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Abstract: Precision positioning of industrial robots is a vital requirement on the factory floor. Robot end effector 

positioning using joint angle readings from joint encoders and industrial robot forward kinematics (FKs) is a 

common practice. However, mechanical wear, manufacturing and assembly tolerances, and errors in robot 

dimension measurement result in parameter uncertainties in the robot FK model. Uncertainties in robot FK 

result in inaccurate position measurement. In this paper, we use a multi-output least squares support vector 

regression (MLS-SVR) method to improve the positioning accuracies of industrial robots using a highly 

accurate laser tracker system, Leica AT960-MR. This equipment is a non-contact metrology one capable of 

performing measurements with error of less than 3𝜇𝑚/𝑚 . To perform this task, industrial robot FK is 

formulated as a regression problem whose unknown parameters are tuned using laser tracker position data as 

target values. MLS-SVR algorithm is used to estimate the industrial robot FK parameters. It is observed that 

using the proposed approach, the accuracy of industrial robot FKs in terms of mean absolute errors of static 

and near-static motion in all three dimensions decreases from its measured value: from 71.9𝜇𝑚 to 20.9𝜇𝑚 

(71% decrease). 

1 INTRODUCTION 

Industrial robots are vital factory elements to perform 

various tasks including assembly, object 

manipulation and object handling (Khanesar & 

Branson, 2022). Precision positioning is a 

predominant requirement for industrial robots to 

maintain their high-quality production and 

manufacturing. To precisely position industrial 

robots, accurate forward kinematics (FK) are required 

to be integrated into control methodologies. 

Irregularities in industrial robot geometry, robot 

manufacturing tolerances, tolerances associated with 

assembly procedure, possible structural 

deformations, and environmental factors may result 

in differences between the actual physical parameter 

values and their nominal counterparts. This 

discrepancy can lead to uncertainty in industrial robot 
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FK and therefore reduce the overall precision of the 

robot motion. To overcome the inherent uncertainties 

in industrial robots FK, calibration approaches are 

generally used to compensate for differences between 

nominal and actual parameters (Gao, Li, Liu, & Han, 

2021; Nguyen, Zhou, & Kang, 2015). 

Industrial robot calibration is usually performed in 

three levels of joint angle calibration, FK calibration, 

and non-kinematic calibration (Roth, Mooring, & 

Ravani, 1987). At calibration level I, joint angle 

readings from encoder are calibrated using an 

appropriate relationship between actual joint angle 

values and encoder angle readings. Robot calibration 

at level II includes corrections to FK. On level III, 

non-kinematic calibration includes corrections to 

robot position due to robot flexibilities. In this paper, 

calibration is performed at Level II. 

 



 

Figure 1 Overall block diagram of the proposed algorithm 

 

Level II calibration, FK calibration, is the process of 

using real-time data gathered from industrial robots 

and extra independent measurement equipment to 

improve positioning precision. The heterogeneous 

information gathered from multiple measurement 

systems increases the perception capability of the 

overall calibration system. To calibrate industrial 

robots 3D positioning using neural networks, a Leica 

SMART310 laser tracker is already used to calibrate 

a PA10 robot arm (Aoyagi, Kohama, Nakata, 

Hayano, & Suzuki, 2010). Leica AT960 and Leica 

AT960-MR are used for neural networks position 

calibration purpose of IRB1410 and a collaborative 

industrial robot, respectively (Bai et al., 2021; Duong, 

Trang, & Pham, 2021). A similar approach is used in 

(Aoyagi et al., 2010; Nguyen et al., 2015) for 

calibration purpose of Hyundai HH800 robot, a heavy 

duty industrial robot, using a laser tracker system. To 

avoid black box robot FK calibration, this paper 

performs level II calibration of industrial robots by 

tuning the parameters of its geometrical FK. 

Therefore, the calibrated industrial robot FK is a 

traceable one. 

To perform level II calibration, this paper proposes 

the use of multi-output least squares support vector 

regressions (MLS-SVR), an advanced regression 

model, to tune industrial robots FKs. This algorithm 

is a variant of LS-SVR which is a powerful regression 

algorithm originally introduced by (Vapnik, 1999; 

Vladimir & Vapnik, 1998). LS-SVR replaces convex 

quadratic programming problem with convex linear 

system solving problem. Although the original 

version of LS-SVR is meant for single output case, its 

multi-output case has been developed by (Xu, An, 

Qiao, Zhu, & Li, 2013). Using multi-output LS-SVR 

(MLS-SVR), it is not required to treat every single 

output individually. The superior estimation power of 

MLS-SVR over partial least squares (Abdi, 2003) and 

kernel partial least squares regression (Rosipal & 

Trejo, 2001) for benchmark regression problems has 
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already been shown by examples (Xu et al., 2013). 

Inspired by successful use of MLS-SVR in literature, 

it is the preferred algorithm in this paper to calibrate 

industrial robot FK.  

In this paper, an MLS-SVR is used to calibrate an 

industrial robot’s FK model. Using a highly accurate 

laser tracking system, Leica AT960, the absolute 3D 

positions of an industrial robot are measured. The 

measurement error of the laser tracking system which 

is used in this paper is 3𝜇𝑚/𝑚4. This equipment is a 

non-contact metrology one to accurately measure 3D 

positions. The absolute positions from the laser 

tracker are then used to estimate industrial robot FK 

parameters. To do so, first industrial robot FK is 

formulated as a regression problem. The parameters 

of industrial robot FK are then estimated using MLS-

SVR which is a batch estimation approach. It is 

observed that using the proposed calibration 

approach, it is possible to decrease positioning error 

in terms of mean absolute error (MAE) from its 

measured value of 71.9𝜇𝑚  to 20.9𝜇𝑚 . In other 

words, using the proposed approach, MAE in all three 

dimensions decreases by 71%. 

This paper is organized as follows: in Section 2, the 

overall methodology including an industrial robot 

FK, and the proposed calibration approach are 

introduced. The experiment setup to perform the 

measurements is presented in Section 3. Experimental 

results are presented in Section 4. Section 5 concludes 

the paper. Acknowledgements and references for this 

paper are presented in Section 6 and Section 7, 

respectively.  

 

2 METHODOLOGY 

The overall calibration algorithm is presented in this 

section. Robot joint angle encoders are generally used 

in industrial robots for positioning purposes. 

However, uncertainties in robot FK parameters and 
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geometrical uncertainties impose error on the 

positional accuracies. To increase the accuracies of 

FK parameters, MLS-SVR method is used in this 

paper. Figure 1 demonstrates the overall block 

diagram of the proposed approach. It is required to 

formulate industrial robot FK in terms of a regression 

problem. Synchronisation is required as joint angle 

measurements and absolute position measurements 

are conducted using two independent equipment. 

Joint angle data gathered from industrial robot are at 

higher frequency of 125Hz. Hence, they are 

resampled at the laser tracker frequency to obtain 

synchronisation between the robot and laser tracker. 

No resampling is conducted on the measurements 

gathered from laser tracker system to maintain its 

high accuracy. The data samples occurring at linear 

robot speed less than 2mm/s are used for static and 

near static measurement and calibration. MLS-SVR 

algorithm is then applied to industrial robot FK using 

the resulting synchronised data. Details of the overall 

process are explained in the coming subsections 2.1 

and 2.2. 

2.1 FK Model of UR5 

Industrial robot FK is a function which expresses the 

Cartesian coordinates of robot within 3D space as a 

function of robot joint angles. Inverse kinematic is the 

reverse procedure to assign appropriate joint angles to 

industrial robots to maintain the desired positions and 

orientations. The link transformation matrix from the 

link 𝑖-1 to the link 𝑖  using the Denavit–Hartenberg 

(D-H) parameters of the robot as in Table 1 depends 

on the corresponding joint angle of the industrial 

robot and its D-H parameters (Kufieta, 2014; Sun, 

Cao, Li, Liang, & Huang, 2017). 

 

𝑇𝑖
𝑖−1 = [

𝑐𝑞𝑖 −𝑐𝛼𝑖𝑠𝑞𝑖 𝑠𝛼𝑖𝑠𝑞𝑖 𝑎𝑖𝑐𝑞𝑖

𝑠𝑞𝑖 𝑐𝛼𝑖𝑐𝑞𝑖 −𝑠𝛼𝑖𝑐𝑞𝑖 𝑎𝑖𝑠𝑞𝑖

0 𝑠𝛼𝑖 𝑐𝛼𝑖 𝑑𝑖

0 0 0 1

] 

(1) 

 
Table 1 The DH parameters of the 6DOF robot 

Link 𝒒 𝒅 𝒂 𝜶 

1 𝑞1 𝑑1 0 𝜋/2 
2 𝑞2 0 𝑎2 0 
3 𝑞3 0 𝑎3 0 
4 𝑞4 𝑑4 0 𝜋/2 
5 𝑞5 𝑑5 0 −𝜋/2 
6 𝑞6 𝑑6 0 0 
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where 𝑞𝑖 ′𝑠, 𝑖 = 1, … ,6  represent the joint angle 𝑖  , 

𝛼𝑖′𝑠, 𝑖 = 1, … ,6, 𝑎𝑖′𝑠, 𝑖 = 1, … ,6, and  𝑑𝑖 , 𝑖 = 1, … ,6 

present other DH parameters of robot. Furthermore, 

𝑐𝑞𝑖 , 𝑠𝑞𝑖 , 𝑐𝛼𝑖 , and  𝑠𝛼𝑖 , 𝑖 = 1, . . .6 represent 𝑐𝑜𝑠(𝑞𝑖), 
𝑠𝑖𝑛(𝑞𝑖),  𝑐𝑜𝑠𝛼𝑖 ,  and 𝑠𝑖𝑛(𝛼𝑖), 𝑖 = 1, . . . ,6 , 

respectively. Overall robot transformation matrix in 

robot base coordinates is obtained as follows.   

 

𝑇𝑒 = 𝑇6
0 = 𝑇1

0 𝑇2
1 𝑇3

2 𝑇4
3 𝑇5

4 𝑇6
5  (2) 

 
The end effector coordinates in all three dimensions 
are obtained as follows. 

 

𝑥𝑟 = 𝑑4𝑠1 + 𝑎2𝑐1𝑐2 + 𝑑6𝑐5𝑠1 + 𝑎3𝑐1𝑐2𝑐3 

−𝑎3𝑐1𝑠2𝑠3 + 𝑑5𝑐1𝑐2𝑐3𝑠4 + 𝑑5𝑐1𝑐2𝑠3𝑐4 

 +𝑑5𝑐1𝑠2𝑐3𝑐4 − 𝑑5𝑐1𝑠2𝑠3𝑠4 

 −𝑑6𝑐1𝑐2𝑐3𝑐4𝑠5  + 𝑑6𝑐1𝑐2𝑠3𝑠4𝑠5 

 +𝑑6𝑐1𝑠2𝑐3𝑠4𝑠5  + 𝑑6𝑐1𝑠2𝑠3𝑐4𝑠5 (3) 

 

𝑦𝑟 = 𝑎2𝑠1𝑐2 − 𝑑6𝑐1𝑐5 − 𝑑4𝑐1 + 𝑎3𝑠1𝑐2𝑐3 

−𝑎3𝑠1𝑠2𝑠3 + 𝑑5𝑠1𝑐2𝑐3𝑠4 + 𝑑5𝑠1𝑐2𝑠3𝑐4 

+𝑑5𝑠1𝑠2𝑐3𝑐4 − 𝑑5𝑠1𝑠2𝑠3𝑠4 

−𝑑6𝑠1𝑐2𝑐3𝑐4𝑠5 + 𝑑6𝑠1𝑐2𝑠3𝑠4𝑠5 

+𝑑6𝑠1𝑠2𝑐3𝑠4𝑠5 + 𝑑6𝑠1𝑠2𝑠3𝑐4𝑠5 (4) 

 

𝑧𝑟 = 𝑑1 + 𝑎2𝑠2 + 𝑎3𝑐2𝑠3 + 𝑎3𝑠2𝑐3 

−𝑑5𝑐2𝑐3𝑐4 − 𝑑5𝑐2𝑠3𝑠4+𝑑5𝑐2𝑠3𝑠4 

+𝑑5𝑠2𝑐3𝑠4 + 𝑑5𝑠2𝑠3𝑐4 − 𝑑6𝑐2𝑐3𝑠4𝑠5 

−𝑑6𝑐2𝑠3𝑐4𝑠5 − 𝑑6𝑠2𝑐3𝑐4𝑠5 + 𝑑6𝑠2𝑠3𝑠4𝑠5 (5) 

 

Although the values of FK parameters are unknown 

and will be estimated in this paper, their numerical 

values according to the robot manufacturer are as 

follows5. 

 

𝑑1 = 0.08916𝑚, 𝑎2 = −0.425𝑚, 
𝑎3 = −0.392𝑚, 𝑑4 = 0.1092𝑚, (6) 

 𝑑5 = 0.0947𝑚, 𝑑6 = 0.0823 + 𝑑 (7) 

 

where 𝑑  is the distance between the centre of the 

retroreflector and the centre of the robot end-effector 

(see Figure 2) which is approximately equal to 

0.1695𝑚. Furthermore,  

 

𝑑2 = 𝑑3 = 0, and 𝑎𝑖 = 0, 𝑖 = 1,4,5,6. (8) 

 

To conduct the calibration, the direction of the robot 

is considered on its downward orientation with its 

TCP axis-rotation vector equal to (𝜋 0 0). 
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From (3)-(5), the regressor vectors corresponding to 

three dimensions: x, y, and z are formulated for MLS-

SVR to estimate robot FK parameters.  

 

𝑅𝑥 = [𝑠1𝑐5, 𝑠1, 𝑐1𝑐2𝑠3𝑐4, 𝑐1𝑐2𝑐3𝑐4𝑠5, 
𝑐1𝑐2𝑠3𝑠4𝑠5, 𝑐1𝑐2𝑐3𝑠4, 𝑐1𝑐2𝑐3, 𝑐1𝑐2 , 
𝑐1𝑠2𝑠3𝑐4𝑠5, 𝑐1𝑠2𝑐3𝑐4, 𝑐1𝑠2𝑠3𝑠4, 𝑐1𝑠2𝑠3, 

𝑐1𝑠2𝑐3𝑠4𝑠5, 1], (9) 

 

𝑅𝑦 = [𝑐1𝑐5, 𝑐1, 𝑠1𝑐2𝑠3𝑐4, 𝑠1𝑐2𝑐3𝑐4𝑠5, 

𝑠1𝑐2𝑠3𝑠4𝑠5, 𝑠1𝑐2𝑐3𝑠4, 𝑠1𝑐2𝑐3, 𝑠1𝑐2, 
𝑠1𝑠2𝑠3𝑐4𝑠5, 𝑠1𝑠2𝑐3𝑐4, 𝑠1𝑠2𝑠3𝑠4, 𝑠1𝑠2𝑠3, 
𝑠1𝑠2𝑐3𝑠4𝑠5, 1] (10) 

  

and 

𝑅𝑧 = [𝑠2𝑠3𝑠4𝑠5, 𝑠2𝑠3𝑐4, 𝑠2𝑐3𝑐4𝑠5, 
𝑠2𝑐3𝑠4, 𝑠2𝑐3, 𝑠2, 𝑐2𝑠3𝑐4𝑠5, 𝑐2𝑠3𝑠4𝑐2𝑠3, 
𝑐2𝑐3𝑠4𝑠5, 𝑐2𝑐3𝑐4, 1] (11) 

 

These regressor values are used in the next subsection 

to tune the FK parameters 

2.2 Multi-output least squares support 
vector regression 

Let the multioutput regression problem to be solved 

be: 

Υ = Φ𝑇Π (12) 

where Υ = [𝑋 𝑌 𝑍] ∈ ℝ𝑁×3, and 𝑋, 𝑌, and 𝑍 are 

the position measurements in all three dimensions 

using the laser tracker system. The regressor matrix 

Φ is defined as follows. 

Φ = [

𝑅𝑥
1 𝑅𝑦

1 𝑅𝑧
1

⋮
𝑅𝑥

𝑁 𝑅𝑦
𝑁 𝑅𝑧

𝑁

]

𝑇

 (13) 

where Φ ∈ ℝ𝑁×40  is the regressor matrix and Π =
[Π1 Π2 Π3] ∈ ℝ40×3  is the vector of unknown 

parameters of industrial robot FK in laser tracker 

coordinates. 𝑅𝑥
i , 𝑅𝑦

i ,  and 𝑅𝑧
i  represent the i-th 

regressor vector sample. Xu et al. recently proposed 

MLS-SVR for solving the multioutput regression 

problems. The objective function to be minimized in 

this case is as follows (Xu et al., 2013). 

 

min
𝜋0∈ℝ40,𝑉∈ℝ40×3

ℐ(𝜋0, 𝑉, Ξ)

=
1

2
trace(𝜋0

𝑇𝜋0 ) 

+
𝜆

2𝑚
trace(V𝑇V) +

𝛾

2
𝑡𝑟𝑎𝑐𝑒(Ξ𝑇Ξ), 

𝑠. 𝑡. Υ = Φ𝑇𝜌 + Ξ 
(14) 

where the matrix Ξ = [ξ1 ξ2 ξ3] ∈ ℝ+
𝑁×3  is a 

matrix consisting of slack variables, Π = (𝜋0 +
𝑣1, 𝜋0 + 𝑣2, 𝜋0 + 𝑣3) ∈ ℝ40×3  and 𝛾 ∈ ℝ+  is a 

positive real regularized parameter. The Lagrangian 

function to solve the problem of (13) is 

 

ℒ(𝜋0, 𝑉, Ξ, A) = ℐ(𝜋0, 𝑉, Ξ) 

−𝑡𝑟𝑎𝑐𝑒(𝐴𝑇(Φ𝑇𝜌)+Ξ − Υ) (15) 

where 𝐴 = (𝛼1, 𝛼2, 𝛼3) ∈ ℝ𝑁×3 , include all 

Lagrange multipliers, 𝛼𝑖 ∈ ℝ𝑁×1, 𝑖 = 1,2,3 . Using 

the Karush-Kuhn-Tucker conditions for optimality 

and a set of algebraic modifications leads to an 

equivalent optimisation problem which does not 

include 𝜋0 parameters. 

min
𝑉∈ℝ40×3

ℐ(𝑉, Ξ) =
𝜆2

54
𝑉1313

𝑇V𝑇  

+
𝜆

6
𝑡𝑟𝑎𝑐𝑒(V𝑇V) +

𝛾

2
𝑡𝑟𝑎𝑐𝑒(Ξ𝑇Ξ), 

𝑠. 𝑡. Υ = Φ𝑇𝜌 + 𝑟𝑒𝑝𝑚𝑎𝑡 (
𝜆

3
Φ𝑇𝑉13, 1,3)

+ Ξ 
(16) 

where 13 = [1 1 1]𝑇 .  The solution to the 

optimisation problem of (16) is available using the  

method presented in (Xu et al., 2013). The method to 

solve the optimisation problem of (16) is summarised 

in the following six main steps. 

1. solve 𝜂 , and 𝜈  from 𝐻𝜈 = 𝑃 , and 𝐻𝜈 = Υ 

where 𝑃 = 𝑏𝑙𝑜𝑐𝑘𝑑𝑖𝑎𝑔(1𝑁 , 1𝑁 , . . . , 1𝑁) ∈
ℝ3𝑁×3 , and 𝐻 = Ω + 𝛾−1𝐼3𝑁 + (3/𝜆)𝑄 ∈
ℝ3𝑁×3𝑁 , 𝑄 = 𝑏𝑙𝑜𝑐𝑘𝑑𝑖𝑎𝑔(𝐾, 𝐾, 𝐾) ∈
ℝ3𝑁×3𝑁, 𝐾 = Φ𝑇Φ ∈ ℝ𝑁×𝑁 

2. Compute 𝑆 = 𝑃𝑇𝜂 

 

Figure 2 UR5 with retroreflector mounted on it as the target 

for laser tracker 

d 



 
Figure 3 Overall calibration system: UR5 industrial robot 

and Leica laser tracker system 

 

3. Find 𝑏 and 𝛼 as 𝑏 = 𝑆−1𝜂𝑇Υ, 𝛼 = 𝜈 − 𝜂𝑏  

4. Find 𝑉 from 𝑉 =
3

𝜆
ΦA  

5. Find 𝜋0 from 𝜋0 = ∑ Φ𝛼𝑖
3
𝑖=1  

6. Find Π  from 𝛱 = (𝜋0 + 𝑣1, 𝜋0 + 𝑣2, 𝜋0 +
𝑣3) 

 

3 EXPERIMENT SETUP 

3.1 Hardware Setup 

The hardware used to perform this experiment is 

composed of an industrial robot and a calibration 

equipment (see Figure 3). In this subsection, detailed 

explanations of the equipment are presented. 

3.2.1 Calibration Equipment 

To conduct the calibration test, the 3D real time 
position of a retroreflector mounted on the UR5 end 
effector is measured using a laser tracker. The laser 
tracker used in this experiment is AT960-MR from 
Hexagon metrology GMBH, Wetzlar. It is a widely 
used measurement device in industry to inspect 
critical distances, locations and surfaces (Kyle, 1999) 
(see Figure 4). The target used in these experiments is 
a precision Leica 1.5” red ring reflector which is 
detectable through the laser tracker at the maximum 
distance of 60 m @10Hz with the accuracy of 
3𝜇𝑚/𝑚. The reflector used in this experiment is using 
the principle of corner cube. To reflect the beam, three 
plane mirrors at right angles to one another are used. 
The measurement point is the centre of the reflector. 
Further specifications and environmental conditions 
of the laser tracker are presented in Table 2. 

3.2.2 Industrial robot 

The industrial robot used in these experiments is a 
Universal Robots, UR5 capable of handling 5Kg load 
with angular velocity of 180°/𝑠𝑒𝑐 . Real time 
industrial robot joint angles are measured using on-
board joint angle encoders. To collect this data, wired 
network connectivity is used to connect the main robot 
controller to a PC. The software used for connectivity 
is ROS Melodic operating under Linux 18.04 
operating system. The ROS driver used for UR5 is the 
one available through a GitHub webpage6. This ROS 
driver publishes some rostopics which contain joint 
angle data including joint angle values, angular 
velocities, and motor currents. The sample time for the 
data transfer from robot to PC slightly varies but its 
mean value is equal to 8𝑚𝑠𝑒𝑐. Overall, 38 waypoints 
are programmed for the robot, and it travels them 
linearly in 600 sec. It is required to resample position 
data from the robot to match laser tracker frequency 
(10Hz). 

3.2.3 Data Gathering and Pre-processing 

To gather data points to perform static calibration, as 
it is required for a level II robot calibration, the 
absolute position data are gathered from the robot 
using the laser tracker system. The laser tracker is 
connected to the PC using a Wi-Fi connectivity. The 
software used for data gathering is Spatial Analyzer 
software (see Figure 5), and the sample time for this 
device is set to 100 msec. For measurements in Spatial 
Analyzer software, it is required to assign the three 
axes and the origin. To do so, two linear motions are 
performed using the robot along x-axis and y-axis. 
The zero coordinate for the laser tracker and its three 
axes are assigned within Spatial Analyzer software. 
The total number of points gathered using the laser 
tracker is equal to 6000. Moreover, since robot and 
laser tracker use different timing, it is required to 
synchronise them i.e., to shift them so that they match 
each other timewise. Finally, for performing static and 
near static calibration, the points at which the linear 
speed of the robot are less than 2mm/sec are extracted. 
Total number of these points are 209 points. 

4 EXPERIMENTAL RESULTS 

4.1 Results 

The results of the calibration process proposed in this 

paper are presented in Figures 6- 8. These figures 
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Table 2 Measuring equipment characteristics and specifications 

Environmental working conditions IP54: The IEC-certified sealed unit guarantees ingress protection 

against dust and other contaminants. 

Operating temperature Wide operating temperature range of -15 to 45 degrees Celsius 

Temperature compensation MeteoStation: Integrated environmental unit monitors conditions 

including temperature, pressure, and humidity to compensate for 

changes 

ISO certification ISO 17025 

Connectivity Wifi and LAN 

Detector features Red ring reflector - 1.5” radius: 19.05 mm ±0.0025 mm, centring of 

optics: < ±0.003 mm, ball roundness: ≤0.003 mm, acceptance angle: 

±30°, weight:170gr 

Data output rate Measurement rate of up to 1000 points per second 

Distance accuracy 40 metres in diameter and a 6DoF measuring volume of up to 20 metres  

Laser safety Laser class 2 

  

Figure 4 Laser tracker system (a) Camera and tracking 

system (b) Controller unit 

 

show that the positions obtained through the calibrated 
UR5 FK are much closer to its real 3D positions 
measured by laser tracker. The numerical values 
presented in Table 3 demonstrate the improvement 
made using the proposed calibration method. In all 
three positional dimensions, the MAE associated with 
the calibrated FK of UR5 is less than its uncalibrated 
value. It is further observed that the mean MAE of all 
three dimensions is reduced from 71.9𝜇𝑚  for 
uncalibrated FK to 20.9𝜇𝑚  for the calibrated FK 
using the proposed calibration method, which is 71% 
improvement in the measurement.  

The trend of error associated with original FK of 

industrial robots and its calibrated version are 

presented in Figures 9- 11, respectively. It is observed 

from these figures, that errors corresponding to the 

calibrated FK are much less than the ones associated 

with uncalibrated FK.  

Figure 5 Points measured by laser tracker system in 
Spatial Analyzer software 

 

 
Figure 6 Robot movements in 3D coordinates, x-axis 

           

          

 

   

   

   

   

   

   

   

  
  

 

                         

                         

                       

     
      

      

     

      



Figure 7 Robot movements in 3D coordinates, y-axis  

 

Table 3 FK error indexes 

Performance 
indexes 

Calibrated Uncalibrated 

MAE X 24.4𝜇𝑚 94.6𝜇𝑚 

Y 21.7𝜇𝑚 67.9𝜇𝑚 

Z 16.5𝜇𝑚 53.3𝜇𝑚 

Mean 20.9𝜇𝑚 71.9𝜇𝑚 

𝜎𝑖 X 32.0𝜇𝑚 124.2𝜇𝑚 

Y 28.6𝜇𝑚 99.1𝜇𝑚 

Z 23.7𝜇𝑚 67.6𝜇𝑚 

Mean 28.3𝜇𝑚 99.8𝜇𝑚 

 

Figure 8 Robot movements in 3D coordinates, z-axis  

 

Figure 9 Position error in x-axis 

 

Figure 10 Position error in y-axis  

Figure 11 Position error in z-axis  

 

5 CONCLUSIONS AND FUTURE 

RESEARCH 

The uncertainties associated with FK of industrial 

robots are mainly due to manufacturing and assembly 

tolerances, dimension measurement uncertainties, 

and wears and tears of robot. FK uncertainties result 

in positioning error. This paper presents an FK 

calibration method for industrial robot using laser 

           

          

    

    

    

    

    

    

 

   

   

   

 
  
 
 

                         

                         

                       

        
     

      

      

           

          

    

   

    

   

    

  
  

 

                         

                         

                       

    
      

      

      



tracker measurement system. Robot joint angles are 

measured using on board joint encoders. Robot joint 

angles are collected and transferred to PC using ROS-

Melodic software. Static and near static 

measurements are performed on the robot. The 

industrial robot FK is formulated as a multi-output 

regression problem. The industrial robot coordinates 

measured by a laser tracker system (Leica AT960) is 

then used in an MLS-SVR algorithm to calibrate FK. 

The industrial robot used in the calibration 

experiment is an UR5, an industrial robot 

manufactured by Universal Robots. It is observed that 

using the proposed calibration approach, it is possible 

to decrease the position errors in terms of mean 

absolute errors from its measured value of 71.9𝜇𝑚 to 

20.9𝜇𝑚 which is 71% improvement. 

As a future study, data fusion between data gathered 

from inertia measurement unit and gyroscopic 

measurements will be considered to improve the 

accuracy of positional measurements.  
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