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Abstract

We study a legislative bargaining game in which failure to agree in a
given round may result in a breakdown of negotiations. In that case, each
player receives an exogenous ‘disagreement value’. We characterize the set
of stationary subgame perfect equilibria under all q-majority rules. Under
unanimity rule, equilibrium payoffs are strictly increasing in disagreement
values. Under all less-than-unanimity rules, expected payoffs are either de-
creasing or first increasing and then decreasing in disagreement values. We
conduct experiments involving three players using majority and unanimity
rule, finding qualitative support for several, but not all, of our main pre-
dictions. Having a high disagreement value is indeed an advantage under
unanimity. Under majority, the player with the highest disagreement value
is more likely to be excluded, but this does not consistently result in a lower
average payoff.
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1 Introduction

Baron and Ferejohn (1989) proposed what appears to be the most influential for-
mal model of legislative bargaining.1 In their model, a group of n legislators is
bargaining over the division of a dollar. Depending on the area of application, this
dollar can be interpreted to represent a monetary amount (budget) or other items
of value (allocation of ministries). In the basic (closed rule) version of the game, a
randomly chosen player makes a proposal of how to divide the resource, and this
proposal is voted on. If it passes, the game ends. If not, the game moves to a new
round and the process is repeated.

An important feature of the Baron-Ferejohn game is that negotiations are as-
sumed to continue until agreement is reached. In many real-world applications,
however, failure to agree may lead, eventually, to a ‘breakdown’ of negotiations.
In this case, the parties involved may shift to some other method of resolving the
issue under consideration, or perhaps automatically revert to a ‘status quo’ situ-
ation. In what follows, we investigate what happens when the bargainers attach
different values to the event of breakdown. More broadly, we will ask how the
effects of heterogeneous ‘disagreement values’ depend on the decision rule being
employed by the group.

As an example, consider debtor-creditor negotiations in a bankruptcy case. In
the United States, the debtor may attempt to reorganize his business under Chap-
ter 11. This requires that creditors agree to a reorganization ‘plan’. Both the
debtor and (under certain conditions) creditors may make repeated attempts at
proposing and soliciting approval for such a plan. Should such attempts repeat-
edly fail, however, the court may terminate the proceedings and shift the case to
Chapter 7, meaning that the business is liquidated and creditors receive payments
according to the legal priority of their claims.2

In this and other examples, an important feature is that the payoffs that par-
ticipants can anticipate in case of ‘breakdown’ are likely to differ. For example, if
the business is liquidated under Chapter 7, some creditors can expect to receive
larger payments than others, and those with low priority (as well as equity holders)
may expect no payments at all. Another feature is that agreement may or may
not be efficient, in the sense that the budget available in case of agreement may
or may not exceed the sum of disagreement values. In the Chapter 11 example,
agreement on a reorganization plan is efficient only if the expected sum of future
payments to stakeholders (and perhaps further values they attach to the continued
operation of the business), is larger than the anticipated liquidation value.

While bankruptcy negotiations are one example for the kind of problem we

1As of September 2017, Google Scholar counts over 2000 citations to the original paper.
2A similar procedure is used in Germany.
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wish to consider, it is important to emphasize that we do not intend to provide
a model of the Chapter 11 decision procedures.3 Instead, we want to investigate,
in a stylized setting, the effects of simple voting rules in a context where players
attach different values to disagreement.

We investigate this issue by modifying the Baron-Ferejohn model in two ways.
First, we assume that whenever a proposal fails, bargaining will continue with
probability δ, and otherwise “break down” (end without agreement). Second, we
assume that in case of breakdown, each member receives an exogenously given
non-negative payoff (disagreement value).4 Most importantly, these values are
assumed to differ between members.

Among the questions of interest are: under what conditions will the outcome be
efficient? If agreement is achieved, how is the resulting surplus shared among the
participants? Most importantly, how do these outcomes depend on the decision
rule being employed (e.g. unanimity vs. less-than unanimity rules)?5

Under unanimity rule, we find that efficiency is both necessary and sufficient
for immediate agreement to occur. In expectation, the surplus resulting from an
agreement is shared equally by all participants. That is, each player receives,
in expectation, the sum of her disagreement value plus an equal share of the
difference between the sum to be distributed and the sum of all disagreement
values. Interestingly, this result is independent of the probability of breakdown.

Under all less-than-unanimity rules, results are quite different. In particular,
efficiency is no longer necessary for immediate agreement to occur. In fact, it
is possible for agreements to be reached which make even those that vote ‘yes’
worse off than they would have been in case of breakdown.6 When agreement is
efficient, the resulting ‘surplus’ is not shared equally. Instead, the largest gains
are captured by the players with the smallest disagreement values. The reason
is that players with large disagreement values are often excluded from minimal

3Chapter 11 voting rules are far more complex than those considered here. In addition, the
agreements reached are required to satisfy additional constraints which we will not incorporate
into our model. Indeed, these constraints may help to prevent the kinds of outcomes that our
model predicts would occur when simple (q-majority) voting rules are used.

4The disagreement value can be interpreted in several ways. One is that it represents the
value that a player attaches to the status quo, which will prevail if agreement is not reached.
Another is that it represents a reward directly associated with a failure to agree. For example, an
individual may anticipate an extrinsic (social) or intrinsic (emotional) reward in case negotiations
end with disagreement. In a government formation situation, a party’s disagreement value may
reflect its electoral prospects in the event a new election is called.

5Coming back to the bankruptcy example, it is interesting to note that Chapter 11 law requires
only a (qualified) majority of creditors to accept a reorganization plan. In Germany, creditors are
divided into ‘groups’ according to the type of claim they hold, and approval of the plan requires
that all groups pass it using majority rule.

6An example is provided on p. 47 in the Appendix.
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winning coalitions. As a result, expected equilibrium payoffs are either decreasing
in disagreement values (such that the player with the smallest disagreement value
achieves the highest expected payoff), or first increasing and then decreasing (such
that some other player, but never the one with the highest disagreement value,
achieves the greatest payoff).

We test the predictions of our model within an experiment involving three-
player games. In all games, the budget to be distributed in case of agreement is
worth 100 ‘tokens’ and the probability of breakdown is 1

3
. Each experimental ses-

sion consists of several games involving three different sets of disagreement values,
(20, 20, 20), (0, 20, 40), and (0, 0, 60). We compare behavior under unanimity and
simple majority rule conditions.

The behavior we observe in the lab shows significant deviations from the theo-
retical predictions. While most proposals are immediately passed under majority
rule, proposals under unanimity rule very often fail. The effect of the voting rule
on the passage rate is larger than has been previously documented for ‘standard’
BF games. In addition, it is more pronounced when players have different dis-
agreement values. Most proposers attempt to form minimal winning coalitions,
but the proposed distribution between coalition members is more equal than the
theory predicts. Proposals close to the theoretical prediction often fail in all treat-
ments. Some of these rejections are clearly disadvantageous in terms of material
payoffs, and this leads us to conclude that observed behavior cannot be explained
by subgame perfect equilibrium, even if we drop the stationarity refinement and
allow history-dependent strategies.

Despite the deviations from point predictions, our experimental results pro-
vide qualitative support for our hypotheses concerning the effect of disagreement
values on payoffs. Consistent with our model, we find that the player with the
largest disagreement value is offered more and achieves the largest payoff under
unanimity rule. Also consistent with our model, that player is included in others’
coalitions significantly less often under majority rule. Nonetheless, we do not find
that this results in consistently lower average payoffs. A statistically significant
disadvantage in terms of expected payoffs is found only in the (0, 0, 60) condition.
Overall, the results provide support for the theoretical prediction that having a
high disagreement value is unambiguously beneficial under unanimity rule, but
may be detrimental under majority rule.

2 Related Literature

Despite its simplicity, the BF game is rich in strategic possibilities and admits
multiple subgame perfect equilibria. The theoretical literature has focused on
symmetric stationary equilibria, which are (essentially) unique (Eraslan, 2002, and
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Norman, 2002). These equilibria are characterized by three empirically testable
features. First, proposers form “minimal winning coalitions”, allocating positive
payoffs only to the number of players required to agree. Second, the distribution
of payoffs within the coalition is unequal, favoring the proposer. Third, the first
proposal passes immediately, so there is no delay. All three of these properties
are independent of the decision rule being used (majority, qualified majority, or
unanimity rule).

These (symmetric stationary subgame perfect) equilibrium properties of the BF
model have been experimentally investigated in a number of papers (McKelvey,
1991, Fréchette et al, 2003, 2005a, 2005b, Diermeier and Morton 2005, Agranov
and Tergiman, 2014, and Bradfield and Kagel, 2015). All of these studies investi-
gated the simple majority rule version of the game. The central findings include:
(1) Subjects do indeed form minimal winning coalitions, allocating positive shares
to a bare minimum of players. (2) The distribution of shares within the majority
coalition is generally more equal than theory predicts7, and (3) The vast majority
of games end in immediate agreement to the first proposal made.

Building on this literature, Miller and Vanberg (2013, and 2015) investigated
the effects of different decision rules (majority and unanimity rule) within experi-
mental BF games. Inspired by Buchanan and Tullock (1962), their main hypothe-
ses were (a) that unanimity rule would be associated with greater costly delay in
reaching agreement, and (b) that this effect would be driven in part by “tougher”
bargaining at the individual level. The main finding from these studies was that
unanimity rule is indeed associated with significantly greater delay. Both studies
also find some support for the notion that individuals adopt a ‘tougher’ stance
under unanimity rule, more often voting ‘no’ on a given proposal and making less
generous offers when proposing. Most importantly, and consistent with prior ex-
periments, both studies find relatively little delay overall, as well as a tendency to
agree on symmetric distributions - most commonly an equal split within a minimal
winning coalition.8

The effect of heterogeneous disagreement values in the event of a breakdown of
negotiations has been studied theoretically for the case of two players (see Binmore
et al., 1986); these results can be easily extended to n players and unanimity rule.9

7These relatively equal allocations cannot be explained by inequity aversion (Montero, 2007)
but are consistent with a model of noisy best response (Nunnari and Zapal, 2016). Agranov and
Tergiman (2014) find that communication brings outcomes closer to the theoretical prediction.

8The effect of allowing communication depends on the voting rule (Agranov and Tergiman,
2016). While communication significantly increases proposer power under majority rule due to
competition between potential coalition partners, it has the opposite effect under unanimity rule:
proposer shares decrease and allocations become more equal. Communication also eliminates
costly delays under unanimity rule.

9Binmore et al. (1986) use the alternating-offer procedure of Rubinstein (1982) rather than
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To the best of our knowledge, the case of general q-majority rules has not been
studied. The closest paper we are aware of is Banks and Duggan (2006). In their
model, players receive a flow payoff every bargaining period; for every period in
which agreement has not been reached, they receive a status quo payoff. They
prove existence of SSPE for very general policy spaces and voting rules. In one of
the special cases they consider (model 5), the policy space is the unit simplex and
the decision rule is simple majority; this is similar to our model with the additional
restriction q = n+1

2
(n odd). They discuss only equilibria in which all players have

the same continuation value, noting that the equilibrium may or may not be of
this type depending on the parameters. We provide a full characterization for
arbitrary values of the parameters and of q.10

A different way to model a situation where some players have less to lose than
others if agreement is delayed is to introduce heterogeneous discount factors. In-
tuitively, a player with a greater discount factor has less to lose from delay since
the value of the pie is less heavily discounted; similarly, a player with a greater
disagreement value has less to lose from delay since he receives a greater payoff
in the event of a breakdown of negotiations. An important difference is that in
the case of heterogeneous discount factors, immediate agreement is always effi-
cient, and no player can be harmed by an agreement compared to the situation
of perpetual disagreement. The two-player game with asymmetric discount fac-
tors (and unanimity) was solved by Rubinstein (1982) for the case of alternating
offers; the random proposers case is very similar (Binmore, 1987). The Baron-
Ferejohn model with possibly asymmetric discount factors and general q-voting
rules has been studied in Eraslan (2002) and Kalandrakis (2015); both papers es-
tablish uniqueness of equilibrium payoffs using different methods. Continuation
values are nondecreasing in discount factors (Eraslan, 2002); similarly, we find
that continuation values are nondecreasing in disagreement values. For the case of
unanimity rule, expected equilibrium payoffs are increasing in the discount factors
(Eraslan, 2002). However, under majority rule, expected equilibrium payoffs are

the random proposer procedure of Binmore (1987), Baron and Ferejohn (1989) and Okada (1996).
This makes little difference to the results under unanimity rule, namely that a player benefits
from having a higher disagreement value, and that disagreement values remain relevant even as
the breakdown probability goes to zero.

10Harstad (2010) analyzes a different model with a continuum of districts where voters in
each district choose a representative, representatives form a majority coalition, and the majority
coalition then decides on the distribution of tax revenue and the possible implementation of a
public project. The representative may be a conservative (a player who is biased in favor of the
status quo, similar to a player with a high disagreement value in our model) or a progressive (a
player who is biased in favor of undertaking the public project). A progressive is more likely to
be included in the majority coalition, while a conservative will get a better deal conditional on
being included. Voters in a district tend to elect a conservative if the majority requirement is
large (not necessarily unanimity), and a progressive if the majority requirement is small.
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decreasing in discount factors provided that the discount factors are sufficiently
high (Kawamori, 2005); this result is analogous to our result that, when the con-
tinuation probability is sufficiently close to 1, expected equilibrium payoffs are
decreasing in disagreement values (Appendix A.4). We analyze expected equilib-
rium payoffs more fully in our setting, since we do not restrict ourselves to the limit
case in which the continuation probability is sufficiently close to 1, and we are able
to show that there are only two possibilities for expected equilibrium payoffs: they
are either decreasing in disagreement values, or they are first increasing and then
decreasing in disagreement values.

A small number of experimental studies have introduced asymmetries into the
BF framework. Diermeier and Morton (2005) and Fréchette et al. (2005a) consider
the case in which some players are more likely to be selected as proposers. Other
papers consider voting rules in which some players are favored, either by being
given veto power (Kagel et al., 2010) or by having more votes than other players
(Fréchette et al., 2005c, and Drouvelis et al., 2010). In some cases, having more
votes than other players does not theoretically confer any objective advantage, and
subject behavior broadly confirms this (Diermeier and Morton, 2005, Fréchette et
al., 2005b, and Drouvelis et al., 2010). Diermeier and Gailmard (2006) study
a 1-round version of the game in which failure to agree results in exogenously
given payoffs that differ between players. This is a particular case of our model
presented below with δ = 0 (i.e. certain breakdown). Some of their findings are
similar to ours, in particular, the player with the highest disagreement value is
often excluded. They also report that proposers demand more when their own
disagreement value is greater, contrary to equilibrium predictions, and responders
are more accepting of offers when the proposer’s disagreement value is higher.

The Baron-Ferejohn model has been extended in many other directions. Exam-
ples include the allocation of resources between public and private goods (Volden
and Wiseman (2007, 2008); tested experimentally by Fréchette et al. (2012)
and Christiansen (2015)), the tradeoff between decisions on ideological and re-
distributive dimensions (Jackson and Moselle (2002); tested experimentally by
Christiansen et al. (2013)), combining bargaining and joint production (Baranski
(2016)), and repeated negotiations such that, if agreement fails on a particular pe-
riod, last period’s agreement prevails for the current period (Kalandrakis (2004),
Battaglini and Palfrey (2012)). Battaglini et al. (2012) compare voting rules in
a dynamic setting where resources can be invested in a durable public good or in
targeted transfers. The model predicts that more investment goes into the public
good as the majority required to pass a proposal increases, and this prediction is
supported by the experimental results.
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3 Model

Let N = {1, 2, ..., n} be the set of players and q be the number of votes needed
to pass a proposal, where 1 < q ≤ n. Within each round, Nature selects a
proposer randomly, with each player having a 1

n
probability of being selected. The

proposer can propose any vector x = (x1, ..., xn), provided that xi ≥ 0 for all i and∑
i∈N xi ≤ 1. All players vote on the proposal. If there are at least q votes in favor,

the proposal passes. Otherwise, there is a probability 0 ≤ δ < 1 that bargaining
moves to the next round, and a probability (1 − δ) that breakdown occurs, in
which case payoffs are given by a vector r = (r1, ..., rn) of disagreement values.
Players are labeled so that 0 ≤ r1 ≤ r2 ≤ ... ≤ rn. The game continues until either
a proposal is accepted, or breakdown occurs. Note that under all decision rules,
agreement is efficient if and only if

∑
i∈N ri ≤ 1.

3.1 Equilibrium concept

A strategy in this game specifies a) what proposal a player makes when recognized
as proposer, and b) how he would vote on any proposal made by other players.
In principle, these actions could depend upon the history of play. For example,
the proposal that a player makes in a given round may depend on prior proposals
or voting decisions. Following the prior literature on legislative bargaining, we
will exclude such behavior and focus on equilibria in which players use stationary
strategies. Such strategies require that players make the same (possibly random)
proposal in each round, and vote the same way on others’ proposals. A subgame
perfect equilibrium in which players use stationary strategies is called a stationary
subgame perfect equilibrium (SSPE). Additionally, we assume that all players vote
as if they are pivotal.

Following common practice, we will refer to a player’s expected utility given
that a proposal has (just) been rejected as the player’s continuation value. For any
profile of stationary strategies (equilibrium or not), there is an associated vector of
continuation values (the same in all rounds) and an associated vector of expected
payoffs computed at the beginning of the game, before Nature selects a proposer.
Given a profile of stationary strategies σ, we will denote player i’s continuation
value as zi(σ) and player i’s expected payoff as yi(σ); we will drop σ from the
notation if no confusion arises.

In a SSPE, continuation values act as prices: it is optimal for player i to vote in
favor of any proposal with xi ≥ zi, and to vote against otherwise. As a proposer,
player i looks for the q − 1 players with the lowest zj and sets xj = zj for these
players, keeping the remainder. If the remainder is below zi, it is better for player
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i to make a proposal that will be rejected and get zi.
11 We can then distinguish

between equilibria with no delay or immediate agreement (in which all players
prefer to make a proposal that will be accepted) and equilibria with delay (in
which at least one player prefers to make a proposal that will be rejected, and
hence disagreement occurs with positive probability).

3.2 Example

Before presenting a general analysis, we will illustrate our main results using a
simple example. Assume that the group consists of n = 3 players, with disagree-
ment values r = (0, 0, 1

2
). Player 3, having the largest disagreement value, can be

thought of as ‘tougher’ than the other players. Let the continuation probability
be given by δ = 2/3. Thus, in case a proposal fails, the game will end without
agreement with probability 1

3
.

Suppose first that the group makes decisions using unanimity rule. Then, there
exists a stationary subgame perfect equilibrium in which the continuation values
are z =

(
2
18
, 2
18
, 11
18

)
. The strategies are as follows. If, say, player 1 is selected as

a proposer, he offers 2
18

to player 2 and 11
18

to player 3, keeping 1 − 2
18
− 11

18
= 5

18
.

Similarly, player 3 would offer 2
18

to each of the other two players and keep 14
18

.
Given these strategies, expected payoffs are y1 = y2 = 1

3
5
18

+ 2
3

2
18

= 3
18

and y3 =
1
3
14
18

+ 2
3
11
18

= 12
18

. We can check that the z values we have provided are indeed the
continuation values for the players. Given the strategies, z1 = z2 = 2

3
3
18

+ 1
3
0 = 2

18

and z3 = 2
3
12
18

+ 1
3
1
2

= 11
18

.
Under unanimity rule, we see that the players’ expected payoffs are increasing

in disagreement values. Player 3, being the ‘toughest’ player, is more expensive
to ‘buy’ into a coalition. Since all players have to be ‘bought’, he is paid more for
his vote than the other two players. Under unanimity rule, it is good to be the
‘toughest’ player (to have a large disagreement value).

Next, suppose that the group decides using majority rule. In this case, there
exists a stationary subgame perfect equilibrium in which the continuation values
are z = (1

4
, 1
4
, 1
3
). As in the case of unanimity rule, these continuation values are

increasing in the disagreement values. Again, player 3’s vote is ‘more expensive’
than that of the other two players. However, in the case of majority rule, this
causes the other players to exclude player 3 from the coalition when they propose.
If player 1 or 2 proposes, 3 is excluded and the other player is offered 1

4
. If player

3 proposes, he offers one of the other players 1
4

(with equal probability). Expected
payoffs are then y1 = y2 = 1

3
[1− 1

4
]+ 1

3
1
4
+ 1

3
1
2
1
4

= 3
8
; y3 = 1

3

[
1− 1

4

]
= 1

4
. Again, it can

11In case of indifference, we assume that players break ties in favor of agreement, that is,
responders vote in favor of proposals with xi = zi and proposers offer q− 1 players their contin-
uation value if the remaining payoff xi = zi. This assumption simplifies the analysis and makes
little difference to equilibria; see Appendix A.1.
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be easily checked that these expected payoffs are consistent with the conjectured
continuation values.

Under majority rule, the players’ expected payoffs are not increasing in their
disagreement values. Player 3’s continuation value is larger, making his vote more
expensive. This is why he is excluded whenever others propose. His expected
payoff under majority rule is smaller than that of the other players. Under majority
rule, being ‘tough’ (having a large disagreement value) can be a disadvantage.

To summarize, the example demonstrates a set of patterns that turn out to
be more general. Under all decision rules, continuation values z are (weakly)
increasing in disagreement values. Under unanimity rule, the same is true for
expected payoffs y. Under all less-than-unanimity rules, by contrast, expected
payoffs are either decreasing or non-monotone in disagreement values, and the
player with the largest disagreement value never achieves the greatest payoff.12

The following subsection establishes that all equilibria without delay satisfy these
properties. Equilibria with delay are discussed in Appendix A.5.

3.3 Equilibria with no delay

Recall that a no-delay equilibrium is one in which all players make proposals that
pass. In order to characterize the properties of such equilibria, as well as the
conditions under which they occur, it will be useful to consider how the payoffs yi,
continuation values zi and disagreement values ri are related to one another.

When a proposal passes, we refer to the players who vote in favor as the
coalition that forms, and to players in the coalition other than the proposer as the
coalition partners. In any no-delay equilibrium, coalition partners receive zi, and
the proposer receives 1−

∑
j∈T\{i} zj, where T is (one of) the ‘cheapest’ coalition(s)

that includes i.13 All other players receive 0.
As we show in Appendix A.2, equilibrium continuation values are weakly in-

creasing in the disagreement values, i.e.,

z1 ≤ z2 ≤ ... ≤ zn.

It follows that (one of) the cheapest coalition(s) a player can buy consist of
himself plus the ‘first’ (q − 1) other players (those with the smallest continuation
values zj). Let Zq =

∑q
j=1 zq. This would be the minimum ‘price’ to pay for the

first q votes. However, player i must buy only (q−1) votes. If his own continuation
value is no larger than zq, he must pay Zq − zi for his cheapest coalition(s) (he

12Another general pattern is that a player’s payoff is larger if he proposes than when he is a
coalition partner.

13If the cheapest coalition is not unique, player i can mix. By definition, the total ‘price’ of
all cheapest coalitions is the same.
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need not pay himself). If his own continuation value is strictly larger than zq, he
must pay Zq − zq (he need not buy player q). It follows that player i’s payoff as a
proposer is (1− Zq + min{zi, zq}).

We denote the ex ante probability of player i being in the coalition that forms
by µi. Naturally, player i will be in the coalition whenever he is the proposer; this
occurs with probability 1

n
. Then the equilibrium probability of i being a coalition

partner is µi − 1
n
. As a coalition partner, player i’s payoff is given by zi.

From what we have said so far, it follows that the expected equilibrium pay-
off for player i, denoted yi, is related to the continuation values and inclusion
probabilities as follows.

yi =
1

n
(1− Zq + min{zi, zq}) +

(
µi −

1

n

)
zi

In case a proposal fails, bargaining continues with probability δ, in which case
players’ expected payoffs are again given by yi. Bargaining will break down with
probability 1− δ, in which case players receive their disagreement value ri. There-
fore, player i’s continuation value is given by

zi = δyi + (1− δ)ri.
Combining these equations yields n equations relating the vector of continua-

tion values z = (z1, ..., zn) to the vector of inclusion probabilities µ = (µ1, ..., µn).
Specifically,

zi =

{
1

1−δµi

(
(1− δ)ri + δ

n
(1− Zq)

)
zi ≤ zq

1

1−δ(µi− 1
n)

(
(1− δ)ri + δ

n
(1− Zq + zq)

)
zi > zq

i = 1, ..., n

In equilibrium, the inclusion probabilities µ must reflect the fact that proposers
will buy the cheapest available coalition given z. An equilibrium can therefore be
constructed as follows. (Details are presented in Appendix A.3.)

Begin by conjecturing that L ∈ {0, 1, ..., q − 1} players are strictly cheaper
than player q. For these players, we must have µi = 1 as they are included in all
coalitions. Then for these players

zi =
1

1− δ

(
(1− δ)ri +

δ

n
(1− Zq)

)
i = 1, ..., L

Also assume that H ∈ {0, 1, ..., n − q} players are strictly more expensive than
player q. For these players, we must have µi = 1

n
as they are included only in their

own coalitions. Therefore

zi = (1− δ)ri +
δ

n
(1− Zq + zq) i = n−H + 1, ..., n

11



The remaining M = n − L − H ≥ 1 players are exactly as expensive as player q
and so we have

zq =
1

(1− δµi)

(
(1− δ)ri +

δ

n
(1− Zq)

)
i = L+ 1, ..., n−H

Although the individual inclusion probabilities for these players are not immedi-
ately determined, it’s clear that the average inclusion probability for these players
must be exactly large enough to achieve an expected coalition size of q. Specifi-

cally, it must equal µ̄M =
q−L−H

n

n−H−L . Therefore the corresponding equations can be
combined to yield

zq =
1

(1− δµ̄M)

(
(1− δ)r̄M +

δ

n
(1− Zq)

)
,

where r̄M = 1
n−H−L

∑n−H
i=L+1 ri is the average disagreement value among those play-

ers for whom zi = zq.
Suppose for example that M = n. Then, µ̄M = q

n
and Zq = qzq. The last

equation then reduces to zq = (1−δ)r̄N+ δ
n
. This makes sense, since with immediate

agreement,
∑

i∈N zi = δ + (1 − δ)
∑

i∈N ri. If M = n, all players have the same
continuation value, which must then equal the previous expression divided by n.14

In similar fashion, the equations derived above can be solved explicitly for any
conjecture regarding the numbers L, M , and H. Subsequently, the resulting vec-
tor of continuation values can be inspected to verify that the first L players are
strictly cheaper than player q, etc. If so, the combination of continuation values
and implied inclusion probabilities constitute a SSPE of the model. We show in the
Appendix that each conjecture regarding L, M , and H indeed uniquely determines
the continuation values and inclusion probabilities (proposition 3). Furthermore,
there is only one combination of L, M , and H that leads to an equilibrium (propo-
sition 5). Hence, all no-delay SSPE have the same payoffs. Based on our analysis,
we are able to construct equilibria for all constellations of the parameters ri and
δ. In what follows, we concentrate on stating our main results.

3.4 Unanimity rule (q = n)

Under unanimity rule, immediate agreement occurs in equilibrium if and only if
it is efficient, and both continuation values and expected payoffs are increasing in
disagreement values.

14As mentioned in Section 2, this is the special case of our model considered by Banks and
Duggan (2006). We provide a more complete characterization.
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Proposition 1. For q = n, immediate agreement occurs if and only if
∑

i∈N ri ≤
1. In this case, the SSPE is unique.15 Expected equilibrium payoffs are given by

yi =
1

n

(
1−

∑
i∈N

ri

)
+ ri,

and continuation values are given by

zi =
δ

n

(
1−

∑
i∈N

ri

)
+ ri.

If
∑

i∈N ri > 1, disagreement occurs with probability 1 and zi = yi = ri.

Proof. See Appendix A.6.

Note that the expected payoffs are independent of δ, such that the profile of
disagreement payoffs (ri)i∈N remains relevant even if the continuation probability
becomes arbitrarily close to 1. For all δ, players effectively share the surplus from
agreement equally. This result is analogous to the results for two-player bargaining
with breakdown probability. Most importantly, note that expected equilibrium
payoffs are increasing in disagreement values.

Although expected payoffs do not depend of δ, the outcome of the game, con-
ditional on the identity of the proposer, does. This can be seen by comparing the
expressions for yi and zi. Since zi < yi, it follows that the payoff conditional on
being a responder is lower than that conditional on being proposer. This differ-
ence, which indicates a proposer advantage, is decreasing in δ and vanishes in the
limit when δ approaches 1.

3.5 Less-than-unanimity rules (q < n)

For less-than-unanimity rules, we can establish a sufficient condition for imme-
diate agreement. Under unanimity rule, immediate agreement occurred if it was
potentially Pareto improving. Under majority rule, an analogous condition holds
that takes into account that only q players need to agree in order for a proposal
to be implemented: if

∑q−1
i=1 ri + rn < 1, each player can find a coalition of q play-

ers to which they belong for which
∑

i∈S rj < 1, hence each proposer can find a
coalition for which agreement is potentially Pareto improving, and all equilibria
involve immediate agreement in this case.

We also show that, even though SSPE with immediate agreement may differ
in the strategies that are played, they all lead to the same expected payoffs and
continuation values for the players.

15For the case
∑
i∈N ri = 1, the tie-breaking rule is used to select a unique equilibrium.
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Finally, we establish a crucial difference between unanimity and less-than-
unanimity decision rules: even though continuation values are ranked in the same
way as disagreement values, expected equilibrium payoffs are not. Expected equi-
librium payoffs follow one of two basic patterns: they are either decreasing, or first
increasing and then decreasing in disagreement values (in both cases, there may be
an additional flat region after the decreasing part). The player with the greatest
disagreement value never gets the highest expected payoff.

Proposition 2. Let q < n.
(i). If

∑q−1
i=1 ri + rn < 1, all SSPE exhibit immediate agreement.

(ii). All SSPE with immediate agreement have the same continuation values
and expected equilibrium payoffs.

(iii). Continuation values are weakly increasing in the r-values in any SSPE.
(iv). Inclusion probabilities are weakly decreasing in the r-values in any SSPE.
(v). In an SSPE with immediate agreement, the player with the greatest dis-

agreement value never gets the highest expected payoff.

Proof. See Appendix A.6.
It follows from Propositions 1 and 2 that efficiency of agreement (i.e.,

∑
j∈N rj <

1) is a sufficient condition for immediate agreement under all decision rules. How-
ever, under all less-than-unanimity rules, agreement may occur even when it is
inefficient. In fact, it is possible that an agreement is reached which makes all
players (including those that vote in favor) worse off than they would be in case
of breakdown. (See p. 47 in the Appendix for an example.)

4 Experimental Design and Hypotheses

4.1 Experimental Design

We conducted several games involving three players with a divisible amount of
100 ‘tokens’. The continuation probability was δ = 2

3
.16 Sessions were divided into

three blocks of ten games, corresponding to three different sets of disagreement
values: r = (20, 20, 20), r = (0, 20, 40), and r = (0, 0, 60). (Instructions referred
to “default tokens” which the subject would receive if the group failed to agree.)
Thus, we are focusing on situations where agreement is efficient.17 In each of

16This was implemented using a virtual die roll, with the game continuing until the number
rolled exceeded four.

17Our working paper reports on a previous experiment in which r values were randomly as-
signed. This resulted in a larger number of distinct situations, including some where agreement
was inefficient. A disadvantage of that design was that the constellation of r values varied so
much that subjects had little opportunity to learn. At the suggestion of a referee, we therefore
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the situations implemented, the surplus resulting from agreement is identical (40
tokens). Furthermore, the situations are clearly ranked in terms of the inequality
of disagreement values, from fully equal to highly unequal. To facilitate learning,
each subject’s individual ri value was fixed over all games within a block.18

Within each game, the sequence of events was as follows. First, each subject
was randomly assigned a letter i.d. (‘A’,‘B’,‘C’) which remained fixed throughout
the game. Each subject was informed about the disagreement values for all mem-
bers of the group. At the beginning of a given round of the game, one subject
was randomly chosen to make a proposal. All subjects were immediately informed
of the proposer’s i.d., and the chosen subject was prompted to enter a proposal,
consisting of three positive integers which sum to at most 100 tokens. After the
proposer clicked ‘ok’, this proposal was displayed to all members of the group, who
were then prompted to vote either ‘yes’ or ‘no’. Following this, detailed results of
the vote were displayed to all subjects. This included the proposal made, the i.d.
of the proposer, and the individual votes cast by each player (‘A’,‘B’,‘C’). If the
proposal failed, the results screen also informed subjects of the outcome of a die
roll to determine whether the game would continue. If so, a new round began. In
games that continued beyond round 1, a detailed history table showed the proposer
i.d., the proposal made, as well as the individual votes, for all prior rounds.

We conducted ten sessions, five using majority and five unanimity rule. Each
session involved 24 subjects divided into two matching groups of size 12. Thus,
we have a total of 20 matching groups, 10 under each decision rule. Within each
session, participants played 30 games (3 blocks of 10 - see below), with random
rematching between games.19 We varied the order of the blocks between sessions
(see Table 1).20 At the end of the experiment, one game was randomly chosen
to be paid. The exchange rate was 1 token = 0.30 EUR. Including a 3 EUR
participation fee, earnings ranged from 3 EUR to 27 EUR, with an average of
12 EUR. The experimental software was programmed using z-Tree (Fischbacher,
2007). The experiment was conducted at the University of the Basque Country in

changed the design as described here. See Miller et al (2015) for the results of our previous
experiment, which are qualitatively similar to those reported here.

18The assignment of disagreement values and initial proposer identities used in each block was
generated prior to the experiment and implemented identically in all sessions. This ensured that
observations are comparable across treatments and matching groups.

19Since individual r values remained fixed within a given block, the matching scheme needed to
guarantee that the resulting constellation of r values remained fixed. In addition, we wanted to
minimize repeated interaction. Therefore we required that no three-subject group is identically
repeated, and no two subjects are matched more than twice in a given block. (The latter is
unavoidable.) An algorithm was programmed to randomly generate a matching scheme satisfying
these constraints. (Subjects were not informed about the details of this procedure.)

20Although there are six possible block orders, we only implemented five due to lack of avail-
ability of experimental subjects.
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Bilbao. Participants were undergraduate students of economics and business.

Table 1. Sessions, decision rules and block orders
games session 1 session 3 session 5 session 7 session 9

majority 1-10 (20,20,20) (20,20,20) (0,0,60) (0,0,60) (0,20,40)
rule 11-20 (0,20,40) (0,0,60) (0,20,40) (20,20,20) (20,20,20)

21-30 (0,0,60) (0,20,40) (20,20,20) (0,20,40) (0,0,60)
games session 2 session 4 session 6 session 8 session 10

unanimity 1-10 (20,20,20) (20,20,20) (0,0,60) (0,0,60) (0,20,40)
rule 11-20 (0,20,40) (0,0,60) (0,20,40) (20,20,20) (20,20,20)

21-30 (0,0,60) (0,20,40) (20,20,20) (0,20,40) (0,0,60)

4.2 Hypotheses

As indicated, our experimental games involve n = 3 subjects and two possible
values for q: q = 3 (unanimity rule) and q = 2 (majority rule). The continuation
probability was δ = 2

3
in all cases and three different combinations of disagreement

values occurred in our experiment. For these three different combinations, Table 2
presents the equilibrium values for zi (player i’s continuation value and the ‘price’
for his vote), yi (player i’s expected equilibrium payoff) and µi (the probability of
being in the final coalition as a proposer or as a coalition partner).

Table 2. Equilibrium predictions
Disagreement
values Majority rule Unanimity rule
(r1, r2, r3) (z1, z2, z3) (µ1, µ2, µ3) (y1, y2, y3) (z1, z2, z3) (y1, y2, y3)
(20,20,20) (29, 29, 29)

(
2
3
, 2
3
, 2
3

)
(33, 33, 33) (29, 29, 29) (33, 33, 33)

(0,20,40) (28, 29, 29)
(
1, 2

3
, 1
3

)
(43, 34, 24) (9, 29, 49) (13, 33, 53)

(0,0,60) (25, 25, 37)
(
5
6
, 5
6
, 1
3

)
(38, 38, 25) (9, 9, 69) (13, 13, 73)

Note: ri is i’s disagreement value; zi is i’s acceptance threshold; µ1 is i’s
inclusion probability under majority rule; y1 is i’s expected payoff.

Our aim in the experiment will not be to test the precise point predictions
presented in Table 2. Instead we will be interested in the following qualitative pre-
dictions concerning the relationship between disagreement values, probabilities of
being in the coalition, offers, and expected payoffs. Moreover, we will be especially
interested in comparing these relationships under majority vs. unanimity rule.

Hypothesis 1. Under both majority and unanimity rule, agreement occurs imme-
diately (i.e. the first proposal passes).

Hypothesis 2. In the symmetric situation r = (20, 20, 20),
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(a) Proposers build minimal winning coalitions. (They make positive offers to
both responders under unanimity and to one responder under majority rule.)

(b) Offers made to coalition members do not differ between majority and una-
nimity rule.

Hypothesis 3. When disagreement values differ and unanimity rule is used, both
responders are included and

(a) Offers received are increasing in responder disagreement values.

(b) Acceptance thresholds are increasing in responder disagreement values.

(c) Ex ante expected payoffs are increasing in disagreement values.

Hypothesis 4. When disagreement values differ and majority rule is used, one
responder is included and

(a) Responders with larger disagreement values are less often included.

(b) Acceptance thresholds are weakly increasing in disagreement values.

(c) Ex ante expected payoffs are decreasing in disagreement values.

5 Results

Throughout our empirical analysis, we will focus exclusively on first round pro-
posals. For each constellation of disagreement values and first round proposer
identities, we investigate the distribution of proposals made, the fraction of pro-
posals that pass, as well as the voting decisions observed. Final outcomes (i.e.
agreements or breakdown that occur after round 1) will be considered only when
we calculate average realized payoffs.21

5.1 Aggregate rate of passage

We start by considering the rate of passage. Focusing on the first round of bar-
gaining, Figure 1 shows the fraction of proposals that pass immediately in all
treatments. All values are far from 100%, contradicting Hypothesis 1. We also
observe a significantly lower rate of passage under unanimity rule, regardless of
the situation. In the symmetric (20, 20, 20) situation, the passage rate drops from

21We pool the data from all 30 periods. In the Online Appendix, we replicate all the figures
reported in the paper restricting to the last 20 and 10 periods. Additionally, we replicate all the
statistical analysis for the last 20 periods.
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77% to 46%. In the asymmetric situations, the effect is even more pronounced.
Here, the passage rate drops from 78% to 30% in the (0, 20, 40) condition, and
from 79% to 38% in the (0, 0, 60) condition.22

Using a Mann-Whitney-Wilcoxon rank-sum test, we can establish that all of
these differences are highly significant.23 For each of the three comparisons p <
0.01.24 We also observe that the passage rate is very similar across situations
under majority rule. In contrast, the passage rate under unanimity is significantly
lower in the asymmetric situations than in the symmetric one. Using a Wilcoxon
matched-pairs signed-ranks test, we can establish that the passage rate pooling
the two asymmetric situations is significantly different from the passage rate in
the symmetric situation (p < 0.05).25

Result 1. In all situations, passage rates are significantly lower under unanim-
ity than under majority rule. Under unanimity rule, passage rates are lower in
asymmetric situations than in the symmetric situation.

The difference in passage rates between majority and unanimity is consistent
with a model of imperfect best response (see Nunnari and Zapal (2016)). Suppose
players do not perfectly best respond to the strategies of others; instead, they may
make errors, but they are less likely to make errors if errors are more costly. Our
data would be (at least qualitatively) consistent with imperfect best response if,

22As noted by a reviewer, these effects are very large when compared to those observed in
Miller and Vanberg (2013, 2015), who conduct ‘standard’ BF games with discount factors of
δ = .9 and δ = .5. There, the passage rates under majority vs. unanimity rule are 87% vs.
70% and 88% vs. 74%, respectively. Thus, the mere presence of disagreement values appears to
significantly increase the amount of delay as well as the observed effect of the decision rule.

23Throughout the paper, Mann-Whitney-Wilcoxon rank-sum test and Wilcoxon matched-pairs
signed-ranks test are used. We average all observations for a given matching group and use
matching group averages as the unit of observation. All p-values reported are two-tailed and
have been calculated using the exact values as proposed by Harris and Hardin (2013).

24Delay under unanimity rule would be compatible with subjects playing a subgame perfect
equilibrium (SPE) with history-dependent strategies rather than an SSPE (see Herings et al.,
2017). However, some features of behavior are incompatible with even SPE. Consider a proposal
that is rejected by only one player. Because the player could have accepted the proposal (and,
since this would result in the end of the game, such deviation cannot be punished by other
players), the expected payoff from rejecting the proposal cannot be lower than the payoff offered in
the proposal. Our data does not satisfy this restriction for subjects with low disagreement values:
on average, being the sole rejector results in a slight loss when ri = 20, and a substantial loss when
ri = 0. This finding is consistent with the high frequency of disadvantageous counterproposals
found in earlier experiments on two-person bargaining (see Ochs and Roth, 1989).

25Pairwise comparisons of the three conditions tell a similar story, although not all comparisons
are statistically significant: p < 0.05 for (20, 20, 20) vs. (0, 20, 40); p = 0.13 for (20, 20, 20) vs.
(0, 0, 60); p = 0.10 for (0, 20, 40) vs. (0, 0, 60).
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Figure 1. Fraction of first round proposals that pass

Notes: The fractions of first round proposals that pass, pooling all the periods, are graphed as
vertical bars; the whiskers indicate 95% confidence intervals. Confidence intervals are calculated
using an average in each matching group to account for interdependencies between observations
that come from the same matching group.

given the actual behavior in the experiment, playing a strategy that causes delay
is more costly under majority than under unanimity.

Let p be the probability that an agreement is reached in any given round
(assume p is the same for all rounds). We can compute the probability that an
agreement is reached before negotiations break down as follows. Agreement in
the first round occurs with probability p. Agreement in the second round occurs
if, after players fail to reach an agreement in the first round (this occurs with
probability 1− p), negotiations do not break down, such that the game moves to
round 2 (this occurs with probability δ), and then players agree (with probability
p). Iterating this reasoning, the overall probability that an agreement is reached
before breakdown occurs is p+ (1− p)δp+ (1− p)δ(1− p)δp+ ... = p

1−(1−p)δ .

In our experiment we have δ = 2
3
. Consider the symmetric case, r = (20, 20, 20).

The passage rate we observe under unanimity is 0.46. If we assume a constant
probability of agreement p = 0.46 in each round, the overall probability of agree-
ment is 0.46

1−0.54∗2/3 = 23
32

. Expected payoffs, calculated at the beginning of a round

before Nature selects a proposer, are 23
32
∗ 100

3
+ [1− 23

32
] ∗ 20 = 29.58 for each player

(we are implicitly assuming that strategies are stationary and symmetric, such
that each player expects 100

3
if agreement is reached). The empirical continuation

value under unanimity is then 2
3
∗ 29.58 + 1

3
∗ 20 = 26. 39 (breakdown occurs im-

mediately with probability 1
3
, in which case players get 20; negotiations continue

with probability 2
3
, in which case players may eventually reach an agreement or

nor as discussed above). Under majority, given the passage rate p = 0.77 observed
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in our experiment, we obtain an empirical continuation value of 28.08.
Under majority, the proposer could propose (50, 50, 0), and this would give him

and one other player almost 22 points above their continuation value; similarly,
if the proposer proposes (60, 40, 0), this would still give the intended coalition
partner almost 12 points above the continuation value. Because the proposer has
a lot to lose from making a proposal that would likely be rejected, and the coalition
partner has a lot to lose from rejecting a proposal like (50, 50, 0) or even (60, 40, 0),
we expect that players will often come to an agreement.

Under unanimity, all players have to agree in order for a proposal to pass,
hence they would all need to be given a payoff well above their continuation value
(the responders in order to have an incentive to vote yes, the proposer in order to
have an incentive to make the proposal in the first place). Even if the proposer
proposes (34, 33, 33), the gain would be 34 − 26.39 = 7.61 for the proposer and
33 − 26.39 = 6.61 for each responder. Hence, compared with the majority case,
errors that lead to delay are clearly less costly under unanimity, and we would
expect delay to occur much more often, as it is the case.26

5.2 Symmetric situation r = (20, 20, 20)

Figure 2 depicts, within a unit simplex, the frequency of first round proposals
(bubble size) and the corresponding passage rates (pie charts within bubbles) in
the symmetric r = (20, 20, 20) condition. The data are formatted such that the
first coordinate corresponds to the proposer’s share. The second and the third
coordinates correspond to the responders’ shares. When responder ri values are
the same, they are ordered alphabetically. For example, suppose that player ‘C’ is
the proposer. Then the first coordinate is xC , the second is xA, and the third is xB.
Given this formatting, the bottom left, right, and top left corners of the simplex
represent points at which the entire pie is allocated to the proposer, responder
1, and responder 2, respectively. Finally, each figure contains a set of reference
points. Our theoretical predictions are marked by red dots, and all equal splits
(two-way and three-way) are marked by blue dots.

The left panel (a) shows proposals and passage rates under majority rule and
the right panel (b) under unanimity rule. In addition, each panel identifies the

26One may ask if the higher delay under unanimity relative to the earlier experiments of Miller
and Vanberg (2013, 2015) is consistent with imperfect best response. Let p be the passage rate,

and δ the discount factor. The continuation value is then δp 100
3 + δ(1− p)δp 100

3 + ... =
δp 100

3

1−δ(1−p) .

Given the observed passage rates of p = 74% for δ = 0.5 and p = 70% for δ = 0.9, the continuation
values are 14.18 and 28.77 respectively. Our data are consistent with those for δ = 0.5 in the
sense that delay is both much less costly and much more often observed. The data for δ = 0.9
are out of line with the other two experiments, since they contain both the highest continuation
value and a very high passage rate.
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Figure 2. Proposals and passage rates, r = (20, 20, 20)

15% x=(60, 40, 0) pass=85%

12% x=(50, 50, 0) pass=96%

11% x=(60, 0, 40) pass=84%

(100,0,0)

(0,0,100)

(0,100,0)

Prediction: (71, 29, 0)

or (71, 0, 29)

(a) Majority rule (N=400)

32% x=(40, 30, 30) pass=38%

21% x=(34, 33, 33) pass=85%

14% x=(36, 32, 32) pass=57%

(100,0,0)

(0,0,100)

(0,100,0)

Prediction: (42, 29, 29)

(b) Unanimity rule (N=400)

three most frequent proposals and their corresponding passage rate. For instance,
the modal proposal under majority rule is x = (60, 40, 0), and this proposal passes
85% of the time. Similarly, the modal proposal under unanimity rule is x =
(40, 30, 30), and is passed only 38% of the time.

As can be seen in panel (a), most proposals under majority rule are located
along the edge of the simplex, meaning that the proposer is attempting to build a
minimal winning coalition with only one responder receiving a positive share (65%
overall, 85% in the final ten periods). In panel (b), all but 9 out of 400 proposals
allocate positive shares to both responders. Taken together, these numbers support
Hypothesis 2a concerning the size of proposed coalitions.

Result 2a. In the symmetric situation r = (20, 20, 20), most proposers attempt to
build a minimal winning coalition.

Under majority rule, the most frequent proposals are those that allocate 40%
to one of the responders (26% of proposals are of this type, 29% in the last ten peri-
ods). Interestingly, these modal offers are located approximately half way between
the two-way equal split and the equilibrium prediction, which allocates 29% to a
single responder. Under unanimity rule, the modal proposal is x = (40, 30, 30),
which is remarkably close to our equilibrium prediction (x = (42, 29, 29)). Overall,
proposals under unanimity rule are concentrated in the area between our equilib-
rium prediction and the three-way equal split. These patterns are consistent with
findings from the previous literature.
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Based on a preliminary inspection of Figure 2, it appears that Hypothesis 2b
(equal offers under both rules) can be rejected. In particular, the modal proposal
under majority rule is one where a single coalition partner is offered 40% of the
pie. Under unanimity rule, in contrast, there are virtually no proposals which
allocate more than 33% to a coalition partner. This suggests that (positive) offers
under majority rule tend to be larger than those made under unanimity rule. And
indeed, if we pool the data from all periods and sessions, we find that coalition
partners under majority rule are offered on average 4 tokens more than coalition
partners under unanimity rule (34.6 vs. 30.4). This pattern is consistent with
imperfect best response as discussed earlier.

Using a Mann-Whitney-Wilcoxon rank-sum test, we conclude that this differ-
ence is significant (p < 0.0001). The same conclusion emerges when we conduct a
regression analysis. We estimate the effect of the decision rule on offers to coalition
partners, using a random effects linear regression.27 The results of this analysis
are reported in the first column of Table 3. Offers increase with the period and
are significantly smaller under unanimity rule. Thus we reject Hypothesis 2b.

Result 2b. In the symmetric situation r = (20, 20, 20), coalition partners (defined
as those who are offered positive shares) are offered more under majority rule than
under unanimity rule.

As we know from Figure 1, and in line with previous experiments without dis-
agreement values, most proposals pass under majority rule (77% overall, 74% in
the last ten periods). In contrast, proposals under unanimity rule often fail, with
only 46% passing in the first bargaining round (49% in the last ten periods). Un-
der unanimity rule, only three-way equal splits (x = (34, 33, 33)) are consistently
passed (85%), and even small deviations from such an equal split result in high
rates of failure. For instance, the third most frequent proposal, x = (36, 32, 32),
passes in only 57% of cases. The modal offer (corresponding to the equilibrium
prediction) passes only 38% of the time.

To understand the voting behavior underlying these different passage rates, we
turn to Figure 3. Here, the pie charts within bubbles represent the votes cast by
responder 1 (left panel) and responder 2 (right panel). The green and red areas
represent the fraction of ‘yes’ and ‘no’ votes, respectively.

Under majority rule, responders included in a minimal winning coalition usually
vote yes (see the prevalence of green bubbles in the horizontal and vertical axes

27Specifically, we estimate the following equation: xit = β0 + β1Ui + β2Pt +
∑5
j=2 β(1+j)Oi +

αi+νit, where we estimate the effect of the unanimity rule (Ui) on the offer to coalition partners
(xit), controlling for a linear effect of the period (Pt) and the block order (Oi), which is introduced
in the equation as a set of four dummies; αi and νit are a subject specific and an idiosyncratic
error term, respectively.
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Figure 3. Voting behavior, r = (20, 20, 20)

Majority Rule (N=400)

15% x=(60, 40, 0) vote1=85%

12% x=(50, 50, 0) vote1=96%

11% x=(60, 0, 40) vote1=2%

(100,0,0)

(0,0,100)

(0,100,0)

Prediction: (71, 29, 0)

or (71, 0, 29)

(a) Responder 1’s vote

15% x=(60, 40, 0) vote2=0%

12% x=(50, 50, 0) vote2=10%

11% x=(60, 0, 40) vote2=84%

(100,0,0)

(0,0,100)

(0,100,0)

Prediction: (71, 29, 0)

or (71, 0, 29)

(b) Responder 2’s vote

Unanimity Rule (N=400)

32% x=(40, 30, 30) vote1=59%

21% x=(34, 33, 33) vote1=94%

14% x=(36, 32, 32) vote1=69%

(100,0,0)

(0,0,100)

(0,100,0)

Prediction: (42, 29, 29)

(c) Responder 1’s vote

32% x=(40, 30, 30) vote2=61%

21% x=(34, 33, 33) vote2=92%

14% x=(36, 32, 32) vote2=83%

(100,0,0)

(0,0,100)

(0,100,0)

Prediction: (42, 29, 29)

(d) Responder 2’s vote
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of panels (a) and (b), respectively) and the excluded responder votes no (see the
prevalence of red bubbles in the vertical and horizontal axes of panels (a) and
(b), respectively). This pattern explains the relatively high rate of passage under
majority rule. Under unanimity rule (panels (c) and (d)), we see that responders
vote yes on the equal split 94% and 92% of the time. In contrast, the ‘almost
equal’ split x = (36, 32, 32) is accepted by only 69% and 83% of voters 1 and 2,
respectively, resulting in a passage rate of only 57%. Finally, the modal proposal
(40, 30, 30) is accepted by only 59%, resp. 61% of responders 1 and 2. Since one
no vote suffices to reject such a proposal, this explains the low passage rates under
unanimity rule.

Table 3. Regression analysis of the effect of the decision rule on offers
to coalition partners

Dependent variable: “Offer to coalition partner”
Participant random effects included in all models

Symmetric r r = (0, 20, 40) r = (0, 20, 40) r = (0, 0, 60) r = (0, 0, 60)
Pooled Unanimity Majority Unanimity Majority

Unanimity -4.87***
(0.69)

Period 0.27*** 0.16* -0.20 0.30** 0.21
(0.07) (0.08) (0.18) (0.14) (0.19)

Rr = 20 8.60*** 0.92
(0.62) (1.58)

Rr = 40 21.91*** 0.20
(0.61) (1.59)

Rr = 60 30.65*** -1.83
(0.92) (1.44)

Pr = 20 -1.45** -2.63
(0.73) (1.87)

Pr = 40 -2.35*** -3.67**
(0.73) (1.80)

Pr = 60 -2.96*** -6.13***
(1.08) (1.63)

Constant 33.18*** 19.69*** 38.26*** 14.36*** 27.09***
(0.93) (1.56) (3.63) (3.71) (5.11)

Order dummies Yes Yes Yes Yes Yes
Observations 1,325 794 516 772 549
Number of id 240 120 120 120 120

Notes: Sample includes offers to coalition partners (positive offers); Rr and Pr are responder’s
and proposer’s r value, respectively; standard errors in parentheses; *** - sig. at 1%;
** - sig. at 5%; * - sig. at 10%.

5.3 Asymmetric r: Unanimity rule

Figures 4 and 5 summarize the frequency of proposals and the passage rates under
unanimity rule in the asymmetric conditions (r = (0, 20, 40) and r = (0, 0, 60)).
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Figure 4. Proposals and passage rates,
r = (0, 0, 60), unanimity rule (N=400)

31% x=(70, 15, 15) pass=30%

15% x=(60, 20, 20) pass=47%

6% x=(80, 10, 10) pass=12%

(100,0,0)

(0,0,100)

(0,100,0)

Prediction: (82, 9, 9)

(a) r = (60, 0, 0) (N=130)

19% x=(20, 20, 60) pass=62%

6% x=(25, 25, 50) pass=33%

5% x=(30, 30, 40) pass=14%

(100,0,0)

(0,0,100)

(0,100,0)

Prediction: (22, 9, 69)

(b) r = (0, 0, 60) (N=270)

Within each condition, the figures distinguish according to the proposer’s ri value.
The r vector below each diagram, as well as the points plotted, are defined such
that the first coordinate corresponds to the proposer’s disagreement value and al-
located share, and the second and third coordinates those of responders 1 and 2,
respectively. When responder disagreement values differ, responder 1 is the one
with the lower disagreement value. When they are the same, responders are alpha-
betically ordered. As above, each panel identifies the three most frequent proposals
in each situation. For example, Figure 4(a) depicts proposals made by the player
with ri = 60. In Figure 4(b), the proposer’s ri = 0, the first responder (right
corner) has ri = 0, and the second responder (top corner) has ri = 60.

As in the symmetric situation, it appears that proposals are concentrated
around a line connecting the three-way equal split (marked in blue) and the equi-
librium prediction (marked in red). For example, in figure 4, panel (a), the equilib-
rium prediction is x = (82, 9, 9) and the modal proposal is x = (70, 15, 15). Most
proposals are closer to the prediction than the equal split. In fact, modal propos-
als are remarkably close to the theoretical predictions. In figure 5 (c), the modal
proposal allocates to both responders one token more than what is predicted.

Two patterns are immediately visible in these figures. First, whenever respon-
der disagreement values differ (Figure 4(b) and Figure 5), almost all observations
are located above the 45◦ line. That is, responder 2 (with the higher disagreement
value) is consistently offered more. This is consistent with Hypothesis 3a. Pooling
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Figure 5. Proposals and passage rates,
r = (0, 20, 40), unanimity rule (N=400)

15% x=(50, 20, 30) pass=47%

12% x=(55, 15, 30) pass=33%

9% x=(40, 30, 30) pass=75%

(100,0,0)

(0,0,100)

(0,100,0)

Prediction: (62, 9, 29)

(a) r = (40, 0, 20) (N=130)

13% x=(40, 20, 40) pass=28%

9% x=(35, 15, 50) pass=69%

8% x=(40, 15, 45) pass=0%

(100,0,0)

(0,0,100)

(0,100,0)

Prediction: (42, 9, 49)

(b) r = (20, 0, 40) (N=140)

18% x=(20, 30, 50) pass=39%

11% x=(30, 30, 40) pass=36%

8% x=(25, 30, 45) pass=10%

8% x=(30, 25, 45) pass=10%

(100,0,0)

(0,0,100)

(0,100,0)

Prediction: (22, 29, 49)

(c) r = (0, 20, 40) (N=130)
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the data from all periods for each of the asymmetric conditions (i.e. combining
the observations displayed in Figures 4 and Figure 5), we find that average offers
received are increasing in responder disagreement values. In the r = (0, 0, 60)
condition, responders with ri = 0 and ri = 60 are offered an average of 19 and
51 tokens, respectively. (Note, however, that the latter offer is lower than the
disagreement value, which is not consistent with our theory.) In the r = (0, 20, 40)
condition, responders are offered 20, 29, and 42 tokens on average.28,29

The significance of these differences is confirmed by regression analysis. We
extend the analysis reported in the previous section to test whether offers received
are positively related to responder disagreement values.30 Results are reported
in columns 2 and 4 of table 3. As predicted, offers are monotonically increasing
in responder r values under unanimity rule. (Offers also decrease slightly as pro-
poser’s disagreement value increases, similarly to Diermeier and Gailmard’s (2006)
findings for the ultimatum game. This effect is not predicted by the theory.)

Result 3a. In asymmetric situations and under unanimity rule, offers received
are increasing in responder disagreement values.

A second pattern discernible from Figures 4 and 5 is that a large fraction of
proposals fail. The average passage rate for all periods and asymmetric constella-
tions under unanimity rule is only 34% (38% in the last ten periods). This passage
rate is slightly higher when r = (0, 0, 60) (38%) than when r = (0, 20, 40) (30%).

We can get a feel for the voting behavior underlying these passage rates by
looking at Figures 6 and 7, which are constructed analogously to Figure 3. When
their disagreement values differ, visual inspection suggests that responder 2 (with
the larger disagreement value) more often votes against the proposal. Further-
more, this happens despite the fact that responder 2 is consistently offered more.
Although we cannot observe acceptance thresholds directly, this pattern is consis-
tent with the hypothesis that acceptance thresholds are increasing in disagreement
values (Hypothesis 3b).

28Using a Wilcoxon matched-pairs signed-ranks test, we can establish that the amount offered
to the player with the largest disagreement value is different from the amount offered to the
other players (p < 0.01). Using the same test, we can show that, in the r = (0, 20, 40) condition,
the amount offered to ri = 0 is different from the amount offered to ri = 20 and the latter is
different from the amount offered to ri = 40. All comparisons return values of p < 0.01.

29Note that actual offers are less sensitive to disagreement values than predicted offers. This
echoes the results of Anbarci and Feltovich (2013) for two-player bargaining with a deadline.

30Specifically, we estimate the following equation: xit = β0 + β1Pt +
∑4
j=2 β(0+j)Rri +∑4

k=2 β(3+k)Pri +
∑5
l=2 β(6+l)Oi + αi + νit, where we estimate the effect of responder’s dis-

agreement value (Rri) on offers received (xit), controlling for the period, the block order, and
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Figure 6. Voting behavior, r = (0, 0, 60), unanimity rule (N=400)

31% x=(70, 15, 15) vote1=60%

15% x=(60, 20, 20) vote1=63%

6% x=(80, 10, 10) vote1=12%

(100,0,0)

(0,0,100)

(0,100,0)

Prediction: (82, 9, 9)

(a) r = (60, 0, 0), Responder 1’s vote

31% x=(70, 15, 15) vote2=65%

15% x=(60, 20, 20) vote2=63%

6% x=(80, 10, 10) vote2=38%

(100,0,0)

(0,0,100)

(0,100,0)

Prediction: (82, 9, 9)

(b) r = (60, 0, 0), Responder 2’s vote

19% x=(20, 20, 60) vote1=84%

6% x=(25, 25, 50) vote1=100%

5% x=(30, 30, 40) vote1=93%

(100,0,0)

(0,0,100)

(0,100,0)

Prediction: (22, 9, 69)

(c) r = (0, 0, 60), Responder 1’s vote

19% x=(20, 20, 60) vote2=68%

6% x=(25, 25, 50) vote2=33%

5% x=(30, 30, 40) vote2=21%

(100,0,0)

(0,0,100)

(0,100,0)

Prediction: (22, 9, 69)

(d) r = (0, 0, 60), Responder 2’s vote
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Figure 7. Voting behavior, r = (0, 20, 40), unanimity rule (N=400)

15% x=(50, 20, 30) vote1=89%

12% x=(55, 15, 30) vote1=67%

9% x=(40, 30, 30) vote1=100%

(100,0,0)

(0,0,100)

(0,100,0)

Prediction: (62, 9, 29)

(a) r = (40, 0, 20), Responder 1’s vote

15% x=(50, 20, 30) vote2=47%

12% x=(55, 15, 30) vote2=60%

9% x=(40, 30, 30) vote2=75%

(100,0,0)

(0,0,100)

(0,100,0)

Prediction: (62, 9, 29)

(b) r = (40, 0, 20), Responder 2’s vote

13% x=(40, 20, 40) vote1=78%

9% x=(35, 15, 50) vote1=85%

8% x=(40, 15, 45) vote1=64%

(100,0,0)

(0,0,100)

(0,100,0)

Prediction: (42, 9, 49)

(c) r = (20, 0, 40), Responder 1’s vote

13% x=(40, 20, 40) vote2=28%

9% x=(35, 15, 50) vote2=77%

8% x=(40, 15, 45) vote2=18%

(100,0,0)

(0,0,100)

(0,100,0)

Prediction: (42, 9, 49)

(d) r = (20, 0, 40), Responder 2’s vote

18% x=(20, 30, 50) vote1=65%

11% x=(30, 30, 40)vote1=100%

8% x=(25, 30, 45) vote1=80%

8% x=(30, 25, 45) vote1=10%

(100,0,0)

(0,0,100)

(0,100,0)

Prediction: (22, 29, 49)

(e) r = (0, 20, 40), Responder 1’s vote

18% x=(20, 30, 50) vote2=65%

11% x=(30, 30, 40) vote2=36%

8% x=(25, 30, 45) vote2=20%

8% x=(30, 25, 45) vote2=60%

(100,0,0)

(0,0,100)

(0,100,0)

Prediction: (22, 29, 49)

(f) r = (0, 20, 40), Responder 2’s vote
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To assess the significance of these differences in voting behavior, we conduct a
regression analysis that controls for characteristics of the proposals. We estimate
the effects of disagreement value on individual voting decisions, using a random
effects probit regression.31 Results are reported in columns 1 and 3 of table 4.
Controlling for the kind of offer being considered, we find that the likelihood that
a player votes yes is decreasing in her disagreement value.

Result 3b. In asymmetric situations and under unanimity rule, the likelihood that
a player votes yes on a given offer is decreasing in her disagreement value.

the proposer’s disagreement value (Pri). Responder’s and proposer’s disagreement values are
introduced as sets of dummies in the regression analysis.

31Specifically, we estimate the following equation: voteit = 1(β0 + β1OSit + β2PSit + β3Pt +∑4
j=2 β(2+j)Rri +

∑4
k=2 β(5+k)Pri +

∑5
l=2 β(8+l)Oi + νit ≥ 0), where we estimate the effect of

responder’s disagreement value (Rrit) on the vote to a proposal (voteit), controlling for the re-
sponder’s own share (OSit), the proposer’s share (PSit), as well as the rest of controls introduced
in the analysis of offers above.
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Table 4. Regression analysis of the probability of voting yes

Dependent variable: “Voting yes”
Participant random effects included in all models
Dependent variable: “Voting yes” (asymmetric situations)

r = (0, 20, 40) r = (0, 20, 40) r = (0, 0, 60) r = (0, 0, 60)
Unanimity Majority Unanimity Majority

Own share 0.091*** 0.094*** 0.044*** 0.071***
(0.011) (0.010) (0.006) (0.007)

Proposer’s share -0.031*** -0.004 -0.013** -0.013***
(0.009) (0.006) (0.005) (0.005)

Period -0.026 -0.005 0.017 0.009
(0.018) (0.026) (0.018) (0.025)

Rr = 20 -1.497*** -0.729***
(0.188) (0.224)

Rr = 40 -3.200*** -1.092***
(0.315) (0.237)

Rr = 60 -2.201*** -0.971***
(0.241) (0.181)

Pr = 20 0.736*** 0.157
(0.279) (0.226)

Pr = 40 -0.971*** -0.971***
(0.181) (0.181)

Pr = 60 0.161 0.066
(0.239) (0.160)

Constant 0.357 -1.572** -0.102 -0.594
(0.479) (0.626) (0.507) (0.674)

Order dummies Yes Yes Yes Yes
Observations 794 516 549 549
Number of id 120 120 120 120

Notes: Sample includes votes of coalition partners; Rr and Pr are responder’s
and proposer’s r value, respectively; marginal effects taken at variables means
from random effect probit regressions presented; standard errors in parentheses;
*** - sig. at 1%; ** - sig. at 5%; * - sig. at 10%.

Interestingly, the reason for the high proportion of negative votes and subse-
quent proposal failures under unanimity rule is not that players with high dis-
agreement values try to demand very high shares. Although proposers’ demands
are monotonic in disagreement values, the vast majority of them are substantially
below of what they should demand according to theoretical predictions. As figures
2, 4 and 5 show, proposals that significantly deviate from an equal split are consis-
tently rejected. Failures of close-to-the-equilibrium proposals are more common in
asymmetric situations and when the proposer has the higher disagreement value.
For instance, in the r = (0, 0, 60) situation, proposals are almost always rejected
when the proposer demand is close to the equilibrium prediction of 82.

Finally, let us look at the payoffs realized within the asymmetric situations
under unanimity rule. In Table 5, we present average final payoffs in each situation.
The top part of the table distinguishes cases according to which player was initially
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assigned the proposer role. Using these numbers, the ex ante expected payoffs
are computed by taking the appropriate weighted averages. These numbers are
reported at the bottom of the table. Consistent with Hypothesis 3(c), the player
with the largest disagreement value achieves the largest expected payoff.32

Table 5. Average payoffs, asymmetric games (unanimity rule)
Conditional on initial role assignments:

r proposer responder 1 responder 2 total N
(0, 20, 40) 12.8 26.6 44.0 83.3 130
(20, 0, 40) 27.8 12.3 43.7 83.7 140
(40, 0, 20) 45.1 12.4 26.5 84.0 130
(0, 0, 60) 13.0 12.7 58.7 84.4 270
(60, 0, 0) 58.5 11.3 11.3 81.2 130

Ex ante expected payoffs
r player 1 player 2 player 3 total N

(0, 20, 40) 12.5 27.0 44.2 83.7 400
(0, 0, 60) 12.3 12.3 58.7 83.4 400

Result 3c. In asymmetric situations and under unanimity rule, ex ante expected
payoffs are increasing in disagreement values.

5.4 Asymmetric r: Majority rule

Figures 8 and 9 summarize the frequency of proposals and the passage rates under
majority rule in the asymmetric conditions (r = (0, 20, 40) and r = (0, 0, 60)).
These figures are constructed analogously to Figures 4 and 5. As above, a number
of patterns are immediately discernible.

The first is that most proposers attempt to build minimal winning coalitions
(see Table 6). That is, most proposals are located along the axes. Pooling all
proposals in the asymmetric conditions, 65% are of this type (76% in the final 10
periods). At 52%, the frequency of MWC is slightly lower when the proposer’s
ri = 60.

32Using a Wilcoxon matched-pairs signed-ranks test, we can establish that the payoff achieved
by the player with the largest disagreement value is different from the payoff achieved by the
other players (p < 0.001). (In fact, the average payoff to the player with the largest disagreement
value is larger than the others within all 10 matching groups in the unanimity rule treatment.)
Similarly, in the r = (0, 20, 40) condition the average realized payoffs of the players with ri = 0
and ri = 20 are also statistically different (p < 0.01).
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Figure 8. Proposals and passage rates,
r = (0, 0, 60), majority rule (N=400)

11% x=(60, 20, 20) pass=79%

10% x=(60, 40, 0) pass=92%

9% x=(70, 30, 0) pass=92%

(100,0,0)

(0,0,100)

(0,100,0)

Prediction: (75, 25, 0)

or (75, 0, 25)

(a) r = (60, 0, 0) (N=130)

22% x=(60, 40, 0) pass=95%

11% x=(50, 50, 0) pass=93%

10% x=(70, 30, 0) pass=79%

(100,0,0)

(0,0,100)

(0,100,0)

Prediction: (75, 25, 0)

(b) r = (0, 0, 60) (N=270)

Result 4. In asymmetric situations under majority rule, most proposers attempt
to build minimal winning coalitions.

A second pattern emerges when we focus on situations where responder dis-
agreement values differ (Figure 8(b) and Figure 9). In these cases, minimal win-
ning coalitions are virtually always formed with responder 2 (with the smaller ri).
That is, most proposals are located along the horizontal axis. Pooling all situa-
tions where responder disagreement values differ, 57% of proposals are of this type.
This is 85% of all proposed minimal winning coalitions. This number increases to
71% in the final ten periods (90% of all minimal winning coalitions).

We test Hypothesis 4a by estimating a random-effects probit regression. We
estimate the effect of disagreement values on the probability of ‘being in the coali-
tion’ (receiving a positive offer), controlling for the period and the block order.33

We study this effect (Table 7) for the r = (0, 20, 40) condition (left column) and
the r = (0, 0, 60) condition (right column) separately. In each case, the probability
of being included is decreasing in disagreement values.

Result 4a. Under majority rule, when responder disagreement values differ, the
responder with the higher disagreement value is less often included in the coalition.

33The empirical specification is similar to the voting equation described in footnote 30.
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Figure 9. Proposals and passage rates,
r = (0, 20, 40), majority rule (N=400)

14% x=(80, 20, 0) pass=44%

14% x=(70, 30, 0) pass=89%

12% x=(60, 40, 0) pass=93%

(100,0,0)

(0,0,100)

(0,100,0)

Prediction: (71, 29, 0)

(a) r = (40, 0, 20) (N=130)

16% x=(70, 30, 0) pass=96%

13% x=(65, 35, 0) pass=94%

6% x=(75, 25, 0) pass=89%

6% x=(50, 50, 0) pass=100%

(100,0,0)

(0,0,100)

(0,100,0)

Prediction: (71, 29, 0)

(b) r = (20, 0, 40) (N=140)

17% x=(60, 40, 0) pass=91%

12% x=(70, 30, 0) pass=44%

8% x=(50, 50, 0) pass=100%

(100,0,0)

(0,0,100)

(0,100,0)

Prediction: (71, 29, 0)

(c) r = (0, 20, 40) (N=130)
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Table 6. Coalition composition, asymmetric situations
majority rule

all periods periods 21 - 30
MWC with grand MWC with grand

Situation resp. 1 resp. 2 coalition resp. 1 resp. 2 coalition
(0,20,40) 51% 12% 37% 60% 13% 27%
(20,0,40) 60% 11% 27% 79% 5% 16%
(40,0,20) 58% 15% 26% 69% 10% 21%
(0,0,60) 59% 6% 35% 73% 6% 20%
(60,0,0) 29% 23% 45% 42% 17% 40%

All 53% 12% 34% 66% 9% 24%
Notes: ‘Situations’ are defined such that the first coordinate is the proposer,
the second and third responder ri values; minimal winning coalitions are
defined as proposals that allocate a positive share to only one responder; grand
coalitions are proposals that allocate positive shares to both responders.

Table 7. Regression analysis of the probability of being in the coalition

Dependent variable: “Inclusion in the coalition”
Participant random effects included in all models

Asymmetric r Asymmetric r
r = (0, 20, 40) r = (0, 0, 60)

Period -0.023 -0.073***
(0.019) (0.021)

Rr = 20 -0.900***
(0.147)

Rr = 40 -1.662***
(0.163)

Rr = 60 -1.769***
(0.172)

Constant 1.515*** 2.863***
(0.347) (0.591)

Order dummies Yes Yes
Observations 800 800
Number of id 120 120

Notes: Sample includes offers to all players; dependent variable = 1 if the
player receives a positive offer, = 0 otherwise; Rr is responder’s r value; marginal
effects taken at variables means from random effect probit regressions presented;
standard errors in parentheses. *** - sig. at 1%; ** - sig. at 5%; * - sig. at 10%.

The third pattern visible in Figures 8 and 9 is that passage rates are generally
higher than under unanimity rule. Pooling all periods and asymmetric situations,
78% of proposals pass in the first round (82% in the final ten periods).

Figures 10 and 11 show voting behavior under majority rule in the two asym-
metric conditions. The ten panels in these two figures show the same pattern: the
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responder ‘included’ in the coalition typically votes yes, and the excluded respon-
der almost always votes no. To investigate the effect of disagreement values on
voting, we estimate a regression model as described in footnote 30 for majority
rule. Results are presented in columns 2 and 4 of Table 4. As predicted, the
coefficients on all positive ri values are negative and significant, suggesting that
players with ri = 0 vote ‘yes’ more often than others. Likewise, when the respon-
ders’ disagreement values differ (column 2), the coefficient on Ri = 40 is larger (in
absolute value) than the coefficient on Ri = 20.34 Although acceptance thresholds
are not directly observable, these results are consistent with Hypothesis 4b.

Result 4b. In asymmetric situations and under majority rule, the likelihood that
a player votes yes on a given offer is decreasing in her disagreement value.

Finally, we look at payoffs. Table 8 is constructed analogously to table 5 in the
previous section. Focusing on ex ante expected payoffs, we only find a statistically
significant disadvantage in terms of payoffs when ri = 60.35

Table 8. Average payoffs, asymmetric games (majority rule)
Conditional on initial role assignments:

r proposer responder 1 responder 2 total N
(0, 20, 40) 44.4 30.7 20.5 95.6 130
(20, 0, 40) 49.6 27.0 18.3 94.9 140
(40, 0, 20) 52.6 26.1 16.8 95.5 130
(0, 0, 60) 46.0 31.5 18.1 95.6 270
(60, 0, 0) 49.2 21.9 21.9 92.9 130

Ex ante expected payoffs
r player 1 player 2 player 3 total N

(0, 20, 40) 32.5 32.4 30.4 95.3 400
(0, 0, 60) 33.1 33.1 28.5 94.7 400

Result 4c. In asymmetric situations and under majority rule, the player with the
largest disagreement value achieves a lower average payoff. However, a statistically
significant disadvantage is found only when his disagreement value is very large
compared to others.

34A linear restriction test, however, suggests that the coefficients of these two variables are
statistically indistinguishable (p = 0.142).

35Using a Wilcoxon matched-pairs signed-ranks test, we can establish that the payoff achieved
by the player with the largest disagreement value is different from the payoff achieved by the
other players when ri = 60 (p < 0.05). If we look only at interactions that ended in agreement,
we also find a statistically significant disadvantage in the (0, 20, 40) condition.
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Figure 10. Voting behavior, r = (0, 0, 60), majority rule (N=400)

11% x=(60, 20, 20) vote1=36%

10% x=(60, 40, 0) vote1=92%

9% x=(70, 30, 0) vote1=92%

(100,0,0)

(0,0,100)

(0,100,0)

Prediction: (75, 25, 0)

or (75, 0, 25)

(a) r = (60, 0, 0), Responder 1’s vote

11% x=(60, 20, 20) vote2=64%

10% x=(60, 40, 0) vote2=0%

9% x=(70, 30, 0) vote2=0%

(100,0,0)

(0,0,100)

(0,100,0)

Prediction: (75, 25, 0)

or (75, 0, 25)

(b) r = (60, 0, 0), Responder 2’s vote

22% x=(60, 40, 0) vote1=95%

11% x=(50, 50, 0) vote1=93%

10% x=(70, 30, 0) vote1=79%

(100,0,0)

(0,0,100)

(0,100,0)

Prediction: (75, 25, 0)

(c) r = (0, 0, 60), Responder 1’s vote

22% x=(60, 40, 0) vote2=2%

11% x=(50, 50, 0) vote2=0%

10% x=(70, 30, 0) vote2=0%

(100,0,0)

(0,0,100)

(0,100,0)

Prediction: (75, 25, 0)

(d) r = (0, 0, 60), Responder 2’s vote
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Figure 11. Voting behavior, r = (0, 20, 40), majority rule (N=400)

14% x=(80, 20, 0) vote1=44%

14% x=(70, 30, 0) vote1=89%

12% x=(60, 40, 0) vote1=93%

(100,0,0)

(0,0,100)

(0,100,0)

Prediction: (71, 29, 0)

(a) r = (40, 0, 20), Responder 1’s vote

14% x=(80, 20, 0) vote2=0%

14% x=(70, 30, 0) vote2=0%

12% x=(60, 40, 0) vote2=0%

(100,0,0)

(0,0,100)

(0,100,0)

Prediction: (71, 29, 0)

(b) r = (40, 0, 20), Responder 2’s vote

16% x=(70, 30, 0) vote1=96%

13% x=(65, 35, 0) vote1=94%

6% x=(75, 25, 0) vote1=89%

6% x=(50, 50, 0) vote1=100%

(100,0,0)

(0,0,100)

(0,100,0)

Prediction: (71, 29, 0)

(c) r = (20, 0, 40), Responder 1’s vote

16% x=(70, 30, 0) vote2=0%

13% x=(65, 35, 0) vote2=0%

6% x=(75, 25, 0) vote2=0%

6% x=(50, 50, 0) vote2=11%

(100,0,0)

(0,0,100)

(0,100,0)

Prediction: (71, 29, 0)

(d) r = (20, 0, 40), Responder 2’s vote

17% x=(60, 40, 0) vote1=91%

12% x=(70, 30, 0) vote1=44%

8% x=(50, 50, 0) vote1=100%

(100,0,0)

(0,0,100)

(0,100,0)

Prediction: (71, 29, 0)

(e) r = (0, 20, 40), Responder 1’s vote

17% x=(60, 40, 0) vote2=0%

12% x=(70, 30, 0) vote2=0%

8% x=(50, 50, 0) vote2=0%

(100,0,0)

(0,0,100)

(0,100,0)

Prediction: (71, 29, 0)

(f) r = (0, 20, 40), Responder 2’s vote
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6 Conclusion

We study a legislative bargaining game in which failure to agree in a given round
may result in a breakdown of negotiations. In that case, each player receives an
exogenous ‘disagreement value’. We characterize the set of stationary subgame per-
fect equilibria under all q-majority rules. Under unanimity rule, equilibrium pay-
offs are strictly increasing in disagreement values. Under all less-than-unanimity
rules, expected payoffs are either decreasing or first increasing and then decreasing
in disagreement values.

We conducted an experiment designed to investigate games involving 3 play-
ers, comparing majority and unanimity rule treatments. Our results lend quali-
tative support for several of our main predictions. Specifically, we find that the
player with the largest disagreement value indeed achieves the largest payoff under
unanimity rule. Under majority rule, however, that player is included in others’
coalitions significantly less often. Nonetheless, we do not find that this results in
consistently lower average payoffs. A statistically significant disadvantage in terms
of expected payoffs is found only if the highest disagreement value is very large
compared to others. In addition, we find a large and significant difference in delay
under the two decision rules, with many more first round proposals failing under
unanimity rule.

Substantively, our results support the notion that ‘being tough’ (having a large
disagreement value) may be advantageous under unanimity rule, but bad under
majority rule. This, in turn, suggests that more inclusive decision rules may create
incentives for players to ‘act’ tough, possibly leading to greater delay. In ongoing
theoretical work, we are studying a version of the game in which disagreement val-
ues are privately known. Our main conjecture is that, in such a game, players may
attempt to ‘signal’ a higher disagreement value by acting ‘tough’ under unanimity
rule, but not under majority rule.
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A Appendix

A.1 Characterization of equilibrium

For reasons that will become clear, it is possible and convenient to formulate a
set of necessary and sufficient conditions for an SSPE in terms of the continuation
values associated with the equilibrium strategies.

Lemma 1. Let σ = (σ1, ..., σn) be a combination of stationary strategies and
(z1, ..., zn) its associated vector of continuation values. The strategy combination
σ is an SSPE if and only if the following conditions are satisfied:

1. As a responder, player i votes ‘yes’ on any proposal with xi > zi and ‘no’
on any proposal with xi < zi.

2. If minS:S3i,|S|=q
∑

j∈S zj < 1, the only proposals that player i makes with a
positive probability as a proposer are such that xj = zj for all j ∈ T\{i}, xi =
1−

∑
j∈T\{i} zj and xj = 0 for all j ∈ N\T , where T ∈ arg minS:S3i,|S|=q

∑
j∈S zj.

These proposals are always accepted.
3. If minS:S3i,|S|=q

∑
j∈S zj > 1, player i always makes a proposal that would be

rejected.

Proof. 1. This follows from subgame perfection and our assumption that players
always vote as if they are pivotal.

2. Suppose minS:S3i,|S|=q
∑

j∈S zj < 1 and let T ∈ arg minS3i,|S|=q
∑

j∈S zj.
Player i can propose xj = zj + ε for j ∈ T\{i}, xj = 0 for j ∈ N\T and xi = 1−∑

j∈T\{i} zj−(q−1)ε for a sufficiently small ε > 0. This proposal would be accepted
and gives player i a payoff above zi, which would be the payoff from making
a proposal that would be rejected. Hence, player i will never make a proposal
that would be rejected since there is a more favorable proposal that would be
accepted. Take any of the proposals that player i makes with positive probability
in equilibrium, and let Q be the set that votes in favor of this proposal. It must
be the case that xj = zj for all j ∈ Q\{i}, since xj < zj would lead to a rejection
and xj > zj could not be optimal since player i could always do better by reducing
xj while keeping the inequality xj > zj. Also, Q ∈ arg minS:S3i,|S|=q

∑
j∈S zj, since

otherwise player i could do better by proposing coalition T and offering zj + ε to
each player in T\{i} for a sufficiently small ε.

3. If minS:S3i,|S|=q
∑

j∈S zj > 1, it is not possible to find a proposal that would
give player i and q − 1 other players at least their continuation value, hence it is
optimal for player i to make a proposal that will be rejected.

Note that the concept of SSPE imposes no restrictions on behavior in the
knife-edge case minS:S3i,|S|=q

∑
j∈S zj = 1. Player i may or may not offer their

continuation value to players in some T ∈ arg minS:S3i,|S|=q
∑

j∈S zj and, even if
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player i does, the remaining players in T may or may not accept the proposal.
However, such a situation can only arise if disagreement values are very high. As
we will see in section A.3 (lemma 3 and corollary 1),

∑q−1
j=1 rj + rn < 1 implies that

minS:S3i,|S|=q
∑

j∈S zj < 1 for all i.
Note also that the lemma does not constrain players to vote yes to all proposals

with xi = zi. In principle they could vote no, but only in the aforementioned case
arg minS:S3i,|S|=q

∑
j∈S zj = 1 or off the equilibrium path, i.e, as a response to a

proposal that is never actually made.
In our discussion henceforth we will assume that both proposers and responders

break ties in favor of agreement.36

A.2 Ranking of continuation values

The characterization of equilibrium above depends on the continuation values zi;
these values are endogenous. It will be useful to have results in terms of the
exogenous disagreement values ri. The following lemma shows that the zi values
are ranked in the same order as the ri values, though as we will see some strict
inequalities may become weak inequalities.

Lemma 2. Let ri ≥ rj. Then zi ≥ zj in any SSPE.

Proof. Suppose ri ≥ rj but zj > zi.
If minS:S3j,|S|=q

∑
k∈S zk > 1, player j never makes acceptable proposals. In

this case nobody would make acceptable proposals involving player j and it is
clear that zj ≤ zi, since i gets at least the same as j in the event of disagreement
and may get something in the event of agreement (while j is sure to get nothing).

Now consider the case minS:S3j,|S|=q
∑

k∈S zk ≤ 1, so that player j finds it prof-
itable to make acceptable proposals (and so does player i). Delay is not completely
ruled out in this case, since there may be players other than i and j who cannot
find a profitable coalition. Denote by α the probability that one of those players
is selected to make a proposal; α ≥ 0.37

Denoting player k’s payoff conditional on being proposer as πk, continuation

36Eraslan and McLennan (2013, appendix A) formally show that there is little loss of gener-
ality in requiring responders to accept proposals when indifferent. Banks and Duggan (2006)
incorporate this tie-breaking rule into their definition of equilibrium.

37This paragraph assumes that ties are always broken in favor of agreement. If we do
not impose this, player j could make proposals that are rejected with positive probability if
minS:S3j,|S|=q

∑
k∈S zk = 1. This does not affect the discussion on πi and πj . We would then

have two separate values, αi and αj , where αk would be the probability that a proposal is made
by a player other than k and rejected. We would then have αi ≥ αj , which goes in the same
direction as µi ≥ µj , and the proof can be easily adapted.
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values are given by

zi =
δ

n
πi + δ

[
µi −

1

n
+ α

]
zi + (1− δ)ri (1)

zj =
δ

n
πj + δ

[
µj −

1

n
+ α

]
zj + (1− δ)rj (2)

The inequality zj > zi implies πi ≤ πj, but the difference πj−πi cannot exceed
zj − zi. We also know that µi ≥ µj. This is because players other than i and j
would never include j in the coalition and exclude i. As for i and j themselves,
suppose player j does not propose to player i with certainty. Then there must
be a coalition T such that j ∈ T , i /∈ T that is optimal for player j, that is,∑

k∈T zk ≤
∑

k∈S zk for all S ⊇ {i, j}. But then
∑

k∈T\{j}∪{i} zk <
∑

k∈S zk for

all S ⊇ {i, j}, that is, player i would never involve player j in the coalition as
T\{i} ∪ {j} would be strictly cheaper than any coalition involving j.

zi =
δ

n
πi + δ

[
µj + (µi − µj)−

1

n
+ α

]
zi + (1− δ)ri

zj ≤
δ

n
(πi + zj − zi) + δ

[
µj −

1

n
+ α

]
zj + (1− δ)rj

Subtracting and collecting terms

zj − zi ≤
δ

n
(zj − zi) + δ

[
µj −

1

n
+ α

]
(zj − zi)− (µi − µj)zi − (1− δ)(ri − rj)

(zj − zi) (1− δµj − δα) ≤ −(µi − µj)zi − (1− δ)(ri − rj)

Since the LHS is strictly positive and the RHS is nonpositive, we have a con-
tradiction.

A.3 Equilibria with immediate agreement

It will be useful to distinguish between equilibria in which all players make ac-
ceptable proposals and equilibria in which some players do not. We will refer to
the former as equilibria with no delay or immediate agreement, and to the lat-
ter as equilibria involving delay. We begin by presenting sufficient conditions for
immediate agreement.

Lemma 3. If there exists a coalition S with |S| = q and
∑

j∈S rj < 1, then all
players in S make acceptable proposals in any SSPE.

Proof. Note that for any S ⊆ N ,
∑

j∈S rj < 1 implies
∑

j∈S zj < 1: Since total
payoffs for S add up to less than 1 in the event of disagreement and can add up
to at most 1 in the event of agreement, the maximum possible value of

∑
j∈S zj is

δ + (1− δ)
∑

j∈S rj < 1. The result then follows from part 2 of lemma 1.
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Corollary 1. If
∑q−1

j=1 rj + rn < 1, any SSPE exhibits immediate agreement.

If agreement is efficient, corollary 1 implies that immediate agreement will
occur in any SSPE for any decision rule. When q < n, corollary 1 also implies that
immediate agreement may occur even if it is not efficient. In fact, the following
example shows that immediate agreement may occur even in the extreme case
where

∑
j∈S rj > 1 for all S such that |S| = q.

Let n = 3, q = 2, ri = 9
15

and δ = 0.5. There is an equilibrium in which pro-
posers offer 7

15
to a randomly selected partner, and responders accept all proposals

that give them at least 7
15

. (There is also an equilibrium in which agreement is
never reached).

To see that this is an equilibrium, note that the continuation values that follow
from the strategies are determined as follows. When proposing, a player receives
1 − 7

15
= 8

15
. If not proposing, they are included in the coalition with probability

1
2
; in this case they earn 7

15
. Thus, a player’s expected payoff is 1

3
8
15

+ 2
3
1
2

7
15

= 5
15

.
Therefore, the continuation value is δ 5

15
+ (1− δ) 9

15
; since δ = 0.5 this is 7

15
.

As the above example shows, there is a very strong pressure for immediate
agreement under less-than-unanimity rule. We now characterize the properties
of equilibria which exhibit immediate agreement. It will be useful to define the
following sets:

L = {i ∈ N : zi < zq}
M = {i ∈ N : zi = zq}
H = {i ∈ N : zi > zq}

That is, the set L is the set of players whose votes are ”cheaper” than that
of player q, and the set M contains all players who are as expensive as player q,
while the set H contains those that are strictly more expensive. Therefore, when
any player proposes, an optimal strategy involves buying all players in L and as
many players in M as are necessary to build a coalition of size q. Clearly the set
M is always nonempty, though one or both of the sets L and H may be empty.

By lemma 2, any SSPE must have z1 ≤ z2 ≤ ... ≤ zn. Hence, in order to know
the partition into the three sets it is sufficient to know their cardinalities. We will
denote those cardinalities by L, M and H respectively.

We begin by showing that a no-delay equilibrium is characterized by L, M and
H in the sense that the continuation values zi, expected payoffs yi and inclusion
probabilities µi are uniquely determined by L, M and H, though there may be
several strategy combinations that lead to the same values of zi, yi and µi.

38,39

38We are not (yet) claiming that the no-delay equilibrium is unique, just that other no-delay
equilibria would lead to different values of L, M and H.

39It is a known feature of legislative bargaining models that a given vector of equilibrium
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Proposition 3. Given an SSPE with immediate agreement, the partition of the
player set into the sets L, M and H uniquely determines the equilibrium values of
y, z and µ.

Proof. In a no-delay equilibrium, the proposer offers zi to q− 1 other players (the
ones with the q − 1 lowest values of zi) and 0 to the remaining players.40

Define Zq :=
∑

i≤q zi and ZL :=
∑

i∈L zi. By definition, Zq = ZL + (q − L)zq.
Continuation values are given by the following equations:

L : zi = δ

[
1

n
(1− Zq + zi) +

(
µi −

1

n

)
zi

]
+ (1− δ)ri.

M : zi = δ

[
1

n
(1− Zq + zi) +

(
µi −

1

n

)
zi

]
+ (1− δ)ri.

H : zi = δ

[
1

n
(1− Zq + zq) +

(
µi −

1

n

)
zi

]
+ (1− δ)ri.

As a proposer, a player buys the votes from the cheapest q − 1 other players.
Recall that the total continuation value of the cheapest q players is Zq. Players
in L are themselves among the cheapest q, so they pay Zq − zi. Players in H
are not among the cheapest q, so they can buy the cheapest q − 1 votes and pay
Zq−zq. Players inM can be thought of as paying Zq−zi or Zq−zq, since zi = zq.
Expected equilibrium payoffs are thus yi = 1

n
(1 − Zq + min(zi, zq)) +

(
µi − 1

n

)
zi.

Continuation values are given by zi = δyi + (1− δ)ri.
Consider players in M. Collecting terms and taking into account that by

definition zi = zq in this set we find

M : zq = δ

[
1

n
(1− Zq) + µizq

]
+ (1− δ)ri

This has a very clear interpretation: if bargaining goes on after a rejection,
player i gets his continuation value whenever he is part of a coalition, and on top
of that he gets the proposer surplus with probability 1

n
(the proposer surplus is the

difference between i’s payoff as a proposer and i’s payoff as a coalition partner; its
value for players in L or M is 1− Zq).

expected payoffs may be supported by several strategy combinations (see e.g. Eraslan and
McLennan, 2013).

40Note that it cannot be optimal for the proposer to offer their continuation value to more
than q − 1 players because he would be better off by excluding the coalition partner with the
highest zi. The only possible exception would be if zi = 0 for more than q − 1 players, but this
is not possible since each of those players could form a coalition with the rest and get a positive
payoff as a proposer, which would contradict zi = 0.
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Collecting terms again

M : (1− δµi) zq =
δ

n
(1− Zq) + (1− δ)ri (3)

We also know that
∑

i∈N µi = q, that is, the coalition that forms always con-
tains exactly q players. Moreover, µi = 1 for all i in L and µi = 1

n
for all i in

H. That is, players in L are always included in the coalition, and players in H
are only included when they are proposers. Hence,

∑
i∈M µi = q − L − H

n
. Note

that
∑

i∈M µi >
M
n

, which, since each player in M is the proposer with probabil-
ity 1

n
, implies that, collectively, players in M have a positive probability of being

coalition partners.41

If we add up all the equations (3),

Mzq − δ
(
q − L− H

n

)
zq = M

δ

n
(1− Zq) + (1− δ)

∑
i∈M

ri

Dividing everything by M ,

zq − δ
(
q − L− H

n

)
M

zq =
δ

n
(1− Zq) + (1− δ)rM

where rM is the average value of r in the set M,
∑

i∈M ri
M

.
We also know Zq = ZL + (q − L)zq, so we can get an equation with two

unknowns, ZL and zq.

zq − δ
(
q − L− H

n

)
M

zq =
δ

n
(1− ZL − (q − L)zq) + (1− δ)rM

Collecting terms[
1− δ(q − L)

(
1

M
− 1

n

)
+ δ

H

Mn

]
zq =

δ

n
(1− ZL) + (1− δ)rM (4)

This gives us an equation where, given H, M and L, the only unknowns are zq
and ZL.

If all players are in M, the equation simplifies to zq = δ
n

+ (1 − δ)rN , which
is clear since, assuming immediate agreement,

∑
i∈N zi = δ + (1 − δ)

∑
i∈N ri. If

all players are in M they all have the same continuation value, which must then
equal the previous expression divided by n.

41If L = 0 we have
∑
i∈M µi = q − H

n , which, since q > 1 and H < n implies
∑
i∈M µi > 1. If

L > 0, by definition we have q − L ≥ 1 and n−H > M , hence
∑
i∈M µi ≥ 1− H

n = n−H
n > M

n .
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For players in L, since µi = 1, we find

L : zi = δ

[
1

n
(1− Zq + zi) +

n− 1

n
zi

]
+ (1− δ)ri

zi = δ

[
1

n
(1− Zq) + zi

]
+ (1− δ)ri (5)

zi − ri =
δ

1− δ
1

n
(1− Zq) (6)

We then see that zi − ri is a constant, that is, all players in L get the same
surplus above ri.

Replacing Zq by its value we find

zi − ri =
δ

1− δ
1

n
(1− ZL − (q − L)zq) (7)

If we instead add up the equations (5) for players in L, we find

ZL = δ

[
L

n
(1− Zq) + ZL

]
+ (1− δ)LrL

Replacing Zq by its value in terms of zq and ZL and collecting terms:(
1− δ + δ

L

n

)
ZL = δ

L

n
(1− (q − L)zq) + (1− δ)LrL (8)

The set H is residual. For players in this set,

H : zi =
δ

n
(1− Zq + zq) + (1− δ)ri (9)

Clearly, zi is increasing in ri for players in the set H.
The values ZL and zq can be found from the system of two linear equations

and two unknowns (4) and (8). Once these two values have been found, zi values
for players in L can be found from (7) and zi values for players in H can be found
from (9). The probabilities of inclusion in the coalition for players in H and L are
known; the probabilities of inclusion µi for players in M can be found from (3).
Expected payoffs (y)i∈N are found from the equation zi = δyi + (1− δ)ri.

Proposition 4. For q < n, expected equilibrium payoffs in any no-delay SSPE
are strictly increasing in ri within the set L, strictly decreasing in ri within the set
M, and constant within the set H. Furthermore, expected payoffs for all players
in M are at least as high as those for players in H.
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Proof. Since players in L have µi = 1, expected payoffs for a player in L are given
by yi = 1

n
(1 − Zq + zi) + n−1

n
zi. Using (6), yi = 1

n
1

1−δ (1 − Zq) + ri. Hence, yi is
increasing in ri within this set.

Players in M all get 1 − Zq + zq as proposers and zq as responders, thus
any difference in expected payoffs must be due to differences in µi. Since µi is
decreasing in ri by (3), yi is decreasing in ri as well.

Finally, since no player in H receives proposals from other players, all players
in H have yi = 1

n
(1− Zq + zq), which does not depend on ri.

Since players in M and H get the same payoff as proposers and players in H
never get any proposals from other players, it is clear that expected payoffs for a
player inM cannot be lower than those of a player inH. Indeed, they will typically
be strictly higher, except for non-generic cases in which player L+M (the most
expensive player inM) does not get any proposals. We know that collectively the
players in M have a positive probability of being coalition partners, hence player
L+ 1 must have a strictly higher payoff than players in H.

The sets L, M and H are endogenous. Putting proposition 4 and lemma 2
together allows us to state a result in terms of the exogenous values ri. Under
all less-than-unanimity rules, expected equilibrium payoffs are either decreasing or
first increasing and then decreasing in ri. The player with the highest expected
equilibrium payoff is either player L or player L+ 1.

Corollary 2. The highest expected equilibrium payoff is achieved by (one or more)
player(s) for whom ri ≤ rq.

We can also establish how the surplus yi− ri varies with ri. While this surplus
is shared equally under unanimity, players with the lowest disagreement values
capture the greatest surplus under majority. We have seen in the proof of proposi-
tion 4 that, for players in L, yi = 1

n
1

1−δ (1−Zq)+ri, hence all players in L have the
same yi− ri. We also know from proposition 4 that yi is decreasing withinM and
constant within H, and that yL+M ≥ yL+M+1; it follows that yi − ri is decreasing
in ri within the set M∪H.

Furthermore, while the highest expected equilibrium payoff yi may be achieved
by either player L or player L+ 1, the highest expected surplus is always achieved
by the players in L. In order to see this, note that, for a player in M, zi =
δ
[
1
n
(1− Zq + zi) + (µi − 1

n
)zi
]

+ (1 − δ)ri. This expression can be rewritten as
zi − ri = δ

1−δ
1
n
(1 − Zq) − δ

1−δ (1 − µi)zi. Comparing this expression with (6) we
see that, since µi ≤ 1 and zi = zq > 0 for i in M, players in M have a lower
zi − ri (strictly lower, except for nongeneric cases where µi = 1 for the players
with the lowest ri in M) and hence achieve a lower surplus as coalition partners.
As proposers, players in both sets get 1−Zq + zi, hence the payoff a proposer gets
over and above the disagreement value, 1 − Zq + zi − ri, is higher for players in
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L since zi − ri is greater. Given that players in L achieve a greater surplus both
as proposers and as coalition partners (and are more likely to achieve this surplus
since they have µi = 1), they have a greater surplus overall.

Corollary 3. The highest expected surplus yi− ri is achieved by the players in L.
For players in M∪H, yi − ri is decreasing in ri.

There may be multiple no-delay SSPE. However, all no-delay SSPE are equiv-
alent in the sense that they lead to the same expected equilibrium payoffs, con-
tinuation values and probabilities of being included in the final coalition, though
they may differ in the exact mixed strategies used, as in the original model (see
Eraslan and McLennan (2013)).

Proposition 5. Let σ and σ′ be two no-delay SSPE. Then y = y′, z = z′ and
µ = µ′.

Proof. By contradiction, suppose σ and σ′ are two SSPE that induce different
partitions of the set N . We will denote by L, M and H the sets associated
to σ (the sets associated to σ′ will be denoted by L′, M′ and H′). Recall that
continuation values must respect the order of the disagreement values, hence if L
and L′ have the same cardinality the actual sets must also coincide. Similarly, if
L 6= L′, one of the two sets must be a strict subset of the other.

Case 1. Suppose L = L′. Then M 6=M′ (otherwise the partitions would be identi-
cal).

1. a) Suppose Zq = Z ′q. Recall that the equation for the continuation value
of a player in set L is

zi = ri +
δ

1− δ
1

n
(1− Zq). (10)

The same equation holds in equilibrium σ′, with zi being replaced by z′i
and Zq being replaced by Z ′q.

Since by assumption Zq = Z ′q, it follows that zi = z′i for all players in
L ∩ L′. Since, also by assumption, L = L′, we have ZL = Z ′L′ , and
(given that Zq = ZL + (q − L)zq and Z ′q = Z ′L′ + (q − L′)z′q) zq = z′q.

Since the partitions are different, M 6= M′. Given our result on how
the zi values are ranked in the same way as the ri values, and given
that L = L′ by assumption, one of the two sets must be a subset of the
other. Without loss of generality, letM  M′. Let j ∈M′\M (hence
j ∈ H). Since player j is one of the expensive players in equilibrium
σ and one of the medium players in equilibrium σ′, and, as we have
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shown, zq = z′q, it must be the case that zj > z′j. We now show that
this is not possible.

The following equation holds for a player in M ∪ H (and hence for
player j, since j ∈ H):

zj =
δ

n
[1− Zq + zq] + δ

(
µj −

1

n

)
zj + (1− δ)rj. (11)

Collecting terms in j, we find(
1 +

δ

n
− δµj

)
zj =

δ

n
[1− Zq + zq] + (1− δ)rj (12)

An analogous equation holds for a player in M′ ∪ H′ (and hence for
player j, since j ∈M′):(

1 +
δ

n
− δµ′j

)
z′j =

δ

n
[1− Z ′q + z′q] + (1− δ)rj. (13)

By assumption, Z ′q = Zq and, as we have shown, this implies z′q = zq.
Hence, player j gets the same payoff as proposer in both equilibria. The
only way in which zj > z′j is if µj > µ′j. However, since j ∈ H, j is never
a responder in equilibrium σ but may be a responder in equilibrium σ′,
implying zj ≤ z′j, a contradiction.

1. b) Suppose Zq 6= Z ′q. Without loss of generality, let Zq < Z ′q.

Coming back to equation (10), this implies zi > z′i for all i ∈ L ∩ L′.
Given that L and L′ coincide, it follows that ZL > Z ′L′ , which together
with Zq < Z ′q implies zq < z′q.

Consider the set M∩M′ (clearly, this set is nonempty since q ∈M∩
M′). For any i ∈M, zi = zq, so (replacing zi = zq in (12) and collecting
terms) we can write i’s equilibrium continuation value as

(1− δµi)zq =
δ

n
(1− Zq) + (1− δ)ri. (14)

Analogously, for any i ∈M′,

(1− δµ′i)z′q =
δ

n
(1− Z ′q) + (1− δ)ri. (15)

Given that Z ′q > Zq but zq < z′q, it must be the case that µ′i > µi.

Now consider the total probability of being involved in a coalition in
equilibrium. The total probability is

∑
i∈N µi =

∑
i∈N µ

′
i = q. Fur-

ther, each player must be included if he is selected to be the proposer,
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hence µi ≥ 1
n

for all i. There is then a total probability of being coali-
tion partner of q − 1, which may be distributed differently in the two
equilibria. Given that players in H (respectively H′) never get pro-
posals, we have a total probability of q − 1 to be distributed between
players in L ∪M in equilibrium σ, and between players in L′ ∪M′ in
equilibrium σ′. Further, note that all players in L have µi = 1, and
all players in L′ have µ′i = 1. Since by assumption L = L′, we have∑

i∈M(µi− 1
n
) =

∑
i∈M′(µ′i− 1

n
), and the only way in which µ′i > µi for

all players in M∩M′ is if M′  M (otherwise we would ”run out of
probability”).

Let j be a player in M\M′. If we consider equilibrium σ, using (11)
we have (since the worst-case scenario is µj = 1

n
):

zj = zq ≥
δ

n
(1− Zq + zq) + (1− δ)ri

(1− δ

n
)zq ≥

δ

n
(1− Zq) + (1− δ)ri

If we consider equilibrium σ′, where j ∈ H′, we have

z′q < z′j =
δ

n
(1− Z ′q + z′q) + (1− δ)ri

(1− δ

n
)z′q <

δ

n
(1− Z ′q) + (1− δ)ri

Putting the two expressions together, since Z ′q > Zq, we find

(1− δ

n
)z′q <

δ

n
(1− Z ′q) + (1− δ)ri <

δ

n
(1− Zq) + (1− δ)ri ≤ (1− δ

n
)zq

which implies z′q < zq, a contradiction.

Case 2. Suppose L 6= L′. Without loss of generality, let L  L′. There are two
possible cases, depending on how Zq compares with Z ′q.

2. a) Suppose Zq ≤ Z ′q. We can write Zq ≤ Z ′q as∑
i∈L

zi + (q − L)zq ≤
∑
i∈L

z′i +
∑
i∈L′\L

z′i + (q − L′)z′q

By equation (10), Zq ≤ Z ′q implies zi ≥ z′i for all i ∈ L ∩ L′, hence

(q − L)zq ≤
∑
i∈L′\L

z′i + (q − L′)z′q
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By definition, z′i < z′q for all i ∈ L′. Hence, the equation above indicates
that zq is at most as large as a weighted average of several values, the
largest of which is z′q. Thus, zq < z′q.

If we now look at players j ∈ M ∩M′ (a set that includes player q),
comparing equations (14) and (15) we see that, given that Zq ≤ Z ′q, the
only way in which zq < z′q is if µi < µ′i for all these players.

Recall that the probability of being a coalition partner is µi− 1
n

(µ′i− 1
n

in
equilibrium σ′). It holds that

∑
i∈L∪M

(
µi − 1

n

)
=
∑

i∈L′∪M′

(
µ′i − 1

n

)
=

q − 1. Consider the allocation of this probability, starting by player 1
onwards. Players in L∩L′ (i.e., players in L) have µi = µ′i = 1. Players
in M∩L′ have µi ≤ µ′i = 1. Players in M∩M′ have µi < µ′i. It then
follows that L′ ∪M′ ( L∪M, that is, the total probability q− 1 must
be exhausted earlier in the equilibrium σ′. Hence, the setM\(L′∩M′)
is nonempty. Let j be a player in this set. Player j is in set M in the
equilibrium σ, but is in set H′ in equilibrium σ′. Since zq < z′q, this
implies zj = zq < z′q < z′j. We can then find a contradiction by the
same reasoning as in case 1b).

2. b) Let Zq > Z ′q. Then zi < z′i for all i ∈ L. We then have

Zq =
∑
i∈L

zi + (q − L)zq >
∑
i∈L

z′i +
∑
i∈L′\L

z′i + (q − L′)z′q = Z ′q.

Hence, (q−L)zq >
∑

i∈L′\L z
′
i+(q−L′)z′q. This does not give us a clear

relationship between zq and z′q, though it tells us that zq > z′i for some
i ∈ L′\L. In other words, there is a player in M∩ L′ with zi > z′i.
Consider the equations for zi and z′i, i ∈M∩L′. Since i ∈M, we have

(1− δµi)zi =
δ

n
(1− Zq) + (1− δ)ri.

On the other hand, since i ∈ L′, we have

(1− δ)z′i =
δ

n
(1− Z ′q) + (1− δ)ri.

Since µi ≤ 1 and Zq > Z ′q, it follows that z′i > zi, a contradiction.

Hence, SSPE payoffs are unique if the sufficient conditions for immediate agree-
ment are satisfied; if not, there may be multiple equilibria.
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A.4 Limit results as δ → 1

Proposition 6. If q < n, there is a value δ < 1 such that the unique no-delay
SSPE of the game G(n, q, δ, r) has N =M for δ < δ < 1.

Proof. L and H must both be empty when δ is sufficiently close to 1. This can be
proved by contradiction.

Suppose L 6= ∅ in equilibrium for δ → 1. If we look at equation (6) for zi in
L, we see that 1−Zq

1−δ becomes unbounded when q < n as δ → 1, a contradiction.
This is because in a no-delay equilibrium we have

∑
i∈N zi = δ + (1− δ)

∑
i∈N ri,

therefore the largest continuation value must be at least δ
n

+(1−δ)rN . Since q < n,
Zq ≤

∑
i∈N zi−zn ≤ δ n−1

n
+(n−1)(1−δ)rN , and 1−Zq ≥ 1−δ n−1

n
−(n−1)(1−δ)rN .

When δ → 1, the lower bound for 1−Zq approaches 1
n
> 0. More generally, µi < 1

for all i for δ sufficiently large (also for players inM), as otherwise we could rewrite
(3) and find that zq becomes unbounded in the same way.

Similarly, suppose H 6= ∅ and take player n ∈ H. Let m be the player with
the smallest ri in M (in general the identity of player m may depend on δ). We
now show that zm − zn = δ

(
µm − 1

n

)
zq − (1− δ)(rn − rm) > 0 for δ close enough

to 1, a contradiction. To see this, note that expression (1 − δ)(rn − rm) clearly
converges to 0, since rn − rm ≤ rn − r1 and δ → 1. It remains to be shown that(
µm − 1

n

)
zq remains strictly positive as δ → 1. First we show that µm > 1

n
for

all values of δ. Given that L = ∅ for a sufficiently large value of δ and q ≥ 2,∑
i∈M µi = q − H

n
= q − 1 + M

n
≥ 1 + M

n
. Since m is the player with the smallest

value of ri, he is also the player with the highest µi in M according to equation
(3), hence µm ≥ 1

M
+ 1

n
≥ 2

n
. It remains to be shown that zq > 0 for δ → 1. This

is clear since, using (3), zq ≥ δ
n

(1− Zq) + (1− δ)rm, and we have established that
1− Zq remains positive as δ → 1. Hence the set H is empty for δ close enough to
1.

Corollary 4. In the limit when δ → 1, yi = 1
n

for all i ∈ N .42

Hence, there is a sharp contrast between the results for q = n and for q < n
when δ → 1. Under unanimity rule, the r-values remain relevant even if δ → 1.
Under any majoritarian rule, continuation values are less sensitive to the r-values,
which is consistent with players being unable to unilaterally secure these values,
and these values become irrelevant in the limit as δ → 1.

A.5 Equilibria with delay

Consider a SSPE that involves delay, i.e. at least one player, when proposing,
makes a proposal that is not accepted. Call him player i. Then it follows from

42When all players are in M we have zq = δ
n + (1 − δ)rN . Putting this together with the

equation zq = δyi + (1− δ)ri, we see that both zi and yi converge to 1
n as δ → 1.
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Lemma 1 and our tie-breaking rule that the cheapest q-coalition including Mr. i
has

∑
S zj > 1. This in turn implies that no other player will build a coalition

that includes Mr. i. Thus, the only way that Mr. i influences the game is that
he will ‘stall’ when it is his turn to propose, thereby increasing the chance that
breakdown will occur before an ‘active’ player is chosen.

Suppose there are k such ‘stallers’ in equilibrium. The remaining players make
proposals that are accepted, and so they are essentially playing an equilibrium with
immediate agreement, however in a ‘transformed’ game in which the probability
of breakdown is increased. What is the new probability of breakdown?

After a proposal fails, breakdown will occur immediately with probability (1−
δ). If not, then with probability k

n
, a staller will propose next, in which case failure

will again occur with probability (1− δ), etc. So the probability that breakdown
will occur is

(1− δ̃) = (1− δ) +
δk

n

[
(1− δ) +

δk

n

(
· · ·
)]

= 1− δ(n− k)

n− δk
and so the modified continuation probability is

δ̃ =
δ(n− k)

n− δk
which is equal to δ when k = 0 and equal to zero when k = n.
The expected payoffs and continuation values of the remaining n−k players are

determined as in equilibria with immediate agreement. For the ‘stallers’, expected
payoffs are simply

yj = ρrj

where ρ is the probability that breakdown will occur before an active player is
chosen to propose.

ρ =
k

n
(1− δ̃) =

(1− δ)k
n− δk

Two cases are possible: (1) If k ≤ n−q, agreement will occur if one of the non-
stallers is chosen to propose. The payoffs and continuation values of these players
satisfy exactly the conditions we have previously derived. And the continuation
values of the stallers must be strictly greater than the others. (2) k = n, i.e. no
agreement occurs.

A.6 Proof of propositions 1 and 2

Propositions 1 and 2 easily follow from the results of previous sections.
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Proof of proposition 1. If
∑

i∈N ri < 1, all SSPE must have immediate
agreement by corollary 1. If

∑
i∈N ri > 1, each player can ensure disagreement by

rejecting all proposals and proposing xi = 1, hence
∑

i∈N zi > 1 and no agreement
can occur. If

∑
i∈N ri = 1, it is an equilibrium for all players to propose x = r

and accept any proposal with xi ≥ ri, and this is the equilibrium selected by our
tie-breaking rule.

In a no-delay equilibrium under unanimity rule, each player offers the other
n− 1 players their continuation value and µi = 1 for all players, hence

yi =
1

n

1−
∑

j∈N\{i}

zj

+
n− 1

n
zi =

1

n

[
1−

∑
j∈N

zj

]
+ zi (16)

Continuation values are related to expected payoffs by the equation

zj = δyj + (1− δ)rj (17)

If we add up equations (17) and take into account that
∑

j∈N yj = 1 in a
no-delay equilibrium, ∑

j∈N

zj = δ + (1− δ)
∑
j∈N

rj (18)

If we take equation (16) and replace zi by its value from (17) and
∑

j∈N zj by its
value from (18), we obtain an equation with yi as the only unknown. Solving this
equation, we get yi = 1

n
[1−

∑
j∈N rj]+ri, and, using (17), zi = δ

n
[1−

∑
j∈N rj]+ri.

Proof of Proposition 2. Parts (i)-(iii) follow directly from corollary 1, propo-
sition 5 and lemma 2 respectively.

(iv) In a no-delay equilibrium, players in L are included in the final coalition
with probability 1 (the maximum possible), and players in H are included in the
final coalition with probability 1

n
(the minimum possible, since proposers always

include themselves). Within the set M, the probability of inclusion is decreasing
in ri as can be seen from equation (3). The result also holds in an equilibrium
with delay, since any ”stallers” will have the highest disagreement values and will
be excluded for sure.

(v) This is a consequence of proposition 4. Since expected equilibrium payoffs
are increasing within L, decreasing within M and constant (but not higher than
those in M) within L, there are four possible cases:

If N =M, expected payoffs are decreasing in the r-values.
If onlyM and H are nonempty, expected payoffs are first decreasing and then

constant in the r-values.
If only L and M are nonempty, expected payoffs are first increasing and then

decreasing in the r-values.
If all three sets are nonempty, expected payoffs are first increasing, then de-

creasing and then constant in the r-values.
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A.7 The three-player case

The three-player case can be solved by enumeration. With three players there are
only four possible types of no-delay equilibria: L = 1 and M = 2; L = 1,M = 1
and H = 1; M = 3; M = 2 and H = 1. For each of these four possible types we
can find conditions on the parameters r and δ in order for this type of equilibrium
to exist. The no-delay equilibrium is unique as we know from proposition 5, hence
each parameter combination is compatible with only one type of equilibrium.

Proposition 7. Let r1 + r3 < 1. There is a unique no-delay SSPE for each
combination of r and δ. The no-delay SSPE is of one of four possible types:

a) L=1,M=1,H=1 occurs if r1 < r2 < r3 and δ <δ.
b) L=1, M=2 occurs if r2 >

r1+r3
2

and δ ≤ δ < δ.

c) M=2, H=1 occurs if r2 <
r1+r3

2
and δ ≤ δ < δ.

d) M=3 occurs if δ ≥ δ.

The idea of the proof is as follows. We first conjecture a particular value for L,
M and H (for example, L = 1 and M = 2). This conjecture leads to a system of
equations that can be solved for zi and µi (see section A.3). In order for the solution
to be an equilibrium, the found values of zi must be consistent with our initial
conjecture (in the example, the found value of z1 must be below the found value
of z2 = z3), and any mixed strategies that are played must involve probabilities
between 0 and 1 (in the example, player 1 is mixing between proposing to player
2 and proposing to player 3). These conditions leads to inequalities involving the
parameters r1, r2, r3 and δ.

Even though the proof is quite lengthy, the intuition behind the result is clear.
First, there are some conditions on the ri values. In particular, case L = 1,

M = 1, H = 1 is only possible if all values are different. L = 1, M = 2 is only
possible if r2 >

r1+r3
2

, so that r2 and r3 are close together relative to r1 and players
2 and 3 can be grouped together in the same class. M = 2, H = 1 is only possible
if r2 <

r1+r3
2

so that players 1 and 2 can be grouped together in the same class.
Second, there are some conditions on δ. L = 1, M = 1, H = 1 occurs when

r1 < r2 < r3 and δ = 0 since zi = ri in this case. The inequality z1 < z2 < z3 can
be sustained as long as δ is sufficiently low, so that the difference in ri overrules the
fact that players with a lower ri get more proposals. L = 1, M = 2 occurs when
z1 < z2 = z3, which can be sustained for r2 >

r1+r3
2

given an intermediate value
of δ. On the one hand, δ needs to be sufficiently high so that player 1’s strategy
can compensate the difference between r2 and r3 by proposing to player 2 more
often (if r2 = r3 there is no difference to compensate, so δ = 0), but sufficiently
low to keep z1 below z2 despite player 1 getting more proposals. Likewise, M = 2,
H = 1 occurs when z1 = z2 < z3, which can be sustained for r2 <

r1+r3
2

given
an intermediate value of δ. The continuation probability δ needs to be sufficiently
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high so that player 3’s strategy can compensate the difference between r1 and
r2, but sufficiently low to keep z1 and z2 below z3, despite player 3 getting no
proposals (if r1 = r2, δ = 0). Finally, M = 3 needs a sufficiently high value of δ
so that z1 = z2 = z3 despite the possible differences between r1, r2 and r3. The
thresholds δ and δ have a different expression in terms of the r-values depending on
whether r2 <

r1+r3
2

or r2 >
r1+r3

2
(both formulas are equivalent when r2 = r1+r3

2
).

The reason for this is that different inequalities are binding depending on the
parameters.
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