum map is manifestly unitary which describes
the flux conservation at the central vertex. Below the critical value E < V the quantum map is
not unitary, one may observe however that |U11| = 1 is unimodular as k2 = i|k2| in this case.
At the critical value E = V one has |U11| = |U22| = 1.

Using Cauchy’s argument principle above threshold E > V where U(k) is unitary one may
then write the spectral counting function in the standard way as a trace formula

5
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Nat(E) = N̄at(E) + Nat,osc(E), (13a)

Nat(E) =
1

2π
Im log det(U(E)) + cat

=
L1

√
E

π
+ θ(E − V)

L2
√

E − V
π

− 1
2
+ cat, (13b)

Nat,osc(E) = − 1
π

Im log det (1 − U(E + iε))

=
∞∑

n=1

1
nπ

Im tr U(E + iε)n, (13c)

where the limit ε→ 0 from above is implied and the suffix ‘at’ refers to ‘above threshold’. The
constant cat will be discussed in the sequel. To facilitate the notation we shall from here on
often omit the reference to the energy dependence and the limit ε→ 0 of various quantities in
the sequel (writing, for instance, U11 instead of U11(E + iε)). Note that the traces tr Un may be
rewritten as sum over periodic orbits p that visits n edges

tr Un =
∑

p

n
rp

ApeiWp, (14)

where the following notation has been used: a periodic orbit is an equivalence class (with
respect to cyclic permutation) of a sequence p ≡ τ1 . . . τn where each τ l ∈ {1, 2} corresponds
to a section of the orbit which involves the transversal from the center to the outside vertex
and back. Its length is 2Lτl . The periodic orbit p is called primitive if the sequence p is not a
repetition of a shorter sequence. If p is not primitive it is the repetition of a shorter primitive
orbit p̃ with repetition number rp. The scattering amplitude of the periodic orbit is given by
the product of all scattering amplitudes collected along the orbit

Ap = (−1)n
n∏

l=1

στl+1τl , (15)

(with the obvious understanding that τ n+1 = τ 1 as required by periodicity). If p is not primitive
then Ap = A

rp
p̃ . Finally the phase of the periodic orbit is given by

Wp = 2n1k1L1 + 2n2k2L2, (16)

where n1 and n2 = n − n2 are the integer numbers of times p visits the corresponding interval
(that is the number of occurrences of the numbers 1 and 2 in the sequence). Altogether we may
then write

Nat,osc(E) =
∑

p̃

∞∑
r=1

1
πr

Im Ar
p̃e

irWp̃ , (17)

as a sum over primitive periodic orbits p̃ of arbitrary length and their repetitions r. In the
division of the spectral counting function Nat(E) = N̄at(E) + Nat,osc(E) the mean part Nat(E)
is a continuous increasing function of E while Nat,osc(E) is not continuous (for ε = 0) and
oscillating. Note that all phases Sp̃ are real increasing functions of E above threshold.
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The identity N(E) = Nat(E) is valid above threshold E > V for an appropriate choice of the
constant cat that may be found if one knows N(E) at some value E > V . We will show later that
the appropriate choice is cat = 0. The expression Nat(E) as a function of E may be evaluated
also below the critical value E < V but it is not applicable because the derivation assumes that
U is unitary. Indeed we will show that below threshold Nat(E) �= N(E) and additional terms
appear that vanish above threshold.

So let us now derive a trace formula with an alternative approach. This approach will be valid
for all E > 0. It is easy to show that the spectrum is strictly positive, so the whole spectrum
is covered. This approach starts by eliminating the modes in the interval x ∈ [L1, L] and thus
rewriting the quantization condition (10) as

uredb1 = b1, (18)

where

ured = U11 + U12
1

1 − U22
U21 =

e2i(k1L1+k2L2) − k1−k2
k1+k2

e2ik1L1

1 − k1−k2
k1+k2

e2ik2L2
. (19)

The corresponding reduced secular function is just

ξred(E) = 1 − ured, (20)

and the energy eigenvalues may be obtained one-to-one from the condition ξred(E) = 0 for the
entire range of E. It is straight forward computation to prove that ured is unitary (unimodular) for
any real and positive E. Below threshold 0 < E < V one has k2 = i|k2| while k1 is real. In this
case one may write ured = − k1−i|k2|

k1+i|k2|e
2ik1L1 1−z∗

1−z with z = k1−i|k2|
k1+i|k2 |e

−2|k2|L2 in terms of three uni-

modular factors. For E > V both k1 and k2 are real and one may write ured = e2i(k1L1+k2L2) 1−z̃∗
1−z̃

with z̃ = k1−k2
k1+k2

e2ik2L2 in terms of two unimodular factors. In either case ured is a product of uni-
modular factors and thus unimodular itself. At the threshold E = V the reduced quantum map
is continuous and unimodular with ured(V) = 1+ik1L2

1−ik1L2
e2ik1L1 . Therefore one can use Cauchy’s

argument principle to express the number counting function as the trace formula

Nred(E) = N̄red(E) + Nred,osc(E), (21a)

Nred(E) =
1

2π
Im log ured + cred

=
L1

√
E

π
+ θ(E − V)

L2
√

E − V
π

− 1
2

− 1
2π

Im log(1 − U22) +
1

2π
Im log(1 − [U−1]22), (21b)

Nred,osc(E) = − 1
π

Im log (1 − ured)

= − 1
π

Im log det (1 − U) +
1
π

Im log (1 − U22) . (21c)

In the second line of the mean part we have set the constant cred = − 1
2 by requiring that

Nred(E) → 0 as E → 0. This expression is valid above and below threshold. However, it will
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be shown that the division into oscillating and mean part seems more natural below threshold.
Let us discuss the expression first above threshold where we will show that it is consistent
with the first approach. Indeed above threshold the U is unitary such that the inverse matrix
element is [U−1]22 = U∗

22 and this implies 1
2π Im log

(
1 − [U−1]22

)
= − 1

2π Im log (1 − U22)
in the mean part Nred(E). Then Nred(E) = N̄at(E) − 1

π
Im log(1 − U22) − cat and Nred, osc(E) =

Nat, osc(E) + 1
π

Im log (1 − U22) and the total expressions for the number counting function
coincide Nred(E) = Nat(E) with the choice cat = 0. However the ‘mean’ and ‘oscillating’ parts
come out differently as the term − 1

π Im log(1 − U22) has moved from the oscillating part to
the mean part in the decomposition of Nred(E). In terms of periodic orbits this corresponds to
the contribution of the primitive orbit p̃ = 2 and all its repetitions. For E > V these contribu-
tions are oscillating functions of E, so the decomposition Nat(E) of the first approach seems
more natural. Below threshold E < V these contributions are no longer oscillating as the phase
rW2 = 2irL2

√
V − E is purely imaginary leading to an exponential suppression ∝e−2rL2

√
V−E

of these contributions below threshold. So, below threshold it is indeed natural that these peri-
odic orbit contributions are considered as part of the mean counting function Nred(E). The
additional terms in the mean part account for the fact that the matrix U(E) is not unitary below
threshold. Note that below threshold the inverse matrix element

[U−1]22 =
k1 − k2

k1 + k2
e−2ik2L2 ≡ k1 − i|k2|

k1 + i|k2|
e2|k2|L2 , (22)

becomes exponentially large in modulus. The logarithms in the mean counting function may
then be expanded with respect to exponentially small terms

− 1
2π

Im log(1 − U22) +
1

2π
Im log

(
1 − [U−1]22

)
=

1
2π

Im log
(
−[U−1]22

)

+

∞∑
r=1

1
2πr

(
U r

22 − [U−1]−r
22

)
. (23)

One may interpret the terms in the sum
∑∞

r=1 as the contributions from repetitions of the
orbit p = 2 where the r-th repetition contributes a difference between the ‘standard forward’
amplitude Ur

22 of the r-th repetition using the r-th power of the corresponding matrix element
of the quantum map and a ‘reversed’ amplitude [U−1]−r

22 that uses the corresponding matrix
element of the inverse quantum map (raised to an inverse power).

Finally let us discuss the behavior far below threshold by considering E � V in the
asymptotic limit V →∞. In this limit any periodic orbit that visits the interval x ∈ [L1, L]
is suppressed exponentially leaving only contributions from the primitive orbit p̃ = 1̄ and its
repetitions

Nred(E) ∼ L1

√
E

π
− 1

2
+

1
2π

Im log(

√
V − E + i

√
E√

V − E − i
√

E
), (24)

Nred,osc(E) ∼− 1
π

Im log (1 − U11) . (25)

Note that U11 = −
√

E−i
√

V−E√
E+i

√
V−E

e2iL1
√

E is unimodular for E < V and we have only neglected

exponentially small terms while keeping any corrections of order O
(
(E/V)n

)
for arbitrary

large n. Moreover, we have used 1
2π Im log

(
−[U−1]22

)
= 1

2π Im log
(√

V−E+i
√

E√
V−E−i

√
E

)
in the mean

8
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counting function. This contribution shifts the counting function by values

0 � 1
2π

Im log

(√
V − E + i

√
E√

V − E − i
√

E

)
� 1

2
, (26)

and increases from the lower bound to the upper bound as E increases from zero to V .
Let us illustrate this with a numerical example. In figure 1 we plot counting functions in the

upper and the absolute value of the secular function in the lower panel for a specific (arbitrary)
choice of parameters (see figure caption). The exact counting function N(E) (fat brown staircase
line) and the expression Nat(E) (dashed blue line) given by (13a) only coincide above threshold
E > V . Below threshold Nat(E) shows steps at the energy eigenvalues but the plateau between
steps is not constant. It has an additional step of half size at the threshold E = V This may
all be expected from the fact that the secular function has a spurious zero at threshold and is
defined in terms of a unitary matrix only above threshold. The upper panel also contains plots
of the mean counting functions Nred(E) (green line) and Nat(E) (blue line) as given by the trace
formulas (21b) and (13b). Above threshold both trace formulas coincide for the full counting
function but give different divisions into a ‘mean’ and ‘oscillating’ part. Comparing the two
‘mean’ parts above threshold it is apparent that Nred(E) oscillates around Nat(E). Indeed the
difference of the two corresponds to periodic orbits that remain inside the edge x > L1 which
are oscillatory functions of the energy for E > V with an amplitude that decays with E →∞
(when the potential step becomes more and more transparent). So one may view Nat(E) as the
more natural candidate for the mean part above threshold. We have therefore plotted Nat(E)
with a fatter line in this region. Below threshold E < V both Nat(E) and Nred(E) are smooth
increasing functions. However only Nred(E) is related to an exact trace formula for the counting
function. One can see that the mismatch between the exact counting function N(E) and the trace
formula Nat(E) is due to the fact that the corresponding ‘mean’ part Nat(E) is too low by the
same amount. The more natural choice for the mean part below threshold is clearly Nred(E)
which is therefore drawn with a fat line for E < V . But this means that the natural choice for
the mean part of the counting function switches from the expression (21b) for Nred(E) to (13b)
for Nat(E) at E = V . The two expressions do not fit together continuously at threshold however.

The lower panel in figure 1 shows the absolute value of the secular functions ξ(E) and ξred(E)
(equations (12) and (20)). Away from the threshold their zeros coincide and clearly correspond
to the increases of the counting function. The ratio of the two satisfies

ξ(E)
ξred(E)

= 1 − U22 = 1 − k1 − k2

k1 + k2
ei2L2k2 . (27)

At threshold U22 = 1 and this is the reason for the different behavior of the two secular func-
tions at this energy (see magnified region of the plot). Below threshold |U22| = e−2

√
V−EL2 and

(27) approaches unity exponentially when E is decreased and this can clearly be seen in the
plots which lie on top of each other until one gets close to threshold from below. Above thresh-
old |U22| =

√
E−

√
E−V√

E+
√

E−V
∼ V

E (when E 
 V). So the ratio also tends to unity when moving away
from threshold but only with a slow V/E decay and this is consistent with the plot.

3. Schrödinger operators on quantum graphs for the PCP and MM models

The main aim of the remainder of this manuscript is to derive a generalization of the trace for-
mulas which were presented in the previous section to quantum graphs with piecewise constant
potentials or multiple modes. The details will be given in sections 4 and 5. Before doing so we

9
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Figure 1. Spectrum for an interval with a potential step in the range 0 � E � 400. The
lengths were chosen as L1 = 1 and L2 =

√
3 and the potential step size as V = 213.

The threshold energy E = V is indicated by a dashed vertical line. Upper panel: exact
counting function N(E) (brown staircase) and expression Nat(E) (dashed blue line) and
mean counting functions (full blue and green lines). Lower panel: secular functions.

shall summarize in this section the standard description of PCP quantum graphs as self-adjoint
metric Schrödinger operators on metric graphs with appropriate matching conditions following
[4, 19, 20]. In most applications of quantum graphs one assumes a zero potential on the edges.
The addition of PCPs is straight forward and therefore readers that are familiar with quantum
graphs may skip most of this—or just pick up the notation. We shall then proceed to describe
the relation between the differential operators in the PCP an MM models.

A quantum graph consists of a metric graph G and a self-adjoint Schrödinger operator Ĥ
in the Hilbert space L2(G) of square-integrable functions on G [4, 19, 20]. Without loss of
generality we assume that the graph is connected. We allow the graph to have parallel edges
and loops but we will assume here that the metric graph is compact. In that case the graph
has a finite number NV of vertices and a finite number NE of edges. Each edge e has a (finite)

10
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length Le > 0 and a coordinate xe ∈ [0, Le] that describes individual points on the edge such
that xe = 0 and xe = Le are the vertices to which the edge is attached. The explicit choice of
direction is arbitrary: Le − xe is as good a coordinate on e as xe.

The Schrödinger operator Ĥ is defined on a dense subspace of L2(G) ≡ ⊕e∈GL2 ([0, Le]) (to
be discussed below). Any wavefunction Φ, (that is, any element of this subspace) is a collec-
tion of NE complex scalar functions Φe ≡ φe(xe) ∈ L2([0, Le]) and the Schrödinger operator
acts as

(
ĤΦ

)
e
= −d2φe

dx2
e

(xe) + Veφe(xe). (28)

Here Ve ∈ R is a potential that is constant on each edge. PCPs can be accommodated by adding
vertices at the positions where the value of the potential changes. In order for the Schrödinger
operator to be well-defined one needs to make sense of the second derivative in a weak way
[4]. For this one needs φe(xe) to be a continuous square-integrable function which is piecewise
differentiable. For the stronger requirement that Ĥ defines a self-adjoint operator one needs
additional matching conditions at the vertices. There is no unique choice of matching condi-
tions and the most general set of matching conditions can be described in several equivalent
ways. We follow the description of Schrader and Kostrykin [19]. Let us consider one vertex v
and denote its degree by dv . Let S(v) be the star of v. By definition this is the set of edges con-
nected to v (where any loops are considered as two independent edges by adding an auxiliary
vertex). Clearly |S(v)| = dv. For any edge e ∈ S(v) we may assume without loss of generality
that xe = 0 corresponds to the vertex v on which we focus. The matching conditions are a set
of dv simultaneous linear relations between the wavefunction and their derivatives at xe = 0
for all e ∈ S(v)

∑
e′∈S(v)

(
Aee′φe′ (0) + Bee′

dφe′

dxe′
(0)

)
= 0. (29)

There are dv equations, one for each edge e ∈ S(v). The coefficients Aee′ and Bee′ form two
complex dv × dv matrices A and B for which one requires that AB† = BA† is a Hermitian matrix
and that the dv × 2dv matrix (A, B) has maximal rank dv . Note that A �→ CA and B �→ CB for
an invertible matrix C gives equivalent matching conditions.

If one chooses matrices A and B with the above conditions for each vertex v in G then the
self-adjoint Schrödinger operator Ĥ is defined on the dense subspace of L2(G) of piecewise
differentiable wavefunctions that satisfy the corresponding matching conditions at all vertices.

In sections 4 and 5 we will consider the eigenproblem

ĤΦ = EΦ, (30)

that is the stationary Schrödinger equation on the graph.
In a MM quantum graph the scalar wave function on a given edge is replaced by a multi-

component wavefunction. The various components describe the transversal modes that may be
excited above a threshold energy. In the present setting we always assume a finite number of
modes. This is essential to ensure a discrete energy spectrum. Quantum graphs with infinitely
many modes and spectra that contain continuous bands have been considered [21].

One arrives at a Schrödinger operator on a MM graph by generalizing on one side (28) to the
MM setting by adding a diagonal matrix that includes excitation energies for each transversal
mode. On the other side one generalizes the matching conditions (29) by replacing the matrices
Ae,e′ and Be,e′ by matrices with elements which carry a double index: A(e,m),(e′,m′) and B(e,m),(e′,m′)

11
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where e, e′ ∈ S(v) identify the interacting edges and the m, m′ identify the interacting modes.
We give the details of this description in appendix A.

A formally equivalent PCP quantum graph can be constructed by replacing each edge of a
MM graph by parallel single-mode edges of the same length. The details of this construction
can also be found in appendix A. The main difference between the PCP and MM models is in
different physical choices of matching conditions at the vertices.

4. The scattering approach

The scattering approach to a quantum graph with NV vertices and NE edges has been a very
useful tool for spectral analysis in the single-mode case without potentials [2, 3]. There, it leads
to an explicit quantization condition in terms of the zeros of a spectral determinant ξ(E) =
det (I− U(E)) = 0 where U(E) is a unitary matrix of dimension 2NE × 2NE known as the
quantum map. The quantum map is built up as a product of matrices that describe scattering
at each vertex followed by transport along the edges. In this section we will generalize the
scattering approach to MM and PCP quantum graphs. The explicit formulation will follow
the PCP model which includes the MM model via the formal equivalence as was discussed in
the previous section and appendix A.

In the presence of edge potentials the scattering matrix need not be unitary as some edges
may support evanescent modes. Conservation of probability currents in this case follows from
a well-known symmetry of scattering matrices in the presence of evanescent modes [15] that
we will derive explicitly from the general matching conditions.

4.1. The vertex scattering matrices and its properties

Let us consider one vertex v of degree d. Without loss of generality we choose the coordinates
xe on the adjacent edges such that xe = 0 is the location of the vertex v and we enumerate
the edges of the graph such that e = 1, . . . , d correspond to the adjacent edges. Collecting the
wavefunctions on the adjacent edges in a column vector φ(x) = (φ1(x1), . . . ,φd(xd))T where
x = (x1, x2, . . . , xd) is the collection of coordinates we may rewrite the matching conditions
(29) in matrix form as

Aφ(0) + Bφ′(0) = 0. (31)

At a given energy E the solution of the differential equation (28) can be expressed in terms of
plane wave propagating in opposite directions. Combining these we may write a wavefunction
that solves the differential equation on all adjacent edges as

φ(x) =
1√
K

eiKXbout +
1√
K

e−iKXbin, (32)

where X is a diagonal matrix with diagonal x and K is a diagonal matrix Kee′ = δee′Ke with the
wavenumbers

Ke =
√

E − Ve, (33)

for each adjacent edge. Note that Ke � 0 for E � Ve. For E < Ve the wavenumber is imaginary
and we choose the convention Ke = i|Ke| in this case (positive imaginary part). This choice is
consistent with implicit limits ε→ 0+ in the energy E �→ E + iε that will appear in the next
section. In this case the two solutions are increasing or decreasing exponential functions. The
factors 1√

K
in (32) normalize the plane wave solutions 1√

Ke
eiKexe to unit probability flux (for

12
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E > Ve). As Ke = 0 at E = Ve we have to assume that the energy is not equal to any of the
potentials on adjacent edges. Finally bin/out denotes d-dimensional column vectors that con-
tain the amplitudes of the incoming and outgoing waves. Note that the direction of a plane
wave implied here is the direction of the corresponding flow for E > Ve and the direction of
exponential decay for E < Ve. The matching conditions (31) allow us to express the outgoing
amplitudes in terms of the incoming amplitudes as

bout = σ(K)bin, (34)

with the d × d vertex scattering matrix

σ(K) = −K1/2 I

A + iBK
(A − iBK) K−1/2 = −I+ 2iK1/2 I

A + iBK
BK1/2. (35)

If all potentials Ve vanish, one may replace the matrix K by the real positive wavenumber
k =

√
E and the expression reduces to the well-known formula for the energy-dependent

unitary vertex scattering matrix [19] for standard quantum graphs (with vanishing edge poten-
tials). If the potentials do not vanish then the vertex scattering matrix is in general not unitary.
One may however express it in terms of the unitary matrix

S ≡ σ(I) = − I

A + iB
(A − iB) = −I+ 2i

I

A + iB
B. (36)

Unitarity of S follows straight forwardly from the conditions that (A, B) has full rank and that
A†B = B†A is Hermitian. Indeed this is just the scattering matrix without potentials at energy
E = 1 (or equivalently if all potentials have the same value and we take the energy to be one
unit above the potential). The relation between σ(K) and S may be written as

σ(K) = R+ T I

I+ SRST , (37)

where

R =
K − I

K + I
and T =

2 K1/2

K + I
. (38)

The relation (37) is easily checked algebraically and has a straight forward physical interpreta-
tion in terms of potential barriers on each edge which may be taken from the following sketch:

(39)

For this one imagines a small region of size δ > 0 around the vertex in which the potential
has a constant value V0 ≡ E − 1 and potential barriers at the distance δ. Behind the barrier the
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potential is equal to the given edge potential. The positions of barriers form a set of d additional
vertices. One then obtains σ(K) as the effective scattering matrix of the combined barriers and
central vertex with scattering matrix S in the limit δ → 0 by observing that R is the diagonal
matrix of reflection coefficients for direct reflection at the barrier without entering the vertex,T
is the diagonal matrix of transmission coefficients across the barrier in either direction, and−R
gives the reflection at the barrier from the vertex back into the vertex. Clearly, (37) just describes
the sum of a direct reflection from the barrier plus a term that describes the transmission through
the barrier followed by scattering at the vertex and multiple back-reflection into the vertex
before the final transmission back into the edge. This is consistent with the scattering matrix
(7) at a potential step (considered as a vertex of degree two) in two ways. On one side the
reflection and transmission coefficients on the diagonal of R and T are obtained from (7) at
unit energy. On the other side one obtains back (7) at arbitrary energy by using (37) with S as
a pure transmission matrix describing continuity of the wavefunction and its derivative.

For E > Ve on all adjacent edges K is a real diagonal matrix and one finds that σ(K) is
unitary. This can be shown starting from (37) and using the unitary of S. In general there will
be some edges where E < Ve and the solutions are evanescent (exponential). To discuss the
structure of the scattering matrix in this case let us assume that the edges are enumerated
such that V1 � V2 � . . .Vd and consider an energy E ∈ (Ve0 , Ve0+1) for some edge
e0 ∈ {1, . . . , d − 1} (the cases E < V1 and E > Vd follow straight forwardly from the follow-
ing discussion). Then one has oscillatory solutions on the edges e = 1, 2, . . . , e0 and evanescent
solutions on the remaining edges e = e0 + 1, . . . , d. Writing all matrices as block matrices, the
vertex scattering matrix assumes the form

σ(K) =

(
σ(K)osc,osc σ(K)osc,ev

σ(K)ev,osc σ(K)ev,ev

)
, (40)

where the index osc stands for oscillatory and ev for evanescent. The diagonal blocksσ(K)osc,osc

and σ(K)ev,ev are square matrices of dimension e0 × e0 and (d − e0) × (d − e0). The off-
diagonal blocks σ(K)osc,ev and σ(K)ev,osc are in general rectangular of dimension e0 × (d − e0)
and (d − e0) × e0. The diagonal matrix K has real positive elements on the diagonal in the
osc–osc block and positive imaginary entries in the ev–ev block. Unitarity of S and the prop-
erties of the matrix K lead to the following symmetry properties for the blocks of the vertex
scattering matrix(

σ(K)osc,osc

)†
σ(K)osc,osc = I, (41a)

i
(
σ(K)osc,ev

)†
σ(K)osc,osc = σ(K)ev,osc, (41b)

iσ(K)osc,osc
(
σ(K)ev,osc

)†
= σ(K)osc,ev, (41c)

i
(
σ(K)osc,ev

)†
σ(K)osc,ev = σ(K)ev,ev −

(
σ(K)†ev,ev

)
. (41d)

Here the third equation follows directly from the first two equations. The rest can be found
by direct calculation. These symmetries are well-known in the general context of scattering
when evanescent modes are present [15–17]. Each of the four equations can be related to flux
conversation [18]. Observing that the outgoing flux on an adjacent edge is given by

Ie =

{|bout,e|2 − |bin,e|2 for e � e0;

2 Im b∗
in,ebout,e for e > e0,

(42)
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then the conditions (41) ensure

d∑
e=1

Ie = 0, (43)

for arbitrary choice of the incoming amplitudes ain.

4.2. The quantum map and the quantization condition

Let us now look at the collection of all vertex scattering matrices σ(v)(K) for v = 1, . . . , NV

at a given energy E. We will assume throughout that E is not equal to any of the constant
potentials on one of the edges. Each of these matrices acts on the incoming amplitudes b(v),in

of plane waves at the given vertex and results in the outgoing amplitudes at the same vertex
b(v),out = σ(v)(K)b(v),in. We may collect all incoming an outgoing amplitudes at all vertices in
two 2NE dimensional vectors bin and bout such that each component corresponds to one directed
edge. One may then introduce the 2NE × 2NE graph scattering matrix S(E) such that

bout = S(E)bin. (44)

One can then order the incoming amplitudes in such a way that the graph scattering matrix is
a product of two matrices

S(E) = PΣ(K), (45)

with the block-diagonal matrix

Σ(K) =

⎛
⎜⎜⎝
σ(1)(K) 0 . . . 0

0 σ(2)(K) . . . 0
. . . . . . . . . . . .
0 0 . . . σ(NV )(K)

⎞
⎟⎟⎠ , (46)

that contains the vertex scattering matrices on the diagonal and a permutation matrix P. With
the convention that we order both amplitude vectors in the same order with respect to directed
edges (where ‘in’ and ‘out’ give the sense of direction) the permutation matrix P just inter-
changes the two directions on the same edge. Note that equation (37) remains valid when
replacing σ(K) �→ Σ(K) if the matrices S, K, R and T are extended to 2NE × 2NE matrices.
Note that the permutation matrix P commutes with K, R and T , as these are diagonal matrices
with the same entries for either direction on a given edge. Reordering the matrix Σ(K) with
respect to oscillating and evanescent modes on the edges for a given energy E the symmetries
(41) also hold for σ(K) �→ Σ(K).

Next, the local plane wave solutions directly connect the outgoing amplitude from the start
vertex to the incoming amplitude at the end vertex of a directed edge. This gives the relation

bin = T(E)bout, (47)

with the diagonal matrix

T(E) = eiKL, (48)
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in terms of the two diagonal matrices K (wavenumbers) and L (edge lengths). The two
equations (44) and (48) result in the condition

bin = U(E)bin, (49)

with the so-called quantum map

U(E) = T(E)S(E) = T(E)PΣ(K) = PT(E)Σ(K). (50)

In the following the explicit dependence on the energy E or the wavenumber matrix K will often
be dropped for better readability. The quantization condition may also be written in terms of
the secular equation

ξ(E) ≡ det (I− U(E)) = 0, (51)

with the secular function ξ(E).
Let us now fix an energy E > mine(Ve) and order the directed edges according to increas-

ing potentials. The corresponding permutation matrix is unitary and thus does not change the
structure of the quantum map (50). We introduce the oscillatory and evanescent blocks in the
same way as in the discussion of the vertex scattering matrix above: the directed edges e where
E > Ve have oscillatory solutions (superpositions of plane waves) and form the oscillatory
subspace where the remaining edges with E < Ve form the evanescent subspace (which may
be empty if E > maxe(Ve)). Writing all matrices in block form the quantum map becomes

U ≡
(

Uosc,osc Uosc,ev

Uev,osc Uev,ev

)
. (52)

Then U inherits from (41) the symmetries

U†
osc,oscUosc,osc = I, (53a)

i
(
Uosc,ev

)†
Uosc,osc = Pev,evT−1

ev,evUev,osc, (53b)

iUosc,osc
(
Uev,osc

)†
= Uosc,evPev,evTev,ev, (53c)

i
(
Uosc,ev

)†
Uosc,ev = Pev,evT−1

ev,evUev,ev − U†
ev,evPev,evT−1

ev,ev, (53d)

where we have used that the permutation matrix P = P−1 = P† is block-diagonal (as it trans-
poses directions on the same edge) and the ev–ev block of the transport matrix is real
diagonal.

If E > maxe(Ve) the quantum map is unitary. In that case it is straight forward to derive a
trace formula that counts the number of states below a given energy E using standard methods.
If E < maxe(Ve) then the quantum map is not unitary and deriving a trace formula is not as
straight forward and it is the topic of the following section.

5. The trace formula and its application

In the remainder of the manuscript we will focus on developing a trace formula that counts the
number of states below a given energy E. For E < maxe(Ve) we will first develop a reduced
unitary description following ideas from [18] where analogous considerations have been used
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to deal with evanescent modes in graph-like structures of mechanical beams. Once a unitary
description is in place we can use standard methods. We will assume throughout this chapter
that the potentials are ordered Ve < Ve+1 and E > V1 = mine(Ve). Our trace formula will
count the number of eigenenergies above this threshold. This is analogous to the situation in
quantum graphs where the trace formula for the spectral counting function for a quantum graph
with general self-adjoint matching conditions [22] only counts the number of states with pos-
itive energies while the number of negative energy states is finite and needs to be determined
separately to obtain the full spectral counting function.

5.1. The reduced quantum map

For the given energy E we use the corresponding division of the amplitudes bin in oscilla-
tory and evanescent subspaces. Equivalently, we can refer to the evanescent and oscillatory
subgraph. Writing the quantization condition in block-forms

Uosc,oscbin
osc + Uosc,evbin

ev = bin
osc, (54a)

Uev,oscbin
osc + Uev,evbin

ev = bin
ev. (54b)

Assuming that Uev,ev has no unit eigenvalue (see discussion below) we may rewrite the sec-

ond equation as bin
ev =

(
I− Uev,ev

)−1
Uev,oscbin

osc which allows us to reduce the quantization
condition to a condition on the oscillatory part only

Uredbin
osc = bin

osc, (55)

with the reduced quantum map

Ured = Uosc,osc + Uosc,ev
I

I− Uev,ev
Uev,osc. (56)

Physically, flux conservation now requires that the reduced map be unitary

U†
redUred = I. (57)

Indeed this follows directly from the symmetries (53) between the blocks of the full quantum
map.

The determinants of the full quantum map and the reduced quantum map obey the identities

det Ured

det U
=

det
(
I−

(
U−1

)
ev,ev

)
det

(
I− Uev,ev

) , (58)

and

det (I− U) = det
(
I− Uev,ev

)
det (I− Ured) , (59)

where (U−1)ev,ev = (Uev,ev − Uev,oscU−1
osc,oscUosc,ev)−1 is the ev–ev block of the inverse map U−1.

These identities may be derived directly from the definition of the reduced matrix in terms of
the blocks of the full matrix (under the assumption that all involved matrices exist). We will
use both identities later to write the trace formula in a precise yet intuitively appealing way.

Before turning to the trace formula let us comment on the implicit assumption that
(I− Uev,ev)−1 exists in order to define the reduced map. Let us consider in more detail the
situation when this assumption fails and assume that for some energy E this inverse does not
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exist. Identity (59) suggests that the energy E is in the spectrum as one of the factors in the
secular equation vanishes. However, the reduced matrix is not defined and one may question
whether the second factor remains finite. So let us demonstrate more carefully that indeed the
energy is in the spectrum. As Uev,ev has (at least one) unit eigenvalue we may denote the corre-
sponding eigenvector as b̂ev. We claim that this eigenvector can be extended to an eigenvector
with unit eigenvalue of the full quantum map(

Uosc,osc Uosc,ev

Uev,osc Uev,ev

)(
0

b̂ev

)
=

(
0

b̂ev

)
. (60)

To prove this one needs to show Uosc,evb̂ev = 0. We do this by considering the squared

norm
∥∥∥Uosc,evb̂ev

∥∥∥2
=

(
b̂ev

)†
U†

osc,evUosc,evb̂ev = 0 where the last equality follows from the

symmetry property (53d) and using that b̂ev is a unit eigenvector of Uev,ev. The extended
eigenvector corresponds to a wave function on the graph that is completely confined to the
evanescent subgraph. While this is possible (e.g. when there are vertices inside the evanes-
cent part with attracting δ-type matching conditions) it requires fine-tuning—a small change
of edge lengths or matching conditions will deform this eigenstate to a new one at a shifted
energy such that it leaks out into the full graph. By using the spectral decomposition of Uev,ev

near the energy where it is not invertible one can then define the reduced map Ured continuously
in a neighborhood. However the identity (59) shows that the reduced secular function

ξred(E) = det (I− Ured(E)) , (61)

is generally not zero at an energy E where Uev,ev has a unit eigenvalue though we have just
shown that it is in the spectrum. A trace formula based on the quantization condition ξred(E) = 0
may thus miss some states. For the remainder we will assume that Uev,ev has no unit eigenvalues
for any (relevant) energy. This is indeed generic as a small change of parameters (lengths,
potentials) will immediately lead to some leakage into the oscillatory part of the graph. In
section 5.3 we construct this situation explicitly for some example graphs and investigate this
numerically.

5.2. The trace formula

With a unitary reduced map Ured(E) and a quantization condition det (I− Ured(E)) = 0
Cauchy’s argument principle allows us to write the spectral counting function (or staircase
function) as the trace formula

N(E) = N̄(E) + Nosc(E), (62a)

N̄(E) =
1

2π
Im log det(Ured(E + iε)) + c

=

NE∑
e=1

θ(E − Ve)
Le
√

E − Ve

π
+

1
2π

Im log det(S(E + iε)) + c

+
1

2π
Im log det(I− (U(E + iε)−1)ev,ev)

− 1
2π

Im logdet(I− Uev,ev(E + iε)), (62b)
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Nosc(E) = − 1
π

Im log det (I− Ured(E + iε))

= − 1
π

Im log det (I− U(E + iε)) +
1
π

Im log det
(
I− Uev,ev(E + iε)

)

=

∞∑
n=1

1
n

(
tr Un − tr Un

ev,ev

)
=

∑
p

′ ∞∑
r=1

1
r

Ar
peirWp , (62c)

which is valid for all energies E > V1 = mine(Ve). We have used the identities (58) and (59).
Note that the individual expressions are not continuous at energies that equal to any poten-
tial E = Ve as the dimension of the blocks and the reduced map change at these energies.
The constant c may be evaluated from requiring that limE→V+

1
N(E) is equal to the number of

eigenenergies smaller or equal to V1. In the oscillatory part we have used log det (I− U) =
tr log(I− U) = −

∑∞
n=1

1
n tr Un and wrote the traces as a sum over primitive periodic orbits p

on the graph. Let us denote a directed edge e as a pair e ≡ (e, d) where e is an edge and d = ±
is the direction (for some given choice of ‘positive’ and ‘negative’ direction). A periodic orbit
of length n is a cyclic sequence e1e2 . . . en ≡ e2 . . . ene1 of n directed edges such that the ver-
tex at the end of e j coincides with the vertex of the start of e j+1. Cyclic means en+ j ≡ e j (the
start of e1 is the end of en) and considering an equivalence class with respect to the starting
edge. The periodic orbit is primitive if it is not the repetition of a shorter orbit. The sum on the
right of (62c) expresses the oscillatory part of the counting function as a sum of contributions
from primitive periodic orbits p = e1, e2 . . . enp of length np and their repetitions r. To each
primitive orbit one associates an amplitude

∏np
j=1 Ue j+1e j ≡ ApeiWp where Wp =

∑np
j=1 Ke j Le j

and Ap =
∏np

j=1 Se j+1e j is the product of scattering matrix elements. The prime in the summa-
tion indicates that only primitive orbits that have at least one directed edge in the oscillatory
subgraph contribute, that is the subgraph that consists of all edges with Ve < E. These are
characterized by Re W p �= 0. The contributions from these orbits are oscillatory because of the
factor ei Re Wp which is an oscillatory function of the energy. The imaginary part of W p cor-
responds to the evanescent edges that are visited and leads to an exponential suppression of
these orbits due to a factor e−Im Wp. At a given energy one may distinguish three types of orbits
p: either all edges of p are in the evanescent part (for these orbits Re W p = 0), or all edges
of p are in the oscillatory part (in this case Im W p = 0) or p visits both the evanescent and
the oscillatory subgraphs. Only the latter two types are contained in the oscillatory part of the
counting function, and far below the next critical energy the orbits that are purely oscillatory
orbits are dominant. We will show below that one part of the mean counting function (62b)
contains contributions from purely evanescent periodic orbits.

One may wonder why the constant c has the same value when the individual parts of the
expression are not continuous at E = Ve. Should one not choose different constants in each
interval such that the counting function remains continuous at these energies (or jumps by an
integer if they happen to be in the spectrum). The reason for this lies in the fact that there
is an element of choice in the formula that we have given. E.g. the reduced map as we have
defined it has dimension two for energies V1 < E < V2 and then changes to dimension four
in the interval V2 < V3 and so forth. Alternatively one may stick to a reduced map of dimen-
sion two for all energies E > V1 without the restriction E < V2. When crossing E = V2 the
two-dimensional reduced map remains unitary and the trace formula remains valid. Just the
designation of the blocks as oscillatory and evanescent becomes blurred as the ev–ev block
now acts on a subgraph that has one oscillatory edge. The unitarity of this matrix across such
a crossing can be shown explicitly and follows directly from the fact that one may reduce
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the matrix in steps and reducing an already unitary further will always lead to a smaller uni-
tary matrix. Analogously the formula with a reduced matrix of given size 2e × 2e is valid for
all energies E > Ve. Eventually for E > VNE one may use any of the NE − 1 reduced matri-
ces, or the full matrix U. This does not imply that the individual terms N̄(E) and Nosc(E)
are the same for all these choices—only their sum is not affected by this choice. This can
be seen directly if we fix the dimension of the reduced matrix but consider the expression
at energy E > VNE . At this energy the full matrix has become unitary U−1 = U† such that
(U−1)ev,ev = (U†)ev,ev = U†

ev,ev. In that case the third term in the expression for N̄(E) obeys

det
(
I−

(
U−1

)
ev,ev

)
= det

(
I− U†

ev,ev

)
= det

(
I− Uev,ev

)∗
which implies that the third and

forth term can be combined to 1
π

Im log det(I− Uev,ev) which appears with the opposite sign in
Nosc(E). When looking at the complete counting function these terms then cancel and what
remains is just the expression one would have obtained directly from full matrix. This identity
however works only if the constant term c is also the same in both the expressions.

The main reason why it seems more natural to let the dimension of the reduced map increase
by two at each energy E = Ve rather than just use the trace formula with a reduced map of
dimension two throughout all energies E > V1 (or another fixed even dimension above a cor-
responding threshold energy) is that in the latter case the division between oscillatory and
evanescent subgraph does not correspond to the periodic orbits that contribute in the oscilla-
tory part of the counting functions. So let us assume again that the energy is in one interval
Ve < E < Ve+1. Above we have already shown that the oscillatory part of the counting func-
tion can be written as a sum over periodic orbits that are either purely oscillatory or visit both
the oscillatory and the evanescent subgraphs. These are the orbits whose contributions show
strongly oscillatory behavior as functions of energy because Re W p is an increasing function
of the energy. Let us now come back, as promised above, to the fate of the purely evanescent
orbits. In the expression for the oscillatory part of (62c) they are explicitly subtracted via the
term

1
π

Im log det
(
I− Uev,ev

)
= −

∞∑
n=1

1
nπ

tr Un
ev,ev. (63)

One half of this term reappears with the opposite sign in the mean part. The missing half

appears in a different form as 1
2π Im log det

(
I−

(
U−1

)
ev,ev

)
. The latter cannot be expanded

directly into traces of powers of
(
U−1

)
ev,ev because this matrix contains exponentially large

entries ∝T−1
ev,ev. Factoring out the matrix one may expand the two logarithmic determinants in

the mean part as

1
2π

Im log det
(
I−

(
U−1

)
ev,ev

)
− 1

2π
Im log det

(
I− Uev,ev

)

=
1

2π
log det

(
−
(
U−1

)
ev,ev

)
+

∞∑
n=1

1
2πn

(
tr Un

ev,ev − tr
(
U−1

)−n

ev,ev

)
,

(64)

where the terms sum over traces may be expanded further into contributions over purely
evanescent periodic orbits such that each orbit has two amplitudes one standard contribu-
tion where amplitudes are products of matrix elements of the quantum map and a second
‘reversed’ contribution from the negative powers of the ev–ev-block of the inverse quantum
map. Both contributions are exponentially suppressed when one is well below the next energy
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threshold E � Ve+1. The first term 1
2π Im log det

(
I− Uev,ev

)
contributes a term of order unity

in the whole interval Ve < E < Ve+1.

5.3. Example: the star graph with Robin-conditions

A star graph has one central vertex and NE = NV − 1 edges that connect the central vertex
to dangling vertices of degree one. The above description results in a quantum map U(E) of
dimension 2NE × 2NE where each dimension of the map correspond to a directed edge. The
simple topology of star graphs implies that a plane wave that moves out from the center is
reflected back on the same edge in the opposite direction. As a consequence one often uses an
equivalent description using a smaller quantum map Ũ(E) that has dimension NE × NE where
each dimension corresponds to an undirected edge. In this case one may write

T =

(
T̃ 0
0 T̃

)
, (65)

and

S =

(
0 σ̃

σ(NE+1) 0

)
, (66)

where σ(NE+1) is the vertex scattering matrix at the center, σ̃ = diag(σ(1), . . . , σ(NE )) contains
the scalar scattering coefficients at the dangling vertices, and T̃ = diag(eiK1L1 , . . . , eiKNE LNE ) is
the diagonal NE × NE matrix that contains phase factors for traveling along one end to the
other on each edge. As the quantum map U has a block form that vanishes on the diagonal one
then finds that the secular function may be written as

det (I− U) = det
(
I− Ũ

)
, (67)

with

Ũ = T̃σ̃T̃σ(N+1) = σ̃T̃2σ(N+1). (68)

The matrix Ũ is a quantum map defined on edges rather than directed edges and it describes
the scattering on incoming plane waves at the center using σ(N+1) followed by propagation
along the edges from the center out using T̃, the reflection at the dangling vertices using σ̃ and
propagation back to the center using T̃ . Note that U is unitary if and only if Ũ is unitary.

Our introductory example in section 2 can be considered as the simplest incarnation of a
star with NE = 2 edges corresponding to the two sub-intervals and Dirichlet conditions. There
we have used the smaller 2 × 2 description which is more compact but wrote U rather than Ũ.
For general graph topologies the description has to be based on directed edges and that is what
we have sticked to in the rest of the description. For star graphs is straight forward to translate
all results obtained using U in terms of Ũ.

To illustrate the theory and, especially, how the trace formula can be applied in practice let
us consider a star graph with NE edges and assume Kirchhoff matching conditions at the center
(continuity of the wavefunction through the vertex and a vanishing sum over all edges of the
outward derivative of the wavefunction at the center). On the dangling vertices of degree one
we will put δ-type conditions with coupling parameter {λe}NE

e=1. The latter are also known as
Robin-conditions and are defined by φ′

e(Le) = λeφe(Le). With λe →∞ or λe = 0 this includes
Dirichlet or Neumann conditions as special cases. With our introductory example in section 2
we have already considered star with NE = 2 edges corresponding to the two sub-intervals
and Dirichlet conditions. For a three-star, NE = 3 with Dirichlet conditions at all degree one
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Figure 2. Counting function for a three-star with L1 =
√

2, L2 =
√

3, L3 = 1, V1 = 0,
V2 = 121, V3 = 198 and Dirichlet conditions at all vertices of degree one. The exact
counting function N(E) (fat brown line) is obtained from finding zeros of the secular
function. N(E)red,n (dashed lines) gives the trace formula based on a reduced quantum
map of dimension 2n (for n = 3 this is the full map, n = 1 coincides with the exact
stair case), and N̄(E)red,n (full lines) gives the ‘mean’ parts of these trace formulas. The
latter are plotted fat in the intervals Vn−1 < E < Vn where the corresponding full trace
formula is valid and the split into mean part and oscillating part is most natural.

vertices and some arbitrary choice of lengths and potentials one finds similar behavior as for the
introductory two-star example, see figure 2. Apart from having two threshold energies instead
of one, we may refer to the discussion in section 2 of figure 1.

One may wonder how the trace formula works when there are eigenstates that vanish exactly
on a subgraph with low edge potentials. How can the reduced scattering approach ‘see’ these
states? Or are they missed out? For special choices of the parameters and using Robin con-
ditions with negative (attracting) coupling parameters one may consider these questions for a
star graph with NE = 3 edges. To construct such a case, let us choose V1 = 0, V2 = V3 > 0,
L2 = L3, λ1 →∞ and λ2 = λ3 such that the edges e = 2 and e = 3 are identical. In that
case the eigenstates will either be odd or even under exchange of the two edges and all odd
eigenstates will vanish on the edge e = 1. Choosing Dirichlet conditions everywhere (that is
sending λ2 = λ3 to infinity) the odd eigenstates can be constructed explicitly as φ1(x1) = 0,
φ2(x2) = A sin(nπx2/L2) and φ3(x3) = −A sin(nπx3/L3) for some amplitude A �= 0 and pos-
itive integer n. The corresponding eigenenergies are E = n2π2

L2
2

+ V2 > V2. For finite (positive

or negative) values of λ2 = λ3 these energies decrease as the coupling parameters are lowered.

For Neumann conditions λ2 = λ3 = 0 they have decreased to E = (n−1/2)2π2

L2
2

+ V2 > V2. For

negative coupling parameter one may drive the lowest of these energies below the threshold
V2. As long as the graph is completely symmetric the wavefunction does not leak into the edge
e = 1. Let us consider how this situation may be approached numerically by introducing a
small mismatch of the lengths L3 = L2 + �. This is the regime shown in figure 3 where we plot
the counting function below the lowest threshold. With the given choice of parameters there
are three eigenvalues below threshold. By construction the wavefunction of the central one
becomes completely localized on edges e2 and e3 as �→ 0. Plotting the mean and oscillating
parts as defined by the reduced quantum map of dimension 2 × 2 one can see that the mean part
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Figure 3. Counting function (mean part N(E), oscillating part Nosc(E), and their sum
N(E) for a three-star graph with lengths L1 = 1, L2 = 0.5, L3 = L2 + �, V1 = 0, V2 =
V3 = 10 with Kirchhoff matching conditions at the center, Dirichlet conditions at the end
of edge e = 1 and (attractive) Robin conditions with coupling parameters λ2 = λ3 =
−2.5. All expressions use the reduced approach appropriate for E < V2/3. The length
mismatch is � = 0.05 in the upper panel and � = 0.02 in the lower panel.

remains smooth at the lower and upper eigenenergy as �→ 0 while it develops a discontinuous
step at the central energy. At the same time the step in the oscillating part narrows to a tiny
resonance at this position (while the steps remain clear for the other two eigenenergies). If one
sets � = 0 from the start then the trace formula misses the central eigenenergy: the expressions
for smooth and oscillating part are just continuous here. The limit �→ 0 however creates a
step—this is possible due to the multi-valuedness of the complex logarithm. While we have
excluded this case by assumption in our derivation, this numerical analysis gives an indication
that one may define a trace formula with the reduced quantum map that does not miss out any
states that localize in the evanescent part by using continuity with respect to some parameters
(lengths, potentials, matching conditions).

6. Outlook

We have expanded the spectral theory of quantum graphs by constructing a scattering approach
for quantum graphs with PCPs or a MM wave function with a finite number of modes on each
edge. In this finite case it is formally sufficient to just consider single-mode quantum graphs
with edge-wise constant potentials as one can always map the MM graph to an equivalent larger
graph with parallel edges, single-mode wavefunctions and inferred matching conditions. The
presence of evanescent modes involves non-unitary scattering matrices as a direct consequence.
This is a challenge for the construction of a trace formula for the spectral counting function
and we have overcome this challenge by introducing a reduced unitary approach.

The scattering approach for quantum graphs may be used in other settings straight forwardly,
e.g. for scattering from a finite (compact) graph with a finite number of leads attached. Many
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of our constructions are valid beyond quantum graph theory as they build on the generic sym-
metries of scattering matrices in the presence of evanescent modes—e.g. in the semiclassical
scattering approach to quantum billiards where evanescent modes are always present and there
is an infinite series of energy thresholds where single evanescent modes become oscillatory.

Finally, in a way the trace formula we have presented is not quite complete. We have
assumed that the energy is always larger than the lowest edge potential. But how do we count
the number of states below the lowest potential. The reduced scattering matrix has zero dimen-
sion, so the approach does not seem to make immediate sense. We leave this open for further
investigation.
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Appendix A. MM quantum graphs and their formal equivalence to a
single-mode quantum graph

Let us consider the MM setting on a connected metric graph with NV vertices and NE edges.
In this setting the scalar wavefunction φe(xe) on the edge e is replaced by a multi-component
wavefunction

φe(xe) =

⎛
⎝ φe,1(xe)

. . .
φe,μe (xe)

⎞
⎠ , (A1)

with μe components and a Schrödinger operator Ĥ acts on a given edge as

(
ĤΦ

)
e
= −d2φe

dx2
e

(xe) + Veφe(xe), (A2)

where diagonal (constant) matrix Ve = diag
(
Ve,1, . . . , Ve,μe

)
replaces the scalar potential. We

will always assume that the number of modesμe is finite on each edge but we do allow μe < ∞
to vary from one edge to another. By straight forward extension of [19] matching conditions
that render the corresponding Schrödinger operator Ĥ self-adjoint follow the same pattern as in
the single-mode case. At a given vertex v of degree dv one may write the matching conditions
as linear relations between the adjacent multi-component wavefunctions and their derivatives

∑
e′

(
Aee′φe′ (0) + Bee′

dφe′

dxe′
(0)

)
= 0, (A3)
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where the sum is over all edges e′ adjacent to v and there are dv—one for each adjacent edge e.
The coefficients Aee′ and Bee′ are now matrices of size μe × μe′ . Let d̃v =

∑dv
e=1 μe (the number

of all modes on adjacent edges) then we can combine the coefficient matrices to a large matrix
of size d̃v × d̃v and the linear relations define a self-adjoint problem if and only if AB† = BA†

is a Hermitian matrix and that the d̃v × 2d̃v matrix (A, B) has maximal rank d̃v . If μe = 1
on all edges our description of a MM graph reduces to a single-mode quantum graph with
constant potentials as a special case. However we may also view a MM graph with NV vertices
with degrees {dv}NV

v=1 and NE = 1
2

∑NV
v=1 dv edges with {μe}NE

e=1 modes as a single-mode PCP
quantum graph with the same number of vertices NV and ÑE =

∑NE
e=1 μe =

1
2

∑NV
v=1 d̃v single-

mode edges by replacing each edge e in the original MM graph by μe parallel edges of the
same length Le with single-mode wave functions φe,m(xe) �→ φe,m(xe.m) (where xe,m with 1 �
m � μe is the coordinate on the m-th parallel edge). The excitation energies Ve,m (1 � m � μe)
then become constant potentials on the m-th parallel edge and the description of self-adjoint
matching conditions carries over in a natural way. In the rest of the paper we will use the formal
language of single-mode PCP quantum graphs and think of MM quantum graphs as a special
case with parallel edges of the same length. While this equivalence between the MM and PCP
picture on an enlarged graph is formal it is straight forward to adapt in a theoretical setting as
well as practically in an experiment. In the former one may prescribe matching conditions and
excitation energies as required and in the latter the relevant parameters can be measured (or
chosen consistently with available measurements).
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