
44

Univalent Higher Categories via Complete Semi-Segal Types

PAOLO CAPRIOTTI, University of Nottingham, United Kingdom

NICOLAI KRAUS, University of Nottingham, United Kingdom

Category theory in homotopy type theory is intricate as categorical laws can only be stated “up to homotopy”,

and thus require coherences. The established notion of a univalent category (as introduced by Ahrens et al.)

solves this by considering only truncated types, roughly corresponding to an ordinary category. This fails to

capture many naturally occurring structures, stemming from the fact that the naturally occurring structures

in homotopy type theory are not ordinary, but rather higher categories.
Out of the large variety of approaches to higher category theory that mathematicians have proposed,

we believe that, for type theory, the simplicial strategy is best suited. Work by Lurie and Harpaz motivates

the following definition. Given the first (n + 3) levels of a semisimplicial type S , we can equip S with three

properties: first, contractibility of the types of certain horn fillers; second, a completeness property; and third,

a truncation condition. We call this a complete semi-Segal n-type. This is very similar to an earlier suggestion

by Schreiber.

The definition of a univalent (1-) category by Ahrens et al. can easily be extended or restricted to the

definition of a univalent n-category (more precisely, (n, 1)-category) for n ∈ {0, 1, 2}, and we show that the type

of complete semi-Segal n-types is equivalent to the type of univalent n-categories in these cases. Thus, we

believe that the notion of a complete semi-Segal n-type can be taken as the definition of a univalent n-category.
We provide a formalisation in the proof assistant Agda using a completely explicit representation of

semi-simplicial types for levels up to 4.

CCS Concepts: • Theory of computation→ Type theory;

Additional Key Words and Phrases: Homotopy type theory, higher categories, complete Segal spaces

ACM Reference Format:
Paolo Capriotti and Nicolai Kraus. 2018. Univalent Higher Categories via Complete Semi-Segal Types. Proc.
ACM Program. Lang. 2, POPL, Article 44 (January 2018), 29 pages. https://doi.org/10.1145/3158132

1 INTRODUCTION
The importance of category theory in all of mathematics and computer science can hardly be

overestimated: it is a powerful tool that captures important overarching ideas in an elegant, concise

framework, and allows one to work in high generality when establishing fundamental basic results.

However, in the recently proposed foundational system for mathematics known as homotopy type
theory (HoTT), see [Univalent Foundations Program 2013a], a variant of Martin-Löf’s intensional

type theory based on the observation that types can be viewed as spaces [Awodey and Warren

2008], the application of categorical notions and ideas has so far proved quite a challenge. The main

difficulties are related to the ubiquity of higher dimensional structures in the theory; since weak

higher groupoids are in some sense taken as primitive concepts, naturally occurring categorical

Authors’ addresses: Paolo Capriotti, School of Computer Science, University of Nottingham, Jubilee Campus, Wollaton

Road, Nottingham, NG8 1BB, United Kingdom, paolo.capriotti@nottingham.ac.uk; Nicolai Kraus, School of Computer

Science, University of Nottingham, Jubilee Campus, Wollaton Road, Nottingham, NG8 1BB, United Kingdom, nicolai.kraus@

nottingham.ac.uk.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2018 Copyright held by the owner/author(s).

2475-1421/2018/1-ART44

https://doi.org/10.1145/3158132

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 44. Publication date: January 2018.

https://doi.org/10.1145/3158132
https://doi.org/10.1145/3158132

44:2 Paolo Capriotti and Nicolai Kraus

structures also tend to be higher dimensional, making ordinary category theory of somewhat

limited applicability in this setting.

It has to be remarked that ordinary category theory in HoTT is not problematic by itself. In

fact, it can be reproduced there quite efficiently, and doing so actually produces some substantial

conceptual benefits compared to a traditional set-theoretic presentation; for example, it allows to

give a precise form to the idea of “invariance under equivalence” that is so prominent in category

theory. This has been achieved by Ahrens et al. [2015], where the authors adapt the familiar

definition of category to the setting of HoTT. Their univalent categories capture the same examples

and enjoy the same properties as ordinary categories, and the usual results can be reproduced. To

make this possible, morphisms of a univalent category are required to have “homotopically trivial”

higher structure, which in HoTT parlance means that they are sets. Consequently, equations about
morphisms are really properties, and not additional structure, exactly like in the traditional setting.

Unfortunately — and unsurprisingly, given the higher dimensional nature of HoTT — univalent

categories fail to capure many of the common examples that occur naturally when working within

the system, egregiously including the universe of types U : if we take morphisms to be simply

functions, then morphisms do not form sets, as function types can have as much higher dimensional

structure as their codomain type. Since we have to give up the idea that the algebraic laws of a

category should be mere properties, they have to be turned into further structure, which is itself

subject to laws, and so on, ad infinitum. Therefore we naturally find ourselves in need of a notion

of higher category.
The idea of higher categories is of course not new to HoTT. However, the existing definitions

and frameworks have proved quite hard to translate into HoTT, for essentially the same reasons

that higher categories are so unavoidable in the first place: the basic building blocks of the theory

are already equipped with higher dimensional categorical structure. In fact, all of the established

approaches for dealing with the combinatorics of higher categories exploit, in one way or another,

the fact that ultimately every mathematical object can be built out of sets, and those have no higher

structure themselves. This assumption is certainly not validated by HoTT, since types such as the

universe are not assumed to be in any way constructible using sets only. One version of higher

categories was suggested by Cranch [2013], however their concrete categories do not lead to a

precise definition but rather to a collection of naturally occurring examples such as, again, type

universes.

To appreciate the difficulties involved in expressing higher categorical notions in HoTT, it is

important to understand the vast amount of combinatorial complexity arising from their higher

dimensional structure, even forgetting about type theory for just a moment. Let us informally think

of an n-category as a structure equipped with objects, morphisms between objects, 2-morphisms

betweenmorphisms, 3-morphisms between 2-morphisms, up to some leveln, which could be infinity.
Just like an ordinary category, we want an operation that allows us to compose morphisms, but this

time we want the composition operation to only be associative up to an “invertible” 2-morphism.

This means that we turned associativity from a mere property of the composition operation into a

structure that returns a 2-morphism of a specific type given three composable morphisms as input.

A similar process applies to identities and their laws, and to all forms of compositions and identities

at every level. And this is not quite enough, since now all the laws that we turned into structure

need laws of their own, which are referred to as higher coherences. Of course, higher coherences
require further higher coherences, until we reach the highest possible level n, at which point we

revert back to laws. If n is actually infinity, this process never ends, leaving us with infinitely many

levels of coherence to manage.

One might think about suppressing coherences, but then the resulting structures are ill-behaved

in subtle ways, and certain constructions (the simplest example of which being that of a slice

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 44. Publication date: January 2018.

Univalent Higher Categories via Complete Semi-Segal Types 44:3

category) will simply fail to work. Trying to make this process precise exactly in the form described

above is easily seen to be unfeasible. The coherence properties one has to come up with to ensure

that the overall notion is well-behaved do not follow any immediately apparent pattern, and their

complexity grows fast enough to make a direct definition n-categories completely unworkable

for n as low as 4. The solution is to organise this enormous amount of data in clever ways as to

create simpler patterns that can then be more easily extended to arbitrary n or to infinity. Various

strategies have been explored and lead to general definitions of higher categories, often not yet

known to be equivalent. They include opetopic [Baez and Dolan 1998], type theoretic [Finster

and Mimram 2017], operadic [Batanin 1998; Leinster 2004], simplicial [Street 1987; Verity 2006],

multisimplicial [Tamsamani 1999], and cellular [Joyal 1997] approaches.

The higher categories we are particularly interested in are the so-called (n, 1)-categories, for
which an explicit survey has been given by Bergner [2010]. These are structures where all k-
morphisms are invertible for k > 1. The reason for this restriction is that we can reuse the native

higher structure of types given by equality (which is indeed invertible), and therefore only focus on

objects, the first level of morphisms, and their composition, identities and coherences. Nevertheless,

we still have a lot of data to manage, and for arbitrary or infinite n, it is still an open problem to

assemble it in such a way as to make it possible to express the entire tower of coherences completely

internally, at least without either restricting types to be sets, or extending the theory somehow —

cf. HTS [Voevodsky 2013], two-level type theory [Altenkirch et al. 2016; Annenkov et al. 2017],

and FOLDS [Tsementzis 2016].

Nevertheless, we can take inspiration from certain set-based models, in particular those based

on simplicial sets and simplicial spaces, and obtain, for each fixed externally chosen natural number

n, a notion of (n, 1)-category which can be stated internally. A simplicial set is an abstract way to

describe a configuration of points, lines between these points, triangles, tetrahedra, and so on. They

come with very intuitive structure, namely so-called face maps and degeneracy maps. The former

allow us to get faces: given a tetrahedron, we can get any of the triangles in its “boundary”, from a

line, we can get its endpoints, and so on. The degeneracy maps allow us to view a point as a trivial

line, a line as a trivial triangle (where one of the two endpoints is duplicated), and so on. Face and

degeneracy maps fulfil intuitive laws, e.g. degenerating a triangle and taking one particular face

leads to the original triangle. Simplicial spaces, which are just like simplicial sets, but where sets

have been replaced by some notion of “spaces”
1
, can then be equipped with certain conditions that

turn out to encode higher categorical structure in an elegant way. This is the basic idea underlying

complete Segal spaces, one of the existing formulations of (∞, 1)-categories.
To adapt the formalism of Segal spaces to HoTT, we would like to simply replace spaces with

general types. This is however not a straightforward process, since the conditions on face and

degeneracy maps are usually assumed to hold strictly (i.e. up to equality and not up to homotopy),

and there is no way to express this directly in HoTT, as the only equality the theory has access to

corresponds to homotopy. As it turns out, using ideas from the theory of Reedy fibrant diagrams over
inverse categories [Reedy 1974; Shulman 2015], we can encode those conditions implicitly using

dependent types, but we have to give up degeneracies to make this possible. These structures are

called semisimplicial types. A priori, taking degeneracies out cripples the resulting object irreparably,

since degeneracies are used to encode the identity part of a categorical structure. However, Lurie

[2009b] and Harpaz [2015] have observed that, under an appropriate assumption called completeness,
a “weak” degeneracy structure can actually be recovered a posteriori.

For some natural number n, the notion of Segal space can then be emulated in HoTT by starting

with a semisimplicial type restricted to (n + 2) levels, and requiring the type of lines to be an

1
Confusingly, these “spaces” are usually taken to be simplicial sets.

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 44. Publication date: January 2018.

44:4 Paolo Capriotti and Nicolai Kraus

(n − 1)-type. We call this structure a complete semi-Segal n-type, and the idea is that it defines a

univalent n-category. A definition similar to ours has earlier and independently (but also motivated

by Harpaz [2015]) been suggested by Schreiber on the nLab [Schreiber 2012], where it is simply

called an (n, 1)-category; see Remark 6.3 for variations.

At this point, a problem becomes visible: what does a definition of higher categories have to

satisfy in order to be considered “correct”? Since no notion of higher category exists so far in

HoTT, there is nothing we can compare it to. The only established notion is the one of a univalent

category by Ahrens et al. [2015], and it is easy enough to generalise it to the definition of a univalent
2-category, and straightforward to simplify it to get the notion of a poset. What we can thus do is

comparing

• complete semi-Segal sets with posets,
• complete semi-Segal 1-types with univalent categories, and
• complete semi-Segal 2-types with univalent 2-categories.

We construct equivalences for each pair, in a modular way, such that each equivalence is a direct

extension of the previous one.

This construction is split into several steps, and nearly all parts proceed without making any

truncatedness assumption. We thereby obtain equivalences at a high generality between “ill-

behaved” structures which we call wild, although they might as well be called incoherent or not
necessarily coherent. First, we establish an equivalence between wild semicategorical structures

and semi-Segal types. Second, we show that equipping wild semicategories with identity structure

(including coherences) amounts exactly to equipping semi-Segal types with degeneracies. Third,

we can add a univalence condition and fourth, a truncation condition, both of which are of course

propositions. Until here, our work is summarised by Figure 1 on page 5.

It is worth noting that the type “having a degeneracy structure” (equivalently, “having an identity

structure”) is in general not a proposition, but we show that it is as soon as the structure is sufficiently

truncated (e.g. for 2-semicategories, the type of morphism must be a 1-type). This is important to

make the connection to the next part of the paper, which is devoted to completeness. We define

the completeness property, and show that it allows us to construct a degeneracy structure. We

show that a semi-Segal type is complete if and only if it is univalent, which can only be formulated

assuming that the semi-Segal type already comes with degeneracies. One instance of this result is

presented in Figure 2 (page 6). Together with the mentioned lemma that degeneracy structure is

unique in the truncated case, we can conclude that complete semi-Segal n-types are equivalent to
univalent n-categories for n ∈ {0, 1, 2}. Whether this statement can be formulated and proved for

general n is unclear to us, but we offer a brief discussion in the final section (conclusions).

Main contribution (see Definition 6.1 and Theorem 6.2). We define the notion of a complete
semi-Segal n-type and show that, for n ∈ {0, 1, 2}, it is equivalent to the type of univalent n-categories.
This suggests that we can take it as a definition for univalent n-category, a definition of which has

in homotopy type theory so far only been given for very small n.

Agda formalisation. We provide a formalisation
2
in the proof assistant Agda [Norell 2007],

which proves the equivalences summarised in Figure 1.

Organisation. Section 2 specifies the theory we work in and recalls the definition of univalent
categories and the idea of semisimplicial types. In Section 3, we construct the equivalence between

wild semicategorical structures and semi-Segal types. These are equipped with identity and de-

generacy structures (respectively) in Section 4, and several lemmata about them are shown. In

2
This formalisation is available at https://gitlab.com/pcapriotti/agda-segal.

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 44. Publication date: January 2018.

https://gitlab.com/pcapriotti/agda-segal

Univalent Higher Categories via Complete Semi-Segal Types 44:5

∼
∼

∼
∼

∼
∼

∼
∼

∼

∼
∼

∼

1-restr sSt

2-restr sSt

3-restr sSt

4-restr sSt

2-restr sSt
with deg

3-restr sSt
with deg

4-restr sSt
with deg

3-restr
univ sSt

4-restr
univ sSt

univ sS
set

univ sS
1-type

univ sS
2-type

graph

trans

graph

wild

semicat

wild

2-semicat

refl-trans

graph

wild precat

wild

2-precat

wild

category

wild univ

2-category

poset

univalent

category

univalent

2-category

Fig. 1. An overview of our structures (before considering completeness) and the connections between them. See
Sections 3 and 4.
Note: restr = restricted; sSt = semi-Segal type; univ = univalent; sS = semi-Segal [n-type]; trans = transitive;
refl = reflexive.
The front face of this 3D diagram consists of semisimplicial types with structure: in the front left column, we
start with (A0,A1) at the top and add A2, A3, A4 step by step. Going from left to right on the front face, we
add degeneracies, univalence, and a truncation condition (in the case of posets, we add them simultaneously).
The back face of the diagram consists of categorical structures presented in “ordinary” style. The back left
column starts with graphs and adds composition structure in the first step, associativity in the next, and
coherence for associativity (the pentagon) in the last step. From left to right, the back face first adds identity
structure, then a univalence condition, and finally a truncation condition.
An arrow A↠ B means that definition A arises from definition B by adding one or more components (i.e.
we can pass from A to B by forgetting something). We write↣↠instead of ↠ to indicate that this added
component is a proposition. An arrow A ∼

↔ B expresses that the types A and B are equivalent. An arrow
A ↪→ B means that from an element of A we can construct an element of B in a canonical way.

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 44. Publication date: January 2018.

44:6 Paolo Capriotti and Nicolai Kraus

wild

2-semicat

wild

2-precat

wild univ

2-category

univalent

2-category

± identities ± univalence ± truncation

wild compl

2-semicat

complete

2-semicat

±
com

pleteness

± truncation

∼

Fig. 2. Connection between univalence and completeness. See Section 5.
The upper row is taken from Figure 1 and shows that the definition of a univalent 2-category is obtained by
starting with a wild 2-category, adding identities, then univalence, and finally a truncation condition. Arrows
are drawn with the same convention in mind as explained in the caption of Figure 1. The long top arrow
indicates that there is at most one (univalent) 2-categorical structure for a given wild 2-semicategory by
Theorem 4.11. The bottom row outlines an alternative construction: starting with a wild 2-semicategory, we
can add completeness and truncation. The resulting complete 2-semicategories are equivalent to 2-categories.
In particular, the identity structure can be constructed.

Section 5, we introduce completeness and its prove its consequences. Section 6 summarises our

work and formulates the main result, and discusses applications and consequences of our work.

2 TYPE THEORY, UNIVALENT CATEGORIES, AND SEMISIMPLICIAL TYPES
Our work takes place in homotopy type theory, and we want to use the current section to clarify

which theory we are working in (Section 2.1). Moreover, as our work is related to univalent

categories, we review the original construction by Ahrens et al. [2015] in Section 2.2. The purpose

is solely to provide some context, as the actual definition of a univalent category will arise naturally

from the constructions in the main part of this work. A further central concept that we need are

semisimplicial types [Univalent Foundations Program 2013b]. We review the idea and introduce

some notation and terminology in Section 2.3.

2.1 Homotopy Type Theory
The theory we work in is a (slight notational variant of) the standard version of homotopy type

theory, as presented in [Univalent Foundations Program 2013a]. We make use of all the basic type

formers, such as Π, Σ, equality and unit types, plus a univalent universe. However, we do not

make use of higher inductive types, or even ordinary inductive types, since our development is

completely elementary and limited to low, fixed restriction levels. In particular, we do not use

truncation operators such as propositional or set truncation.

In the following, we will call a type of the form Σ(x : A),x = y a singleton. It is an immediate

consequence of path induction for equality types that singletons are contractible types, and this

is something that will be used repeatedly throughout the paper. As a notational simplification,

we omit the type annotation in Π(x : A),B (x) if A can easily be inferred, and we write Πx ,B (x)
instead.

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 44. Publication date: January 2018.

Univalent Higher Categories via Complete Semi-Segal Types 44:7

2.2 Univalent Categories
Let us recall the definition of a univalent category [Ahrens et al. 2015] in homotopy type theory,

which the authors present in two stages. They first define a precategory, and afterwards add a

saturation or univalence condition, as follows:

Definition 2.1 (precategory). A precategory is given by

• Ob : U , a type of objects

• Hom : Ob ×Ob→U , a family of morphisms

• h : Πab, isSet(Hom(a,b)), the condition that the types of morphisms are sets

• (_ ◦ _) : Πabc,Hom(b, c) × Hom(a,b) → Hom(a, c), the composition operation; we write

д ◦ f instead of (_ ◦ _) (a,b, c,д, f)
• α : Π f дh,h ◦ (д ◦ f) = (h ◦ д) ◦ f , an equality certifying associativity (implicitly quantified

over four objects)

• Id : Πa,Hom(a,a), the identity morphisms

• Π(f : Hom(a,b)), f ◦ Ida = f and Π(f : Hom(a,b)), Idb ◦ f = f , the identity laws.

Recall that Ahrens et al. [2015] go on and define the notion of an isomorphism in the straightfor-

ward way: a morphism f : Hom(a,b) is an isomorphism if it has an inverse,

isIsoAKS (f) :≡ Σ (д : Hom(b,a)) , (д ◦ f = Ida) × (f ◦ д = Idb). (1)

We write a �AKS b for the type of isomorphisms Σ (f : Hom(a,b)) , isIsoAKS (f). There is a canonical
function idtoisoAKS : a = b → a �AKS b, defined by path induction, where refla is sent to Ida .

Definition 2.2 (univalent category [Ahrens et al. 2015, Def. 3.6]). A precategory is a univalent
category if, for all objects a,b, the function idtoisoAKS is an equivalence of types.

2.3 Semisimplicial Types
A semisimplicial type restricted to level 3 as described in [Univalent Foundations Program 2013b]

is given by a tuple (A0,A1,A2,A3), where:

• A0 can be thought of simply as a type of points.
• Given any two such points x0,x1 : A0, we have a type of edges A1 (x0,x1). Thus, A1 is a family

of types indexed over A0 ×A0.

• If we have three points x0,x1,x2 : A0, and three edges x01 : A1 (x0,x1), x12 : A1 (x0,x1), and
x02 : A1 (x0,x2), we can picture these six elements as an empty triangle.A2 is a family of types

indexed over such empty triangles, and we can think of elements ofA2 (x0,x1,x2,x01,x12,x02)
as fillers for the triangle.
• Assume we are given four points, together with six edges, and four triangle fillers which

fit together such that they form an empty tetrahedron. We think of A3 as a family of types

which, for any such empty tetrahedron, gives us a type of tetrahedron fillers.

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 44. Publication date: January 2018.

44:8 Paolo Capriotti and Nicolai Kraus

In fully explicit type-theoretic presentation, this means that the types are:

A0 : U

A1 : A0 ×A0 →U

A2 : Σ(x0,x1,x2 : A0), (x01 : A1 (x0,x1)), (x12 : A1 (x1,x2)), (x02 : A1 (x0,x2)) →U

A3 : Σ(x0,x1,x2,x3 : A0),

(x01 : A1 (x0,x1)), (x12 : A1 (x1,x2)), (x23 : A1 (x2,x3)),

(x02 : A1 (x0,x2)), (x13 : A1 (x1,x3)), (x03 : A1 (x0,x3)),

(x012 : A2 (x0,x1,x2,x01,x12,x02)), (x013 : A2 (x0,x1,x3,x01,x13,x03)),

(x023 : A2 (x0,x2,x3,x02,x23,x03)), (x123 : A2 (x1,x2,x3,x12,x23,x13))

→U

(2)

These type expressions are uniform, but rather long (especially the type of A3). We therefore

use the following shorthand notation. First, instead of x023 : A2 (x0,x2,x3,x02,x23,x03), we write
x023 : A2 (xS |S⊊ {0,2,3}). Thus, the symbol ⊊ should be read as proper nonempty subset. Second, instead
of writing a list x012 : A2 (. . .), . . . ,x123 : A2 (. . .) with their types explicitly as in (2), we write

(xi jk : A2 (xS |S⊊ {i, j,k }))0≤i<j<k≤3. In this notation, (2) becomes:

A0 : U (3)

A1 : Σ(xi : A0)0≤i≤1 →U (4)

A2 : Σ(xi : A0)0≤i≤2, (xi j : A1 (xS |S⊊ {i, j }))0≤i<j≤2 →U (5)

A3 : Σ(xi : A0)0≤i≤3, (xi j : A1 (xS |S⊊ {i, j }))0≤i<j≤3, (xi jk : A2 (xS |S⊊ {i, j,k }))0≤i<j<k≤3 →U . (6)

Thanks to the simplified notation, it is feasible to write down the next stage, namely the type of

4-dimensional tetrahedron fillers:

A4 : Σ(xi : A0)0≤i≤4, (xi j : A1 (xS |S⊊ {i, j }))0≤i<j≤4,

(xi jk : A2 (xS |S⊊ {i, j,k }))0≤i<j<k≤4, (xi jkl : A3 (xS |S⊊ {i, j,k,l }))0≤i<j<k<l ≤4 (7)

→U .

Definition 2.3 (restricted semisimplicial type). For n ∈ {0, 1, 2, 3, 4}, we say that an n-restricted
semisimplicial type is a tuple (A0, . . . ,An) with the types as given in (3) and (7).

Remark 2.4. While it is perfectly possible to take a concrete (externally fixed) natural number n
and generate a type-theoretic expression An which represents a type of n-dimensional tetrahedra

fillers, it is (as already mentioned in the introduction) a long-standing open problem whether this

can be encoded internally in type theory. Concretely, it is unknown whether one can define a

“classifier” S : N→U such that for each n the elements of S (n) correspond to tuples (A0, . . . ,An).
This is the reason why Definition 2.3 does not define n-restricted semisimplicial types for any n : N.
We could do it for an externally fixed number n; however, n ≤ 4 is sufficient for the main part of

the paper. Thus, we have chosen the rather modest formulation in Definition 2.3 to ensure that the

paper stays close to our formalisation.

We use the remainder of this subsection to explain notation and terminology related to semisim-

plicial types. Above, we have talked about triangle fillers and (higher) tetrahedron fillers when
referring to elements of A2 (. . .), A3 (. . .), or A4 (. . .). Sometimes, it is useful to talk about the corre-

sponding total spaces, i.e. the actual types of triangles or (higher) tetrahedra. As it will always be
clear which semisimplicial type (A0, . . . ,An) we refer to (with n ≤ 4), we simply write ∆n

for the

type of n-dimensional triangles/tetrahedra, slightly deviating from the usual convention where ∆n

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 44. Publication date: January 2018.

Univalent Higher Categories via Complete Semi-Segal Types 44:9

denotes the standard n-simplex. The type ∆n
is a nested Σ-type with 2

n − 1 components, one for

each non-empty subset of {0, . . . ,n}. We can write this down concretely:

∆0
:≡ A0 – or (x0 : A0), to give the point a name

∆1
:≡ Σ(xi : A0)0≤i≤1, (x01 : A1 (xS |S⊊ {0,1}))

∆2
:≡ Σ(xi : A0)0≤i≤2, (xi j : A1 (xS |S⊊ {i, j })0≤i<j≤2, (x012 : A2 (xS |S⊊ {0,1,2}))

∆3
:≡ Σ(xi : A0)0≤i≤3, (xi j : A1 (xS |S⊊ {i, j })0≤i<j≤3,

(xi jk : A2 (xS |S⊊ {i, j,k })0≤i<j<k≤3, (x0123 : A3 (xS |S⊊ {0,1,2,3}))

∆4
:≡ Σ(xi : A0)0≤i≤4, (xi j : A1 (xS |S⊊ {i, j })0≤i<j≤4,

(xi jk : A2 (xS |S⊊ {i, j,k })0≤i<j<k≤4, (xi jkl : A3 (xS |S⊊ {i, j,k,l }))0≤i<j<k<l ≤4,

(x01234 : A4 (xS |S⊊ {0,1,2,3,4}))

(8)

We can also consider the type of boundaries for an n-dimensional tetrahedron. We write ∂∆n
for

this type. It is given simply by the type of ∆n
as stated above with the very last component (the

filler) removed. Thus, ∂∆n
is a nested Σ-type with 2

n − 2 components, one for each non-empty

proper subset of {0, . . . ,n}. With this notation, we can represent the type of An of (3-7) as

An : ∂∆n →U . (9)

For 1 ≤ n ≤ 4 and 0 ≤ i ≤ n, we can define the so-called face map dni : ∆n → ∆n−1
. Intuitively, it

gives us one of the (n + 1) faces, namely the one which is opposite to the vertex labeled with i , by
projection. For an element x : ∆n

, we can by definition assume that it is a tuple x ≡ (xS |S ⊆{0, ...,n }).
The function dni discards every xS which has i ∈ S ; that is,

dni (x) :≡ (xS |S ⊆{0, ...,i−1,i+1, ...,n }). (10)

Remark 2.5. Given a category C, it is in general not known how to encode a type of strict functors
C → U in type theory (one might try to state the functor laws using the internal equality type,

but this will not give a well-behaved notion). Consider the special case where C is the category

with five objects [0], [1], [2], [3] and [4], with [n] :≡ {0, . . . ,n} and where morphisms from [m]

to [n] are strictly increasing functions from [n] to [m]. We write this category as (∆≤4+)op. In this

case, a 4-restricted semisimplicial type does indeed encode a strict functor A : (∆≤4+)op →U : We

let A([n]) :≡ ∆n
. To define A on morphisms, it is enough to consider morphisms from [n] to [n − 1]

which are given by omitting a number i , since any morphism can be written as a composition of

such maps; and A maps such a morphism to dni . Since the d
n
i are projections, one can see easily

that the functor laws hold judgmentally. In general, this encoding works for any finite category C

which has no nontrivial “cycles” [Shulman 2015]. A diagram A of this form is usually called Reedy
fibrant [Reedy 1974] and ∂∆n

is called a matching object of A.

3 COMPOSITION STRUCTURE AND HORN FILLERS
The first parts of the categorical and higher categorical structures that we consider are notions of

composition. Our various structures come in two different presentations, and with several levels of

well-behavedness.

3.1 Wild Semicategories
Let us begin with categorical structures presented in the style of the precategories in Definition 2.1.

In fact, all of the following notions can be understood as weak versions of precategories:

Definition 3.1 (wild semicategorical structure). We define the following, where each step adds one

level of structure:

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 44. Publication date: January 2018.

44:10 Paolo Capriotti and Nicolai Kraus

(1) A graph is a type Ob together with a family Hom : Ob ×Ob→U .

(2) A transitive graph is a graph, together with a composition operator

(_ ◦ _) : Πabc,Hom(b, c) × Hom(a,b) → Hom(a, c); (11)

we write д ◦ f instead of (_ ◦ _) (a,b, c,д, f).
(3) A wild semicategory is a transitive graph which, in addition, has an associator

α : Π f дh,h ◦ (д ◦ f) = (h ◦ д) ◦ f . (12)

(4) A wild 2-semicategory is a wild semicategory together with a pentagonator,
D : Π f дhk, apk◦_ (α (f ,д,h)) � α (д ◦ f ,h,k) � ap_◦f (α (д,h,k))

= α (f ,h ◦ д,k) � α (f ,д,k ◦ h).
(13)

Remark 3.2. The type of D, as given in (13), can alternatively be described as the type of proofs

of commutativity for the following pentagon:

((k ◦ h) ◦ д) ◦ f(k ◦ (h ◦ д)) ◦ f

k ◦ ((h ◦ д) ◦ f)

k ◦ (h ◦ (д ◦ f))

(k ◦ h) ◦ (д ◦ f)

ap
_◦f (д, h, k)

α (д ◦ f , h, k) α (f , д, k ◦ h)

α (f , h ◦ д, k)apk◦_ (α (f , д, h))

(14)

3.2 Semi-Segal Types
As outlined in the introduction, one of our goals is to show how semisimplicial types enable us to

encode categorical structure. The idea is that A0 (the type of points) will form the type of objects,

and A1 (xi ,x j) (the type of edges) will form the type of morphisms between xi and x j . We can

require that A1 is a family of sets, as it is the case for the univalent categories by Ahrens et al.

[2015].

For the rest, we have to add more structure. In the current section, we want to discuss the

structure which is necessary to encode a composition operation (based on A2), which may come

with an associativity operator (based on A3) and a pentagonator (coherence for associativity, based

on A4). The notion of a horn becomes important here. The type of horns is similar to ∂∆n
, but with

one additional component removed. Thus, a horn is indexed over two natural numbers, say n and

m, where for 0 ≤ m ≤ n ≤ 4, and it represents the type of n-dimensional tetrahedra without the

single cell of dimension n and without the face opposite to xm . For example, for n ≡ 2 andm ≡ 1,

such a horn consists of three points x0,x1,x2 : A0 and two edges x01 : A1 (x0,x1), x12 : A1 (x1,x2),
thus we write

Λ2

1
:≡ Σ(x0,x1,x2 : A0),A1 (x0,x1) ×A1 (x1,x2). (15)

In our shorthand notation, this becomes

Λ2

1
:≡ Σ(xi : A0)0≤i≤2, (xi j : A1 (xS |S⊊ {i, j }))0≤i<j≤2; 1∈{i, j } . (16)

Similarly, a Λ3

m-horn (form ∈ {0, 1, 2, 3}) consists of four points, six edges, and three triangle fillers

(one triangle filler is missing, namely the one not containing xm). Let us record this:

Definition 3.3 (horns). Given a 2-restricted semisimplicial type (A0,A1,A2), andm ∈ {0, 1, 2}, we
define the type of Λ2

m-horns to be

Λ2

m :≡ Σ(xi : A0)0≤i≤2, (xi j : A1 (xS |S⊊ {i, j }))0≤i<j≤2;m∈{i, j } . (17)

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 44. Publication date: January 2018.

Univalent Higher Categories via Complete Semi-Segal Types 44:11

If we have a 3-restricted semisimplicial type, i.e. some A3 extending (A0,A1,A2), we allowm ∈
{0, 1, 2, 3} and define

Λ3

m :≡ Σ(xi : A0)0≤i≤3, (18)

(xi j : A1 (xS |S⊊ {i, j }))0≤i<j≤3,

(xi jk : A2 (xS |S⊊ {i, j,k }))0≤i<j<k≤3;m∈{i, j,k } .

If we in addition have A4, and anym ∈ {0, 1, 2, 3, 4}, we define

Λ4

m :≡ Σ(xi : A0)0≤i≤4, (19)

(xi j : A1 (xS |S⊊ {i, j }))0≤i<j≤4,

(xi jk : A2 (xS |S⊊ {i, j,k }))0≤i<j<k≤4m ,

(xi jkl : A3 (xS |S⊊ {i, j,k,l }))0≤i<j<k<l ≤4;m∈{i, j,k,l } .

In general, an element of Λn
m is called an inner horn if 0 < m < n, and an outer horn ifm = 0 or

m = n.
In explicit representation, an element of Λn

m has 2
n − 3 components, namely one for every

nonempty subset of {0, . . . ,n} which lacks at least one number different fromm. Thus, we can

assume that for example a (3, 1)-horn u : Λ3

1
is a tuple and write it as

u ≡ (xS |S ⊂{0,1,2,3}; ∃p,1.p<S). (20)

The “missing” bit in u is a triangle filler x023 : A2 (xS |S⊊ {0,2,3}), and if we are given such an x023, we
can consider the type of tetrahdron fillers x0123 : A3 (xS |S⊊ {0,1,2,3}). We call the type of such pairs

(x023,x0123) the type of fillers for the horn u. In the following definition, we write [n] for the set
{0, 1, . . . ,n}, and we write [n] −m for the same set where the numberm is removed.

Definition 3.4 (horn fillers). Assume we have a semisimplicial type (A0, . . . ,An), with n ∈ {2, 3, 4}.
Given a horn u : Λn

m , where we can assume u ≡ (xS |S ⊂{0, ...,n }; ∃p,m .p<S), the type of horn-fillers of
u is the type

Λn
m-fillers(u) :≡ Σ

(
x[n]−m : An−1 (xS |S⊊[n]−m)

)
An (xS |S⊊[n]). (21)

Note that Λn
m-fillers(u) is always a type of pairs of exactly two components. We say that the

semisimplicial type (A0, . . . ,An) has contractible (n,m)-horn filling if the type of fillers is contractible
for any element of Λn

m ,

has-contr-Λn
m-filling(A0, . . . ,An) ≡ Π(u : Λn

m), isContr(Λn
m-fillers(u)). (22)

There are a couple of alternative formulations of the following definition of semi-Segal types.

We will discuss them later in Remark 3.10.

Definition 3.5 (restricted semi-Segal types). For n ∈ {1, 2, 3, 4}, we define an n-restricted semi-Segal
type to be an n-restricted semisimplicial type which satisfies

has-contr-Λp
1
-filling(A0, . . . ,An), (23)

for p ∈ {2, . . . ,n}. In detail, this means:

(1) A 1-restricted semi-Segal type is the same as a 1-restricted semisimplicial type.

(2) A 2-restricted semi-Segal type has A0, A1, A2, and h2 : has-contr-Λ2

1
-filling(A0,A1,A2).

(3) A 3-restricted semi-Segal type consists of A0, A1, A2, h2 as above, plus the components A3 and

h3 : has-contr-Λ3

1
-filling(A0, . . . ,A3).

(4) A 4-restricted semi-Segal type has, in addition to the above, the type family A4 and the

component h4 : has-contr-Λ4

1
-filling(A0, . . . ,A4).

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 44. Publication date: January 2018.

44:12 Paolo Capriotti and Nicolai Kraus

The connection of semi-Segal types with the semicategories discussed before is the following

statement, the proof of which will be the subject of Section 3.4:

Theorem 3.6. Definitions 3.5 and 3.1 define the same structures:
(1) The type of graphs is equivalent to the type of 1-restricted semi-Segal types.
(2) The type of transitive graphs is equivalent to the type of 2-restricted semi-Segal types.
(3) The type of wild semicategories is equivalent to the type of 3-restricted semi-Segal types.
(4) The type of wild 2-semicategories is equivalent to the type of 4-restricted semi-Segal types.

3.3 Interlude: On Horns, Spines, and Tetrahedra
Before giving the somewhat lengthy proof of Theorem 3.6, we want to show some simple but useful

auxiliary lemmata. Assume that (A0, . . . ,An) is an n-restricted semi-Segal type (n ∈ {2, 3, 4} as
before).

Recall that, so far, we have considered ∆n
, the type of full tetrahedra; ∂∆n

, the type of boundaries;

and Λk
i , the type of (k, i)-horns. Another useful type is what we call the spine of a tetrahedron,

consisting only of vertexes and edges which form a sequence:

Definition 3.7 (spines). For a given semisimplicial type, the types of spines are defined as:

Sp0 :≡ A0 (i.e. just ∆0
, which in turn is A0)

Sp1 :≡ Σ(x0,x1 : A0), (x01 : A1 (x0,x1)) (which is ∆1
)

Sp2 :≡ Σ(xi : A0)0≤i≤2, (xi (i+1) : A1 (xi ,xi+1))0≤i≤1 (which is Λ2

1
)

Sp3 :≡ Σ(xi : A0)0≤i≤3, (xi (i+1) : A1 (xi ,xi+1))0≤i≤2 (four points, three edges)

Sp4 :≡ Σ(xi : A0)0≤i≤4, (xi (i+1) : A1 (xi ,xi+1))0≤i≤3 (five points, four edges)

(24)

There is a canonical projection ϕn : ∆n → Spn which simply discards all triangle fillers and

higher cells, and all edges apart from those in some A1 (xi ,xi+1). This also works if we replace the

∆n
in the domain one of the other types that we have considered so far, since (at least for n ≥ 3)

all of these have strictly more components than Spn . In particular, we have ϕ3 : Λ3

1
→ Sp3 and

ϕ4 : Λ
4

1
→ Sp4. From now, we assume that our semisimplicial type is in fact a semi-Segal type.

Lemma 3.8. For any 3-restricted semi-Segal type, the canonical map

ϕ3 : Λ
3

1
→ Sp3 (25)

is an equivalence.

Proof. The type Λ3

1
is defined as a Σ-type with a number of components. Note that, thanks to

the naming convention that we are using, the type of any component of Λ3

1
can be determined

from the name of the corresponding variable, so we will refer to components simply by name in

the following.

By reordering its components, we can see that Λ3

1
is composed of:

• points x0,x1,x2,x3;
• lines x01,x12,x23;
• a Λ2

1
-horn filler x02,x012; (26)

• a Λ2

1
-horn filler x13,x123;

• a Λ2

1
-horn filler x03,x013.

The Segal condition at level 2 implies that the last three items in the list form contractible types,

hence Λ3

1
is equivalent to the Σ-type consisting of the first two items above, which is exactly

Sp3. □

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 44. Publication date: January 2018.

Univalent Higher Categories via Complete Semi-Segal Types 44:13

We will also need a version of this lemma one level up.

Lemma 3.9. For any 4-restricted semi-Segal type, the canonical map

ϕ4 : Λ
4

1
→ Sp4 (27)

is an equivalence.

Proof. The proof proceeds in a similar fashion to the one for Lemma 3.8: we can reorder the

components of Λ4

1
with the ones of Sp4 coming first, followed by a number of inner horn fillers,

which are contractible by the Segal condition. It is not hard to see that such a decomposition is

possible (indeed, there are several ways of constructing one). An explicit construction can be found

in the arXiv version of this paper [Capriotti and Kraus 2017]. □

Remark 3.10. Recall that a simplicial set, as used for example in categorical homotopy theory,

where all inner horns can be filled (not necessarily uniquely) is called aweak Kan complex [Boardman

and Vogt 1973], or a quasi-category [Joyal 2002], or an∞-category [Lurie 2009a]. In Definition 3.5,

we only require contractible horn filling for horns of the form Λ
p
1
. This may at first sight seem too

minimalistic. Further, in the study of Segal spaces, it is often part of the definition that all maps

ϕp : ∆p → Spp are equivalences. In our setting one can show:

(∗) For any semi-Segal type, the following are equivalent:

(1) For all p ≥ 2, all Λ
p
1
-horns have contractible filling (as in Definition 3.5).

(2) All inner horns have contractible filling.

(3) All generalised inner horns (in the sense of [Joyal 2008, Sec. 2.1.1]) have contractible filling.

(4) For all p, the canonical projection ϕp : ∆p → Spp is an equivalence.

For example, if we know that horns in Λ2

1
and Λ3

1
have contractible filling, we can conclude that

Λ3

2
-horns have contractible filling as well. To see this, consider x : Λ3

2
. Its type of fillers is the type

of pairs P :≡ (x013,x0123). Note that the type of pairs (x03,x023) is a filler for a Λ
2

1
-horn and thus

contractible by assumption. Therefore, P is equivalent to the type of tuples (x03,x023,x013,x0123).
But (x03,x013) is the filler of another Λ

2

1
-horn. Hence, P is in fact equivalent to the type of pairs

(x023,x0123), which fills a Λ3

1
-horn and is thus contractible. We do not need the statement (∗) and

thus omit a more general proof, which can be obtained using only arguments analogous to the

ones we have shown so far.

While we only consider the restricted case of n ≤ 4, all these statements can be proved for any

externally fixed number n with the strategies that we have shown. Unfortunately we cannot express

this in Agda due to the limitation mentioned in Remark 2.4.

3.4 Equivalence of the Structures
We recall Theorem 3.6:

Theorem 3.6. Definitions 3.5 and 3.1 define the same structures:
(1) The type of graphs is equivalent to the type of 1-restricted semi-Segal types.
(2) The type of transitive graphs is equivalent to the type of 2-restricted semi-Segal types.
(3) The type of wild semicategories is equivalent to the type of 3-restricted semi-Segal types.
(4) The type of wild 2-semicategories is equivalent to the type of 4-restricted semi-Segal types.

The proof of Theorem 3.6 will be split into several steps (Lemmata 3.12, 3.14, 3.16), one for each

of its points, except the first, which is trivial, since the definitions of graph and of 1-restricted

semi-Segal type coincide. We begin with a simple lemma, which will be used multiple times in the

following.

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 44. Publication date: January 2018.

44:14 Paolo Capriotti and Nicolai Kraus

Lemma 3.11. Let X be a type. Then, having an element of X is equivalent to having a type family
over X which is inhabited for “exactly one x : X ”, i.e. there is an equivalence

X ≃ Σ (F : X →U) , isContr(Σ (x : X) , F (x)). (28)

Proof. The proof is completely straightforward. It is spelled out in the arXiv version of the

paper [Capriotti and Kraus 2017]. □

Lemma 3.12. The type of transitive graphs is equivalent to the type of 2-restricted semi-Segal types.

Proof. Given a 1-restricted semi-Segal type A ≡ (A0,A1), we need to show that the data needed

to extend A to a 2-restricted semi-Segal type, i.e. the type of the pair (A2,h2) in Definition 3.5, is

equivalent to the type of the composition operator (_ ◦ _) in Definition 3.1.

Recall from (9) that the type of A2 can be written as ∂∆2 →U . Since ∂∆2
is equivalent to

Σ(u : Λ2

1
),A1 (u0,u2), (29)

we can curry to see that the type of A2 is equivalent to

Π(u : Λ2

1
),A1 (u0,u1) →U . (30)

Thus, the type of the pair (A2,h2) is equivalent to

Π(u : Λ2

1
), Σ(A2 : A1 (u0,u2) →U), isContr

(
ΣA1 (u0,u2)A2

)
. (31)

By Lemma 3.11, this is equivalent to

Π(u : Λ2

1
),A1 (u0,u2), (32)

which is nothing else than a reformulation of the type of the composition operator. □

Corollary 3.13. Let A ≡ (A0,A1,A2) be the 2-restricted semi-Segal type corresponding to a
transitive graph as in Lemma 3.12. Then, for all objects x0, x1, x2 andmorphisms x01 : Hom(x0,x1),x12 :
Hom(x1,x2),x02 : Hom(x0,x2), on the left-hand side seen as points and edges, we have

A2 (xS |S⊊ {0,1,2}) ≃ (x12 ◦ x01 = x02). (33)

If the construction is performed in the canonical way, then the equivalence (33) holds judgmentally,

A2 (xS |S⊊ {0,1,2}) ≡ (x12 ◦ x01 = x02). (34)

Furthermore, the unique horn filler for the Λ2

1
-horn determined by x01 and x12 is given by (x12 ◦

x01, reflx12◦x01).

Proof. The equivalence (33) is immediate from the construction in Lemma 3.12. We can check

each step to convince ourselves of the judgmental equality (34), which indeed does hold in our

Agda formalisation. □

Lemma 3.14. The type of wild semicategories is equivalent to the type of 3-restricted semi-Segal
types.

Proof. We know that a 3-restricted semi-Segal type is given by a 2-restricted semi-Segal type,

plus the type A3 of fillers for 3-dimensional boundaries (6), and the statement that Λ3

1
-horns have

contractible filling, i.e. h3 : Π(u : Λ3

1
), isContr

(
Λ3

1
-fillers(u)

)
.

First of all, it is easy to see, just by expanding the definitions, that the domain of A3 : ∂∆
3 →U

is equivalent to the type Σ(u : Λ3

1
),A2 (uS |S⊊ {0,2,3}).

Therefore, just like in the proof of Lemma 3.12, we can curry both A3 and h3, and rewrite them

into a single function of type Π(u : Λ3

1
),T (u), where

T (u) :≡ Σ
(
A3 : A2 (uS |S⊊ {0,2,3}) →U

)
, isContr

(
ΣA3

)
, (35)

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 44. Publication date: January 2018.

Univalent Higher Categories via Complete Semi-Segal Types 44:15

and, by Lemma 3.11, we have that

T (u) � A2 (uS |S⊊ {0,2,3}). (36)

Using the isomorphism ϕ3 of Lemma 3.8, we get that this type can be further rewritten as

Π(s : Sp3),A2

((
ϕ−1
3
(s)
)
S |S⊊ {0,2,3}

)
, (37)

so all that remains to be shown is that the type (37) above is equivalent to the type of the associator.

In order to understand what the type (37) looks like, we need to examine the construction of

the isomorphism ϕ3 of Lemma 3.8, and, more specifically, its inverse ϕ−1
3

: Sp3 → Λ3

1
. Recall that,

in the proof of Lemma 3.8, all components of Λ3

1
that are not present in Sp3 were grouped into

pairs consisting of the elements of an inner horn filler. Thus, we can assume that A2 as well as the

components of the map ϕ−1
3

have the form described in Corollary 3.13.

So, let s : Sp3, and set y :≡ ϕ−1
3
(s). By going through the decomposition of Λ3

1
in terms of

contractible horn filling as given in (26), we get:

y02 ≡ y12 ◦ y01, y012 ≡ refl; y13 ≡ y23 ◦ y12, y123 ≡ refl; y03 ≡ y13 ◦ y01, y013 ≡ refl. (38)

We can now calculate the type A2 (yS |S⊊ {0,2,3}) as follows:

A2 (yS |S⊊ {0,2,3})

� (y23 ◦ y02 = y03)

� (y23 ◦ (y12 ◦ y01) = (y23 ◦ y12) ◦ y01),

(39)

and this last expression exactly matches the type of the associator given in Definition 3.1. □

Lemma 3.15. Let A ≡ (A0,A1,A2,A3) the 3-restricted semi-Segal type corresponding to a wild
semicategory as in Lemma 3.14. Let u : Λ4

1
be a horn in A. Define the generalised associator of u by:

α̂ : Π(u : Λ4

1
),A2 (uS |S⊊ {0,2,3})

α̂ (u) :≡ apu23◦_ (u
−1
012

) � α (u01,u12,u23) � ap_◦u01 (u123)
� u013.

(40)

Then, if (u, f) is the boundary of a tetrahedron in A, with u being the corresponding Λ4

1
-horn and f

the remaining face, we have:
A3 (u, f) � (α̂ (u) = f), (41)

and furthermore, the unique filler for u is equal to (α̂ (u), reflα̂ (u)).

Proof. By examining the proof of Lemma 3.14, we see that for all s : Sp3, and f : A2 (uS |S⊊ {0,2,3}),
where u :≡ ϕ−1

3
(s),

A3 (u, f) � (α (s) = f), (42)

so the first assertion follows immediately from the observation that the type α (s) = f is equivalent

to α̂ (ϕ−1
3
(s)) = f and the fact that ϕ is an equivalence.

The second assertion is an immediate consequence of the first, since the type of horn fillers is

manifestly equivalent to the type of singletons of α̂ (u). □

In the following, wewill assume that the isomorphism of Lemma 3.14 maps anywild semicategory

into a 3-restricted semi-Segal type A ≡ (A0,A1,A2,A3) where

A3 (u, f) ≡ (α̂ (u) = f). (43)

This is possible thanks to Lemma 3.15.

Lemma 3.16. The type of wild 2-semicategories is equivalent to the type of 4-restricted semi-Segal
types.

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 44. Publication date: January 2018.

44:16 Paolo Capriotti and Nicolai Kraus

Proof. This statement can be shown in two steps, following the same strategy that we have used

in the proof of Lemma 3.14. First, one can show that the extra data needed to turn a 3-restricted

semi-Segal type into a 4-restricted semi-Segal type is equivalent to the type

Π(s : Sp4),A3

((
ϕ−1
4
(s)
)
S |S⊊ {0,2,3,4}

)
. (44)

This can be proved in exactly the same way as the corresponding statement in the proof of

Lemma 3.14.

The next step, however, requires some new calculation. We need to show that the type (44) is

equivalent to that of the pentagon D in (13). This is somewhat technical, but can be done in a

reasonably elegant way, as shown in our Agda formalisation. The argument is also spelled out in

detail in the arXiv version of this paper [Capriotti and Kraus 2017]. □

4 IDENTITY AND DEGENERACY STRUCTURE
After the detailed discussion on composition structures in the previous section, we are ready to

talk about identities. As before, we consider both the “standard” presentation and an encoding via

semi-Segal types.

4.1 Identities for Wild Semicategories
Definition 4.1 (identities for wild structures). We equip the structures of Definition 3.1 with

identities as follows:

(1) A reflexive-transitive graph is a transitive graph (Ob,Hom, _ ◦ _) together with a family

Id : Πx ,Hom(x ,x).
(2) A wild precategory is a wild semicategory (Ob,Hom, _ ◦ _,α), equipped with Id as above and

equalities λ : Πxy, (f : Hom(x ,y)), Idy ◦ f = f as well as ρ : Πxy, (f : Hom(x ,y)), f ◦ Idx =
f .

(3) A wild 2-precategory is a wild 2-semicategory (Ob,Hom, _ ◦ _,α ,D) together with Id, λ, ρ as

above, an equality

t1 : Πxyz, (f : Hom(x ,y)), (д : Hom(y, z)), apд◦_ (λf) = αf , Id,д � ap_◦f (ρд) (45)

which can be pictured as:

д ◦ (Id ◦ f) (д ◦ Id) ◦ f

д ◦ f

αf , Id,д

ap(д◦_) (λf) ap
_◦f (ρд)

(46)

and two equalities

t0 : Πxyz, (f : Hom(x ,y)), (д : Hom(y, z)), λд◦f = αf ,д, Id � ap_◦f (λд) (47)

t2 : Πxyz, (f : Hom(x ,y)), (д : Hom(y, z)), apд◦_ (ρf) = αId,f ,д � ρд◦f (48)

which can be represented as follows:

Id ◦ (д ◦ f) (Id ◦ д) ◦ f

д ◦ f

αf ,д, Id

λд◦f ap
_◦f (λд)

д ◦ (f ◦ Id) (д ◦ f) ◦ Id

д ◦ f

αId, f ,д

apд◦_ (ρf) ρд◦f

(49)

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 44. Publication date: January 2018.

Univalent Higher Categories via Complete Semi-Segal Types 44:17

Remark 4.2. One could argue that the last two components (47, 48) should not be part of the

definition of a wild 2-precategory. If one checks the definition of a (weak) 2-category in a textbook

on category theory, one will most likely not encounter these two triangles. The reason is that they

can be derived from the other data (which includes the “middle” triangle (45)) and thus do not need

to be listed separately. For us, the situation is different since we are not stating laws but structure:
although the two triangles in question can be derived in our setting as well (see Lemma 4.3), the

type of wild 2-precategories with those triangles is not necessarily equivalent to the one without

them.

Our recipe for determining the components of wild n-semicategories and precategories (for small

n) is to start writing down the (infinite) composition and identity structure, but simply stop and “cut

off” everything above the corresponding level. If we look at the definition of a tricategory [Gurski

2007, p. 25f], the two triangles (47, 48) are part of the definition, and they are at the same level
as (45); hence, it feels correct to us to include them here.

Having given this argument, it does ultimately not matter whether we include the triangles.

When we pass from wild structure (which in the end is mostly an auxiliary concept) to well-behaved

structure, we will ask for a truncation condition which ensures that (47, 48) are propositions. Thus,

for 2-categories, it will be the case that the type with those triangles is equivalent to the type

without those triangles, i.e. we could omit them for the same reason as they are omitted in set-based

presentations of 2-categories.

Lemma 4.3. Given a wild 2-precategory without the two components (47, 48), elements of these
components are derivable.

Proof. Although our setting of wild structure seems to be mostly unknown in the literature,

the proof of this fact which can be found in textbooks on bicategories works for us. We give the

full argument in the arXiv version of this paper [Capriotti and Kraus 2017]. □

4.2 Degeneracies in Semisimplicial Types
Recall that a simplicial set can be described as a family (Xn)n∈N of sets, together with face maps

dni : Xn → Xn−1 (where n ≥ 1 and 0 ≤ i ≤ n) and degeneracy maps sni : Xn → Xn+1 (where n ≥ 0

and 0 ≤ i ≤ n), such that the following so-called simplicial identities are satisfied:

dn+1i ◦ dnj = d
n+1
j−1 ◦ d

n
i for i < j (50)

dni ◦ s
n−1
j = snj−1 ◦ d

n+1
i for i < j (51)

dni ◦ s
n−1
j = id for i = j or i = j + 1 (52)

dni ◦ s
n−1
j = snj ◦ d

n+1
i−1 for i > j + 1 (53)

sni ◦ s
n+1
j = snj+1 ◦ s

n+1
i for i ≤ j (54)

In our setting, we have already discussed the face maps in Section 2.3. Since the face maps are

simply projections, the identity (50) turns out to hold judgmentally. As our next step, we want to

define the notion of a degeneracy structure for a given semisimplicial type (A0, . . . ,An). We would

like to make the simplicial identities hold judgmentally, but since we cannot express this condition

as a type, it has to follow from a suitable encoding. We cannot define a structure of degeneracy

maps which makes all the simplicial identities hold, but fortunately, this is not a problem: the last

equation (54) bears no importance for our further plans.

Assume we have defined s ji for j < n. Observe that the equations (51, 52, 53) already determine the

complete boundary of the (n+1)-dimensional tetrahedron sni (x). Thus, the strategy for ensuring that
(51, 52, 53) hold is that we do not simply ask for functions ∆n → ∆n+1

, but instead for dependent

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 44. Publication date: January 2018.

44:18 Paolo Capriotti and Nicolai Kraus

functions that only choose a filler for the appropriate boundary. We are only interested in the cases

n ∈ {0, 1, 2}, for which this can be stated explicitly as follows:

Definition 4.4 (degeneracy structure). Assume we have a semisimplicial type (A0, . . . ,An). In the

following, we assume that n is at least 1 (or 2 or 3, respectively).

(1) A 1-degeneracy structure on the semisimplicial type is simply a function

s0
0
: (x0 : A0) → A1 (x0,x0). (55)

(2) A 2-degeneracy structure is s0
0
as above together with functions s1

0
and s1

1
of the following

types:

s1
0
: ((x0,x1,x01) : ∆1) → A2 (uS |S⊊ {0,1,2}) (56)

where u0 :≡ u1 :≡ x0; u2 :≡ x1; u01 :≡ s
0

0
(x0); u02 :≡ u12 :≡ x01

s1
1
: ((x0,x1,x01) : ∆1) → A2 (uS |S⊊ {0,1,2}) (57)

where u0 :≡ x0; u1 :≡ u2 :≡ x1; u01 :≡ u02 :≡ x01; u12 :≡ s
0

0
(x1).

(3) A 3-degeneracy structure is s0
0
, s1

0
, s1

1
as above together with functions s2

0
, s2

1
, s2

2
as follows:

s2
0
: (xS |S ⊆{0,1,2}) : ∆2) → A3 (uS |S⊊ {0,1,2,3}) (58)

where u0 :≡ u1 :≡ x0; u2 :≡ x1; u3 :≡ x2;

u01 :≡ s
0

0
(x0); u02 :≡ u12 :≡ x01; u03 :≡ u13 :≡ x02; u23 :≡ x12;

u012 :≡ s
1

0
(xS |S ⊆{0,1}); u013 :≡ s

1

0
(xS |S ⊆{0,2}); u023 :≡ x012

s2
1
: (xS |S ⊆{0,1,2}) : ∆2) → A3 (uS |S⊊ {0,1,2,3}) (59)

where u0 :≡ x0; u1 :≡ u2 :≡ x1; u3 :≡ x2;

u01 :≡ u02 :≡ x01; u12 :≡ s
0

0
(x1); u03 :≡ x02; u13 :≡ u23 :≡ s

0

0
(x1);

u012 :≡ s
1

1
(xS |S ⊆{0,1}); u013 :≡ u023 :≡ x012; u123 :≡ s

1

0
(xS |S ⊆{1,2})

s2
2
: (xS |S ⊆{0,1,2}) : ∆2) → A3 (uS |S⊊ {0,1,2,3}) (60)

where u0 :≡ x0; u1 :≡ x1; u2 :≡ u3 :≡ x2;

u01 :≡ x01; u02 :≡ u03 :≡ x02; u12 :≡ u13 :≡ x12; u23 :≡ s
0

0
(x2);

u012 :≡ u013 :≡ x012; u023 :≡ s
1

1
(xS |S ⊆{0,2}); u123 :≡ s

1

1
(xS |S ⊆{1,2}).

Definition 4.5 (semi-Segal type with degeneracies). For n ∈ {2, 3, 4}, we say that an n-restricted
semi-Segal type with degeneracies is ann-restricted semi-Segal type with (n−1)-degeneracy structure.

Remark 4.6. It is intentional that the degeneracy structure is of a lower level than the semi-

Segal strucure. For example, a 3-restricted semi-Segal type with degeneracies has a family A3 of

which the degeneracy structure does not make use. Intuitively, this is because the highest piece of

identity structure should only make use of the second-highest piece of composition structure: In

Definition 4.1, we see that the coherators of identity (47, 45, 48) do make use of the associator, but

not of its coherator (the pentagon). This will become clearer in Theorem 4.8 below.

4.3 Correspondence between Identities and Degeneracies
The following lemma makes use of the fact that an n-degeneracy structure already makes sense for

an n-restricted semi-Segal type (as suggested in Remark 4.6).

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 44. Publication date: January 2018.

Univalent Higher Categories via Complete Semi-Segal Types 44:19

Lemma 4.7. Under the equivalence constructed in Theorem 3.6, the identity structure on a reflexive-
transitive graph (a wild semicategory, a wild 2-semicategory) gets mapped to a 1 (2, 3)-degeneracy
structure of a 1 (2, 3)-restricted semi-Segal type.

Proof. The statement is trivial for the case of a transitive-reflexive graph. In our formalisation,

we have been very careful already when implementing the connection between wild semicategorical

structures and semi-Segal types, ensuring that the computational behaviour of this equivalence is

reasonably good so that the proof of Lemma 4.7 is formalisable without much effort. We omit the

full proof here and refer to the arXiv version of the paper [Capriotti and Kraus 2017], where the

proof is spelled out in detail. □

Lemma 4.7 immediately implies the following connection:

Theorem 4.8. The structures in Definition 4.1 are equivalent to the structures in Definition 4.5:

(1) The type of reflexive-transitive graphs is equivalent to the type of 2-restricted semi-Segal types
with degeneracies.

(2) The type of wild precategories is equivalent to the type of 3-restricted semi-Segal types with
degeneracies.

(3) The type of wild 2-precategories is equivalent to the type of 4-restricted semi-Segal types with
degeneracies. □

Corollary 4.9. Assume we have a 4-restricted semi-Segal type with degeneracies s0
0
, s1

0
, s1

1
, and s2

1
.

We can derive degeneracies s2
0
and s2

2
.

Proof. Translating via Theorem 4.8, this becomes the statement of Lemma 4.3. □

4.4 Uniqueness of the Identity Structure
Our usage of the attribute wild in notions such as wild semicategory indicates that higher levels of

the structure are not “controlled”; coherence is not guaranteed. To give an example, the λ and ρ of

a wild semicategory are not required to satisfy any further equality, as the corresponding rules are

only added when considering a wild 2-semicategory. The problems of wild structures are that they

are not preserved under certain operations. For example, given a wild semicategory and one of its

objects, one can in general not perform a slice construction which produces a wild semicategory

again. This is essentially the same effect that is visible in the usual theory of bicategories, where the

pentagon law is required to construct an associator for the slice bicategory. In our type-theoretic

setting, we can avoid wildness by requiring our structures to be truncated to ensure that all wanted

equalities hold. Thus, we define:

Definition 4.10 (dropping wildness). We define the following “non-wild” structures:

(1) A preordered set is a reflexive-transitive graph whereHom(x ,y) is a proposition for all objects

x ,y.
(2) A precategory is a wild precategory where Hom(x ,y) is always a set.
(3) A 2-precategory is a wild 2-precategory where Hom(x ,y) is always a 1-type.

If we have one of the wild structures without identities from Definition 3.1 (e.g. a wild semicat-

egory), it is not always be possible to equip it with an identity structure. This is to be expected:

for example, Hom could be the empty type everywhere. Even if it is possible to find an identity

structure, there is in general not a unique way of doing it. In other words, the type of identity

structures is not a proposition. However, it is a proposition if the type of morphisms is truncated at

an appropriate level. This can be phrased as follows:

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 44. Publication date: January 2018.

44:20 Paolo Capriotti and Nicolai Kraus

Theorem 4.11. There is at most one way to extend one of the wild structures of Definition 3.1 (2-4)
to the corresponding structure of Definition 4.10, in the following sense:
(1) Given a transitive graph, the structure needed to extend it to a preordered set inhabits a proposition.

(2) Similarly, for a wild semicategory, the structure which makes it a precategory inhabits a propo-
sition.

(3) Given a wild 2-semicategory, the structure required for a 2-precategory inhabits a proposition.

Proof. For (1), observe that the additional structure needed is

(Πx ,Hom(x ,x)) × Πxy, isProp(Hom(x ,y)). (61)

The second factor is a proposition, and an inhabitant of it implies that the first factor is a proposition

as well.

Property (2) is not much harder. The structure we need to add to a wild semicategory in order

to obtain a wild precategory are Id, λ, ρ, and a proof that Hom is a family of sets. That any two

instances Id, Id′ are equal follows as always in ordinary category theory when one wants to show

uniqueness of identity morphisms, via

Id
λ′Id
−1

= Id′ ◦ Id
ρId′
= Id′. (62)

The rest is an in (1), as if Hom is a family of sets, then λ and ρ inhabit propositions.

The final part (3) is a bit trickier. It can be found in detail in the arXiv version of this paper [Capri-

otti and Kraus 2017]. □

Definition 4.10 can be translated directly to the semisimplicial terminology:

Definition 4.12 (semi-Segal n-type). For n ∈ {0, 1, 2}, a semi-Segal n-type is an (n + 2)-restricted
semi-Segal type A where A1 is a family of (n − 1)-types.

Remark 4.13. Given a semi-Segal n-type, it is easy to see that Ai is a family of (n − i)-truncated
types for i ≥ 1. In particular, An+2 is a family of contractible types. Nevertheless, we do not want

to remove this seemingly trivial level from the definition, as it ensures that the horn-filling/Segal-

condition can be formulated uniformly.

The terminology semi-Segal n-type comes from the fact that later, after adding completeness,

the type A0 will be n-truncated. At the moment, we cannot draw this conclusion, and A0 could be

anything.

Theorem 4.11 implies immediately:

Corollary 4.14. Given an n-restricted semi-Segal type, where A1 is a family of (n − 3)-types, there
is at most one way to equip it with a degeneracy structure for n ∈ {2, 3, 4}. □

Before moving on to univalence, we want to mention a simple observation which explains the

possible confusing direction reversal of the rightmost vertical arrows in Figure 1. Note that, to

a semisimplicial type with degeneracies (or wild categorical structure), a truncation condition

and a univalence condition can be added independently of each other, both clearly preserving

the equivalence between the semisimplicial and the categorical construction. Thus, we hope the

connection of the following statement with the rightmost vertical arrows in Figure 1 is clear,

although the figure adds univalence before truncation.

Theorem 4.15. A wild 2-precategory can in a canonical way be seen as a wild precategory, which
can be seen as a reflexive-transitive graph. For the same structure with an added truncation condition

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 44. Publication date: January 2018.

Univalent Higher Categories via Complete Semi-Segal Types 44:21

as in Definition 4.10, this sequence is reversed: A preordered set can be seen as a precategory in a
canonical way, and analogously, a precategory is a 2-precategory.

Proof. The first part is of course given by the obvious projections. For the second part, note that

the components needed to move from a preordered set to a precategory are inhabitants of types

that are contractible due to the truncation condition of the preordered set. The identical argument

works for the step from precategories to 2-precategories. □

Of course, Theorem 4.15 translates easily to the formulation using semi-Segal types, where

(in the truncated case) the underlying semisimplicial type (A1, . . . ,An−1) is trivially extended by

choosing An to be the type family that is constantly 1.

4.5 Univalence
With identity and degeneracy structures at hand, we can define what it means for a morphism

(or an edge) to be an isomorphism. We then have two notions of “sameness” on objects, namely

isomorphism and equality. Following Ahrens et al. [2015], we can assume a univalence principle to

collapse these notions into a single one.

To do so, we first need to define what precisely we mean by an isomorphism. However, we need

to be careful: there are several ways in which this could be done, and not all of the are well-behaved.

Assume we are given a morphism f : Hom(x ,y) in a wild precategory. We want a proposition
isIso(f). The obvious definition (1) which says f is an isomorphism if there is a morphism д that

is both a left and a right inverse falls short of this requirement. It works for Ahrens et al. [2015]

only because they assume that Hom(x ,y) is always a set. In our more general setting, an obvious

approach is to mirror the definition of a bi-invertible map [Univalent Foundations Program 2013a,

Def. 4.2.7 ff.]:

Definition 4.16 (isomorphism in a reflexive-transitive graph). Given a morphism f : Hom(x ,y) in
a reflexive-transitive graph or wild (2-) precategory, we define the types of left and right inverses to
be

linv :≡ Σ (д : Hom(y,x)) ,д ◦ f = Idx and rinv :≡ Σ (д : Hom(y,x)) , f ◦ д = Idy . (63)

We say that f is an isomorphism if it has a left and a right inverse,

isIso(f) :≡ linv(f) × rinv(f). (64)

In the setting of semi-Segal types, this definition can be translated as follows:

Lemma 4.17. An edge e : A1 (x ,y) in a 2 (3,4)-restricted
semi-Segal type with degeneracies is an isomorphism

when regarded as a morphism of the corresponding
reflexive-transitive graph if and only if the Λ2

0
and Λ2

2
-

horns to the right both have contractible filling. 0 1

2

e

s0
0
(x)

0 1

2

s0
0
(y) e (65)

Proof. This is immediate from Corollary 3.13. □

While Definition 4.16 and Lemma 4.17 make sense for a reflexive-transitive graph and 2-restricted

semi-Segal type respectively, they are without further assumptions not very useful in these cases,

as not even the identities (or degeneracies) will be isomorphisms. However, either one more level

of structure or a truncation condition will be enough to make the definition of an isomorphism

well behaved.

Thus, if S is one of the structures of Definition 4.1 or Definition 4.5, we say that S is sufficient if
it either has at least 3 levels of structure (i.e. is a wild precategory or a 3-restricted semi-Segal type

with degeneracies), or if the morphisms/edges are a family of propositions.

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 44. Publication date: January 2018.

44:22 Paolo Capriotti and Nicolai Kraus

Lemma 4.18. Assume a sufficient structure. Then, for any x , the morphism Idx (or edge s0
0
(x)) is an

isomorphism.

Proof. In a wild precategory, the unitors imply that Idx is its own inverse, hence it is an

isomorphism. On the other hand, if A1 is a family of propositions, then every boundary of a

2-simplex has a contractible filling, hence so do the horns of Definition 4.17, with f set to s0
0
(x). □

We write x � y for Σ(f : Hom(x ,y)), isIso(f) or for Σ(f : A1 (x ,y)), isIso(f), respectively. We

have the familiar function

idtoiso : x = y → x � y, (66)

defined by path induction, making use of Lemma 4.18.

Definition 4.19 (univalence). A sufficient structure is called univalent if the function idtoiso is an

equivalence of types.

Using the developments of the current and the previous subsection, we are able to avoid two

threats to the well-behavedness of categorical structure. The first is the issue of wild structure, and

the second is the problem that we may have more than one notion of “sameness”. Thus, we can

record:

Definition 4.20 (well-behaved categorical structure). Combining a truncation condition with uni-

valence, we say:

(C1) A poset (or univalent 0-category) is a reflexive-transitive graph where Hom is a family of

propositions and the univalence condition is satisfied.

(C2) A univalent category is a univalent wild category where Hom is a family of sets.

(C3) A univalent 2-category is a univalent wild 2-category where Hom is a family of 1-types.

The corresponding semisimplicial constructions are the following:

(S1) A univalent semi-Segal set is a 2-restricted semi-Segal type with degeneracies where A1 is a

family of propositions, together with the univalence condition.

(S2) A univalent semi-Segal 1-type is a univalent 3-restricted semi-Segal type with degeneracies

such that the family A1 of edges is a family of sets.

(S3) A univalent semi-Segal 2-type is a univalent 4-restricted semi-Segal type with degeneracies

where A1 is a family of 1-types.

Regarding the terminology, observe that, in a univalent semi-Segal n-type (for n ∈ {0, 1, 2}), the
type A0 of points is an n-type. This is due to the argument familiar from [Ahrens et al. 2015] that

x = x is equivalent to the (n − 1)-type of isomorphisms in A1. We will discuss further related

observations in Remark 6.3.

Theorem 4.21. The two lists (C) and (S) in Definition 4.20 define equivalent structures. Posets
correspond to univalent semi-Segal sets, univalent categories to univalent semi-Segal 1-types, and
univalent 2-categories to univalent semi-Segal 2-types.

Proof. This is a simple extension of the equivalence in Theorem 4.8, to which truncation and

univalence condition are added on each side. □

We can finally explain the Figure 1 in full. In the third column (both front and back), we have

simply added the condition that the structure in question is univalent. In the last column, we

assume that the structure is truncated.

We also record:

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 44. Publication date: January 2018.

Univalent Higher Categories via Complete Semi-Segal Types 44:23

Theorem 4.22 (uniqeness of well-behaved categorical structure). Given an (n + 2)-
restricted semi-Segal type (n ∈ {0, 1, 2}), there is at most one way to equip it with the structure of a
univalent semi-Segal n-type. In other words, the type of structure which turns an (n + 2)-restricted
semi-Segal type into a univalent semi-Segal n-type is a proposition. The analogous statement holds for
reflexive-transitive graphs, for wild semicategories, and for wild 2-semicategories.

Proof. This follows by combining Theorem 4.11 with the fact that the univalence and truncation

conditions are propositions. □

5 COMPLETENESS
Completeness is, after the discussed conditions on horn fillers and truncation levels, the last missing

ingredient for a formulation of univalent higher categories which does not require an explicit

degeneracy structure. The results of this section (and of Theorem 4.11) are graphically presented in

Figure 2 on page 6.

Definition 5.1 (neutral edges). Let (A0, . . . ,An) be an n-restricted semi-Segal type (n ∈ {2, 3, 4}).
An edge e : A1 (a,b) is said to be right-neutral if every outer hornu : Λ2

0
withu01 ≡ e has contractible

horn filling, and left-neutral if every outer horn u : Λ2

2
with u02 ≡ e has contractible horn filling.

Finally, we say that e is neutral if it is both right-neutral and left-neutral, and write isNeutral(e)
for the corresponding proposition.

0 1

2

e

f

0 1

2

д e (67)

Graphically, we see that e is neutral by definition if

the horns to the right have contractible filling, for any f
which has a as domain and д which has b as codomain. If

we compare the situation to the one represented in (65),

we see that the only difference is that neutral edges have
outer horn fillers when combined with any morphism,

while for isomorphisms, a degeneracy is required.

If C is a transitive graph, a neutral morphism in C is a morphism that becomes a neutral edge

when C is regarded as a 2-restricted semi-Segal type. As explained above, neutral morphisms will

play the role of equivalences. This is made precise by the following two lemmata, the proofs of

which are fairly simple and can be found in the arXiv version of this paper [Capriotti and Kraus

2017].

Lemma 5.2. Let C = (Ob,Hom, _ ◦ _, Id) be a transitive graph. Then a morphism f : Hom(x ,y) in
C is right-neutral (resp. left-neutral) if and only if, for all objects z : Ob, composing with f gives an
equivalence Hom(y, z) → Hom(x , z) (resp. Hom(w,x) → Hom(w,y)). □

Lemma 5.3. Let C be a wild precategory. Then for any morphism f of C the two types isNeutral(f)
and isIso(f) are equivalent. In particular, isIso(f) is a proposition. □

Although we can fill arbitrary inner horns in a semi-Segal type (cf. Remark 3.10), nothing is

assumed about fillers of outer horns. The definition of neutral edge can then be interepreted as

saying that outer horns of the form Λ2

0
and Λ2

2
can be filled in a semi-Segal type, provided that

their critical edge is neutral, where the critical edge of an outer horn u : Λn
0
is u01, while the critical

edge of v : Λn
n is vn−1,n . More generally, neutral edges in critical positions allow us to fill higher

dimensional outer horns. The case that we need is the following:

Lemma 5.4. Let A be a 3-restricted semi-Segal type, and x : Λ3

0
be an outer horn where the critical

edge x01 is neutral. Then x has contractible filling.

Proof. This proof follows the same idea as the proof sketched in Remark 3.10. If x : Λ3

0
is an

outer horn where the critical edge is neutral, we want to show that the type P of pairs (x123,x0123)

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 44. Publication date: January 2018.

44:24 Paolo Capriotti and Nicolai Kraus

is contractible. Since x01 is a neutral edge, the type of pairs (x13,x013) is contractible. Therefore, P
is equivalent to the type of tuples (x13,x013,x123,x0123), which is again contractible, because it can

be regarded as a sequence of the two inner horn fillers (x13,x123) and (x013,x0123). □

With the notion of a neural edge at hand, we can finally formulate completeness. The usefulness
of this notion for semi-Segal spaces has been observed by Lurie [2009b] and Harpaz [2015]. Our

type-theoretic version is the following.

Definition 5.5 (completeness). An n-restricted (n ∈ {2, 3, 4}) semi-Segal type A ≡ (A0, . . . ,An) is
complete if, for every point x , there is a unique neutral morphism with codomain x :

Π(x : A0), isContr (Σ(y : A0), (e : A1 (y,x)), isNeutral(e)) . (68)

As said earlier, completeness is equivalent to univalence whenever the latter makes sense.

Lemma 5.6. Let A be a 3-restricted (or 4-restricted) semi-Segal type with degeneracies. Then A is
complete if and only if it is univalent as a wild precategory.

Proof. Fix a point x : A0. For any point y : A0, we have a sequence of functions

(x = y) Σ(e : A1 (x ,y)), isIso(e) Σ(e : A1 (x ,y)), isNeutral(e)
idtoiso isotoneut (69)

where the second function is defined and an equivalence by Lemma 5.3. If we pass to the total

spaces as in [Univalent Foundations Program 2013a, Definition 4.7.5], we get a function

total(isotoneut ◦ idtoiso) : Σ(y : A0),x = y −→ Σ(y : A0), (e : A1 (x ,y)), isNeutral(e). (70)

Since its domain is a singleton, (70) is an equivalence for all x if and only if Σ(y : A0), (e :

A1 (x ,y)), isNeutral(e) is always contractible, i.e. if and only if A is complete. At the same time, (70)

is an equivalence if and only if isotoneut ◦ idtoiso is an equivalence by [Univalent Foundations

Program 2013a, Theorem 4.7.7], thus by 2-out-of-3 exactly if idtoiso is an equivalence for all x ,y. □

Perhaps surprisingly, one can always construct a degeneracy structure for a complete semi-Segal

type.

Lemma 5.7. LetA be a 2-restricted complete semi-Segal type. ThenA admits a 1-degeneracy structure.

Proof. We need to show that for every point y : A0, there exists an edge s0
0
(y) : A1 (y,y). By

completeness, we can find a point x : A0 and a neutral edge e : A1 (x ,y). Now consider the horn

u : Λ2

0
, where u01 :≡ u02 :≡ e . Since e is neutral, we can fill u to a full triangle which we denote by

S0
0
(y). Observe that the face (S0

0
(y))12 gives us an edge in A1 (u1,u2) ≡ A1 (y,y), and we define s0

0
(y)

to be this edge. □

Lemma 5.8. LetA be a 3-restricted complete semi-Segal type. ThenA admits a 2-degeneracy structure.

Proof. We need to construct s1
0
and s1

1
. Let f : A1 (x ,y) and д : A1 (y, z) be two edges in A. In

both figures, the triangle composed of e’s and s0
0
(y) is the triangle S0

0
(y) constructed in the previous

lemma.

In the left diagram, let p : ∆2
be the triangle we get by

filling the Λ2

1
-horn given by e , д (i.e. we have p01 ≡ e

and p12 ≡ д). We can define a Λ3

0
-horn u by setting

u013 :≡ u023 :≡ p, and u012 :≡ S0
0
(y). By Lemma 5.4

we can fill u, giving us a full tetrahedron S1
0
(д) : ∆3

,

and we set s1
0
(д) to be the triangle filler provided by

(S1
0
(д))123.

3

1 2

0

e e

д д

s0
0
(y)

0

1

2 3

f f

e e

s0
0
(y)

q01

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 44. Publication date: January 2018.

Univalent Higher Categories via Complete Semi-Segal Types 44:25

In the right diagram, we first fill the Λ2

2
-horn determined by e and f , giving us q : ∆2

with

q02 ≡ f and q12 ≡ e , and q01 as shown in the diagram. We define a Λ3

1
-horn v by v012 :≡ v013 :≡ q

and by choosing v123 :≡ S0
0
(y). The filler for the horn v gives us a full tetrahedron S1

1
(f) : ∆3

, and

we define s1
1
(f) to be the filler given by the face (S1

1
(f))023. □

Lemma 5.9. LetA be a 4-restricted complete semi-Segal type. ThenA admits a 3-degeneracy structure.

Proof. We can use a strategy similar to the one employed in the previous lemmata. The argument

is spelled out in the arXiv version of this article [Capriotti and Kraus 2017]. □

Corollary 5.10. Any wild complete n-semicategory (n ∈ {0, 1, 2}) can be equipped with an identity
structure. □

6 CONCLUSIONS
We have given definitions of categorical structures in HoTT based on semi-simplicial types and

proved that they are equivalent to existing notions of univalent categories [Ahrens et al. 2015].

Putting pieces together, the main new notion that we consider is that of a complete semi-Segal
n-type, which we formally only have defined for n ∈ {0, 1, 2}. Unfolded, it can be stated as:

Definition 6.1 (complete semi-Segal n-type). A complete semi-Segal n-type is semisimplicial type

(A0, . . . ,An+2), equipped with three properties: First, all Λk
1
-horns (k ≥ 2) have contractible filling.

Second, completeness is satisfied. Third, A1 is a family of (n − 1)-types.

The remarkable feature of this definition is that each of the three properties is a proposition. We

present our main result as follows:

Theorem 6.2. The type of complete semi-Segal n-types is equivalent to the type of univalent

n-categories, for n ∈ {0, 1, 2}.

Proof. Theorem 4.21 says that univalent n-categories are the same as univalent semi-Segal

n-types. Univalent semi-Segal n-types are, by definition, (n + 2)-restricted semi-Segal types with

degeneracies, with a univalence condition, and the condition that A1 is a family of (n − 1)-types.
By Lemma 5.6, we can substitute the univalence condition by a completeness condition, without

changing the type up to equivalence. Corollary 4.14 guarantees that the type corresponding to the

degeneracy structure is a proposition. By Lemmata 5.7, 5.8, and 5.9, this type is inhabited, therefore

contractible, hence we can remove the condition. What remains is exactly the type of complete

semi-Segal n-types. □

Thanks to the theorem, we propose to employ this notion of complete semi-Segal n-type as the
definition of a univalent n-category. Of course, it is not yet clear whether this particular model of

(n, 1)-category will turn out to be practically useful in the development of HoTT. One problem

with our approach is that, due to the well-known limitations about representing semi-simplicial

types or any form of infinite tower of coherences internally in HoTT, we cannot state Definition 6.1

for a variable n : N. If however we are confronted with a concrete problem for which we want

to use higher categories, and we know a fixed n0 such that univalent n0-categories are sufficient,

then we can express the definition internally in HoTT and, for example, formalise the argument in

Agda [Norell 2007], Coq [Bertot and Castéran 2004], or Lean [de Moura et al. 2015].

To make full use of this notion of univalent n-categories, their theory needs to be developed.

If one is happy to work in a stronger system extending HoTT such as HTS [Voevodsky 2013] or

two-level type theory [Altenkirch et al. 2016], the general case (including univalent∞-categories)

can be formalised and studied. We have started to translate some results by Lurie [2009a] into

our setting and at least in parts this works very nicely, but it is at the time of writing too early to

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 44. Publication date: January 2018.

44:26 Paolo Capriotti and Nicolai Kraus

further report on this. A very preliminary demonstration is given by Annenkov et al. [2017], where

the basic results about Reedy fibrant semisimplicial types were formalised by embedding two-level

type theory in the proof assistant Lean. Thanks to the conservativity results by Capriotti [2016],

such results can at least for a fixed n0 < ∞ be “transported back” to pure HoTT, although the details

of this translation are still subject to ongoing research. For all concrete constructions which we

have performed, we found it easy to do this translation by hand. For example, Annenkov et al.

[2017] show that the type universe is an (∞, 1)-category, and it is clear that the given construction

can be used to see how the universe restricted to (n − 1)-types is a univalent n-category; it can
probably be regarded as the prototypical example.

Independently of this, a natural question seems to be whether the definition of n-categories
using explicit composition and identity structure (as in Section 3 and 4) can be done for n > 2, and

whether Theorem 6.2 can be extended to this case. For concrete and very low n (3 and possibly

4), one should with enough patience be able to write down the appropriate definitions and work

out whether they are equivalent. For the more general case however, the combinatorial aspects of

higher associahedra require much more sophistication, and, to the best of the authors’ knowledge,

have not yet been worked out in a context that is general enough to be applicable to HoTT. If one

managed to find a representation of n-categories with explicit composition and identities (for any

externally fixed n), it seems plausible that a version of Theorem 6.2 could be shown. However this

is in no way guaranteed, since phenomena occurring at higher levels, like the fact that a tricategory

is in general not equivalent to a strict 3-category, do not show up in the cases n ≤ 2 which we have

dealt with.

What we know is that we can always construct a degeneracy structure for a given complete semi-

Segal n-type A. We do not show this in the current paper (where the whole technical development

is restricted to the case n ≤ 2), but it follows with the help of the argument sketched by Kraus

and Sattler [2017] (Theorem 5.1(2), where the index category I is instantiated with a finite total

order and T is replaced by A) and shows that Lemmata 5.7-5.9 can be done for general n. As soon
as one has a degeneracy structure, it is easy to see that there is some flexibility in the formulation

of Definition 6.1. For emphasis, we formulate this as a remark:

Remark 6.3 (equivalent definitions of complete semi-Segal n-types). If (A0, . . . ,An+2) is a semi-

Segal type satisfying the completeness condition, andAi+1 is a family of k-types, thenAi is a family

of (k + 1)-types. As Remark 4.13 suggests, the reverse is true as long as i ≥ 1. Thus, the truncation

condition of Definition 6.1 could equivalently be formulated by fixing any i with 1 ≤ i ≤ n + 2 and
saying thatAi is a family of (n−i)-types. We have done this using i :≡ 1. The other canonical choice

would have been i :≡ n + 2. Note that stating the truncation condition only for i ≡ 0 is insufficient,

which seems to be a weakness of the suggestion by Schreiber [2012]. Alternative ways of phrasing

the Segal condition have been discussed in Remark 3.10; the version proposed by Schreiber [2012]

is ∆p → Spp being an equivalence.

Another interesting question is whether Corollary 4.14 holds for n > 2, i.e. whether an ap-

propriately truncated restricted (but not necessarily complete) semi-Segal type has at most one

degeneracy structure. We have not worked out a proof for this. It is not even clear to us whether a

complete semi-Segal n-type necessarily has a contractible degeneracy structure for n > 2. Although

the mentioned argument of Kraus and Sattler [2017] does give us more than a degeneracy structure,

namely the contractibility of a certain type, this type is something like a “double degeneracy

structure” rather than a degeneracy structure.

Moreover, note that our notion of degeneracy structure does not take the simplicial identity (54),

i.e. ski ◦ s
k+1
j = skj+1, into account. For the considered case of a complete semi-Segal 2-type, Christian

Sattler has pointed out to us that the first instance of this equation would be an equation in A2

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 44. Publication date: January 2018.

Univalent Higher Categories via Complete Semi-Segal Types 44:27

and thus a proposition. Therefore, it is possible that the absence of (54) remained unnoticed for

the cases we have considered but would play a role on later levels. However, we do not think that

this consideration is a problem for Definition 6.1, which we believe gives a well-behaved structure

without requiring us to decide which notion of degeneracies is “correct”.

To continue with the discussion of the omitted simplicial identity (54), note that the very first

instance of it would, when translated to the terminology of wild 2-precategories, give an equation

λId = ρId. If we look at Remark 4.2, one might argue that such an equation does live at the “same

level” as t0 and t2, see (47,48), and should therefore have been included in Definition 4.4. We think

the difference is that, unlike (47,48), the coherence λId = ρId never has to be mentioned in the

definition of higher categories (e.g. it is absent in the set-based definition of tricategories by Gurski

[2007]) since the one derivable from the triangle coherences is automatically coherent in some

sense.

Even the restriction to 2-categories that we have discussed in this paper already allows the

formulation of many interesting examples of categorical structures in HoTT that were previously not

obtainable, such as the category of univalent categories (not capturing all natural transformations),

and (the “homwise” core of) the bicategory of spans of a finitely complete univalent category. For

1-categories, we note that completeness enables a slick representation of univalent categories, since

we only need objects, sets of morphisms, composition, associativity, and completeness. It is possible

that this definition is convenient for the development of standard category theory in HoTT, but we

have not investigated the idea.

The restriction to low dimensions also allowed us to produce a formalisation in the proof assistant

Agda which is reasonably close to the informal text. Our formalisation is based on the HoTT core

library agda-base by the first named author, and covers all the equivalences presented in Figure 1.

This means that we have in particular formalised the equivalences of n-restricted semi-Segal types

and wild n-semicategories (n ∈ {0, 1, 2}) in full, as well as the respective equivalence of degeneracy

and identity structures. The equivalences have been carefully constructed so that they “compute”

in the expected way. For example, the equality (34) of Corollary 3.13 holds judgmentally.

Higher categories are clearly related to directed type theory [Licata and Harper 2011; Nuyts

2015], where one considers theories that have types corresponding to ∞-categories rather than

∞-groupoids. Recent work by Riehl and Shulman [2017] considers categories (externally) that are

equipped with a “directed interval”, such as bisimplicial sets, and uses an enriched version of the

language of HoTT to give a definition of Segal and Rezk types. In comparison, we use “standard”

HoTT and look at semi-Segal objects there, in the conventional sense. One possible way to relate the

two approaches would be to say that our construction can be regarded as a way to give a semantics

to the theory by Riehl and Shulman [2017] based on a model of “standard” HoTT, although this is

currently a vague statement and a significant amount of work would be required to make it precise.

ACKNOWLEDGMENTS
We would like to thank Christian Sattler for countless insightful discussions on topics related to

this work, and for helpful comments on an earlier draft. We are also grateful to Thorsten Altenkirch

for many inspiring conversations on type-theretic∞-categories, as well as to Andreas Nuyts for

a discussion which motivated us to write this paper. Further, we thank Gershom Bazerman and

Ulrik Buchholtz for their comments on an earlier draft, as well as the anonymous referees for their

throughout reviews that have helped us to improve clarity and motivation. Finally, we thank Lars

Birkedal who checked the final version of this article. While working on this paper, Paolo Capriotti

has been supported by USAF, Airforce Office for Scientific Research, award FA9550-16-1-0029, and

Nicolai Kraus by the Engineering and Physical Sciences Research Council (EPSRC), grant reference

EP/M016994/1.

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 44. Publication date: January 2018.

44:28 Paolo Capriotti and Nicolai Kraus

REFERENCES
Benedikt Ahrens, Krzysztof Kapulkin, and Michael Shulman. 2015. Univalent Categories and the Rezk Completion.

Mathematical Structures in Computer Science (MSCS) (Jan 2015), 1–30. https://doi.org/10.1007/978-3-319-21284-5_14

Thorsten Altenkirch, Paolo Capriotti, and Nicolai Kraus. 2016. Extending Homotopy Type Theory with Strict Equality.

In 25th EACSL Annual Conference on Computer Science Logic (CSL 2016), Jean-Marc Talbot and Laurent Regnier (Eds.),

Vol. 62. Dagstuhl, Germany, 21:1–21:17. https://doi.org/10.4230/LIPIcs.CSL.2016.21

Danil Annenkov, Paolo Capriotti, and Nicolai Kraus. 2017. Two-Level Type Theory and Applications. Arxiv e-prints (2017).
http://arxiv.org/abs/1705.03307

Steve Awodey and Michael A. Warren. 2008. Homotopy theoretic models of identity types. Mathematical Proceedings of the
Cambridge Philosophical Society 146, 01 (Jul 2008), 45. https://doi.org/10.1017/s0305004108001783

John C. Baez and James Dolan. 1998. Higher-Dimensional Algebra III: n-Categories and the Algebra of Opetopes. Advances
in Mathematics 135, 145–206. https://doi.org/10.1006/aima.1997.1695

Michael Batanin. 1998. Monoidal Globular Categories As a Natural Environment for the Theory of Weakn-Categories.

Advances in Mathematics 136, 1 (1998), 39 – 103. https://doi.org/10.1006/aima.1998.1724

Julia E. Bergner. 2010. A Survey of (∞, 1)-Categories. Springer New York, New York, NY, 69–83. https://doi.org/10.1007/

978-1-4419-1524-5_2

Yves Bertot and Pierre Castéran. 2004. Interactive Theorem Proving and Program Development. Coq’Art: The Calculus of
Inductive Constructions. Springer Verlag.

J. M. Boardman and R. M. Vogt. 1973. Homotopy invariant algebraic structures on topological spaces. Springer-Verlag, Berlin.
257 pages. https://doi.org/10.1007/BFb0068547

Paolo Capriotti. 2016. Models of Type Theory with Strict Equality. Ph.D. Dissertation. School of Computer Science, University

of Nottingham, Nottingham, UK. Available online at https://arxiv.org/abs/1702.04912.

Paolo Capriotti and Nicolai Kraus. 2017. Univalent Higher Categories via Complete Semi-Segal Types. ArXiv e-prints (2017).
arXiv:1707.03693 https://arxiv.org/abs/1707.03693 Version with full proofs.

James Cranch. 2013. Concrete Categories in Homotopy Type Theory. (Nov 2013). http://arxiv.org/abs/1311.1852

Leonardo de Moura, Soonho Kong, Jeremy Avigad, Floris van Doorn, and Jakob von Raumer. 2015. The Lean Theorem

Prover. In Automated Deduction - CADE-25, 25th International Conference on Automated Deduction. https://doi.org/10.
1007/978-3-319-21401-6_26

Eric Finster and Samuel Mimram. 2017. A type-theoretical definition of weak ω-categories. In 32nd Annual ACM/IEEE
Symposium on Logic in Computer Science, LICS 2017, Reykjavik, Iceland, June 20-23, 2017. 1–12. https://doi.org/10.1109/
LICS.2017.8005124

Nick Gurski. 2007. An algebraic theory of tricategories. Ph.D. Dissertation. University of Chicago. Available online at

http://www.math.yale.edu/~mg622/tricats.pdf.

Yonatan Harpaz. 2015. Quasi-unital ∞–categories. Algebraic & Geometric Topology 15, 4 (2015), 2303–2381. https:

//doi.org/10.2140/agt.2015.15.2303

André Joyal. 1997. Disks, duality and Θ-categories. (1997). Unpublished note, available online at https://ncatlab.org/nlab/

files/JoyalThetaCategories.pdf.

André Joyal. 2002. Quasi-categories and Kan complexes. Journal of Pure and Applied Algebra 175, 1 (2002), 207–222.

https://doi.org/10.1016/S0022-4049(02)00135-4

André Joyal. 2008. The theory of quasi-categories and its applications, from "Advanced course on simplicial methods in

higher categories". Quaderns 45 (2008).
Nicolai Kraus and Christian Sattler. 2017. Space-Valued Diagrams, Type-Theoretically (Extended Abstract). ArXiv e-prints

(2017). arXiv:1704.04543v1 https://arxiv.org/abs/1704.04543v1

Tom Leinster. 2004. Higher Operads, Higher Categories. Cambridge University Press. Also available online at http:

//arxiv.org/abs/math.CT/0305049.

Daniel R. Licata and Robert Harper. 2011. 2-Dimensional Directed Type Theory. Electronic Notes in Theoretical Computer
Science 276 (2011), 263 – 289. https://doi.org/10.1016/j.entcs.2011.09.026 Twenty-seventh Conference on the Mathematical

Foundations of Programming Semantics (MFPS XXVII).

Jacob Lurie. 2009a. Higher Topos Theory. Princeton University Press, Princeton. Also avaialabe online at http://arxiv.org/

abs/math/0608040.

Jacob Lurie. 2009b. On the classification of topological field theories. Current developments in mathematics 2008 (2009),
129–280.

Ulf Norell. 2007. Towards a practical programming language based on dependent type theory. Ph.D. Dissertation. Department

of Computer Science and Engineering, Chalmers University of Technology and Göteborg University, Göteborg, Sweden.

http://www.cs.chalmers.se/~ulfn/papers/thesis.html

Andreas Nuyts. 2015. Towards a Directed Homotopy Type Theory based on 4 Kinds of Variance. (2015). Master thesis,

available online at https://distrinet.cs.kuleuven.be/people/andreasn.

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 44. Publication date: January 2018.

https://doi.org/10.1007/978-3-319-21284-5_14
https://doi.org/10.4230/LIPIcs.CSL.2016.21
http://arxiv.org/abs/1705.03307
https://doi.org/10.1017/s0305004108001783
https://doi.org/10.1006/aima.1997.1695
https://doi.org/10.1006/aima.1998.1724
https://doi.org/10.1007/978-1-4419-1524-5_2
https://doi.org/10.1007/978-1-4419-1524-5_2
https://doi.org/10.1007/BFb0068547
https://arxiv.org/abs/1702.04912
http://arxiv.org/abs/1707.03693
https://arxiv.org/abs/1707.03693
http://arxiv.org/abs/1311.1852
https://doi.org/10.1007/978-3-319-21401-6_26
https://doi.org/10.1007/978-3-319-21401-6_26
https://doi.org/10.1109/LICS.2017.8005124
https://doi.org/10.1109/LICS.2017.8005124
http://www.math.yale.edu/~mg622/tricats.pdf
https://doi.org/10.2140/agt.2015.15.2303
https://doi.org/10.2140/agt.2015.15.2303
https://ncatlab.org/nlab/files/JoyalThetaCategories.pdf
https://ncatlab.org/nlab/files/JoyalThetaCategories.pdf
https://doi.org/10.1016/S0022-4049(02)00135-4
http://arxiv.org/abs/1704.04543v1
https://arxiv.org/abs/1704.04543v1
http://arxiv.org/abs/math.CT/0305049
http://arxiv.org/abs/math.CT/0305049
https://doi.org/10.1016/j.entcs.2011.09.026
http://arxiv.org/abs/math/0608040
http://arxiv.org/abs/math/0608040
http://www.cs.chalmers.se/~ulfn/papers/thesis.html
https://distrinet.cs.kuleuven.be/people/andreasn

Univalent Higher Categories via Complete Semi-Segal Types 44:29

Christopher Reedy. 1974. Homotopy theory of model categories. (1974).

Emily Riehl and Michael Shulman. 2017. A type theory for synthetic∞-categories. Arxiv e-prints (2017). https://arxiv.org/
abs/1705.07442

Urs Schreiber. 2012. Category object in an (infinity,1)-category, Revision 20. nLab entry, https://ncatlab.org/nlab/revision/

category+object+in+an+%28infinity%2C1%29-category/20; newest version available at https://ncatlab.org/nlab/show/

category+object+in+an+%28infinity%2C1%29-category.

Michael Shulman. 2015. Univalence for Inverse Diagrams and Homotopy Canonicity. Mathematical Structures in Computer
Science (Jan 2015), 1–75. https://doi.org/10.1017/S0960129514000565

Ross Street. 1987. The algebra of oriented simplexes. Journal of Pure and Applied Algebra 49, 3 (1987), 283 – 335. https:

//doi.org/10.1016/0022-4049(87)90137-X

Zouhair Tamsamani. 1999. Sur des notions de n-catégorie et n-groupoïde non strictes via des ensembles multi-simpliciaux. Ph.D.
Dissertation.

Dimitris Tsementzis. 2016. First-Order Logic with Isomorphism. ArXiv e-prints (2016). arXiv:1603.03092 https://arxiv.org/
abs/1603.03092

The Univalent Foundations Program. 2013a. Homotopy Type Theory: Univalent Foundations of Mathematics. http:

//homotopytypetheory.org/book/, Institute for Advanced Study.

The Univalent Foundations Program. 2013b. Semi-simplicial types. Wiki page of the Univalent Foundations project at the

Institute for Advanced Studies, https://uf-ias-2012.wikispaces.com/Semi-simplicial+types.

Dominic Verity. 2006. Weak complicial sets, a simplicial weak omega-category theory. Part I: basic homotopy theory. (April

2006). https://arxiv.org/abs/math/0604414

Vladimir Voevodsky. 2013. A simple type system with two identity types. Unpublished note.

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 44. Publication date: January 2018.

https://arxiv.org/abs/1705.07442
https://arxiv.org/abs/1705.07442
https://ncatlab.org/nlab/revision/category+object+in+an+%28infinity%2C1%29-category/20
https://ncatlab.org/nlab/revision/category+object+in+an+%28infinity%2C1%29-category/20
https://ncatlab.org/nlab/show/category+object+in+an+%28infinity%2C1%29-category
https://ncatlab.org/nlab/show/category+object+in+an+%28infinity%2C1%29-category
https://doi.org/10.1017/S0960129514000565
https://doi.org/10.1016/0022-4049(87)90137-X
https://doi.org/10.1016/0022-4049(87)90137-X
http://arxiv.org/abs/1603.03092
https://arxiv.org/abs/1603.03092
https://arxiv.org/abs/1603.03092
http://homotopytypetheory.org/book/
http://homotopytypetheory.org/book/
https://uf-ias-2012.wikispaces.com/Semi-simplicial+types
https://arxiv.org/abs/math/0604414

	Abstract
	1 Introduction
	2 Type Theory, Univalent Categories, and Semisimplicial Types
	2.1 Homotopy Type Theory
	2.2 Univalent Categories
	2.3 Semisimplicial Types

	3 Composition Structure and Horn Fillers
	3.1 Wild Semicategories
	3.2 Semi-Segal Types
	3.3 Interlude: On Horns, Spines, and Tetrahedra
	3.4 Equivalence of the Structures

	4 Identity and Degeneracy Structure
	4.1 Identities for Wild Semicategories
	4.2 Degeneracies in Semisimplicial Types
	4.3 Correspondence between Identities and Degeneracies
	4.4 Uniqueness of the Identity Structure
	4.5 Univalence

	5 Completeness
	6 Conclusions
	Acknowledgments
	References

