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Abstract 26	

Tool use is an important facet of everyday life, though sometimes it is necessary to use 27	

tools in ways that do not fit within their typical functions. Here we asked participants to 28	

imagine characters using objects based on instructions that fit the prototypical actions for 29	

the object or were atypical in a novel object-action imagery task. Atypical action 30	

instructions either described sensible, substitute uses of the object, or actions that were 31	

bizarre but possible. Participants were better able to imagine the prototypical than 32	

atypical actions, but no effect of bizarreness was found. We additionally assessed inter-33	

individual differences in movement imagery ability using two objective tests. 34	

Performance in the object-action imagery task correlated with the movement imagery 35	

tests, providing a link between motor simulations and mental imagery ability. 36	

 37	

Keywords:  38	
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Introduction 40	

Everyday we use objects to facilitate our ability to accomplish goal-directed actions, 41	

spanning everything from eating and writing, to cooking and playing sports. Though the 42	

use of man-made artifacts, i.e., tools, to accomplish everyday tasks may appear to be a 43	

modern advancement, there is evidence that hominins have been using tools for several 44	

million years (Harmand et al., 2015). Indeed, the use of man-made tools and their 45	

associated sequences of goal-directed actions have been suggested as having a direct 46	

relationship with the development of human cognition (Davidson, 2010; Stout, 2011). 47	

Here we investigated how the typicality of instructed actions involving tools can 48	

influence mental imagery performance. Further, we examined how this measure of tool-49	

related imagery performance would relate to questionnaire measures of inter-individual 50	

differences in motor imagery ability. 51	

Generally, objects can be used to accomplish multiple goal-directed actions; some 52	

actions fit the prototypical use of the object, others may be possible as a substitute use of 53	

the object when a more suitable option is not available. Other actions may also be 54	

accomplished, but do not necessarily make sense. Considering a baseball bat as the 55	

object, the prototypical action would be to swing it with two hands (prototypical), but it 56	

can also be used as a walking support if a cane is not available (substitute; cf. variable 57	

affordances1 [Borghi & Riggio, 2015]). A person could also bite into a baseball bat; 58	

																																																								
1 While the use of an object for a substitute function constitutes a variable affordance 

(Borghi & Riggio, 2015), we also think that the term ‘affordance’ should be used in 

reference to physical objects and is generally not suitable for images of objects (see 

Madan et al., 2016, for a detailed discussion). 
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though possible, this would be a bizarre action. This approach of dissociating objects 59	

from their prototypical action manipulation has been a focus of recent research (e.g., 60	

Matheson et al., 2017; Mizelle & Wheaton, 2010a, 2010b; Mizelle et al., 2013; Tobia & 61	

Madan, 2017) and converges with work demonstrating dissociations between functional 62	

and manipulation knowledge of objects (e.g., Boronat et al., 2005; Buxbaum et al., 2000; 63	

Buxbaum & Saffran, 2002; Garcea & Mahon, 2012; Guérard et al., 2015). We expected 64	

that people should perform better at imagining goal-directed actions that are prototypical 65	

than atypical. Predictions for a comparison between atypical types of actions, i.e., 66	

substitute vs. bizarre, were not as clear. While atypical, substitute actions are still 67	

plausible and thus may be more easily imagined than bizarre actions. However, bizarre 68	

visual imagery is known to be more distinctive and can be more vivid, known as the 69	

bizarreness effect (Anderson & Buyer, 1994; McDaniel & Einstein, 1986). As a result, 70	

bizarre actions may be imagined better than substitute actions. However, it has been also 71	

shown that bizarre imagery is more difficult and can only be effective if sufficient time is 72	

given (Mercer, 1996; Toyota, 2002), which may also result in worse performance on 73	

these trials. 74	

We additionally were interested if performance in this object-action imagery task 75	

related to inter-individual ability in movement imagery. In other words, would 76	

participants who were generally better at movement imagery perform better at imagining 77	

these goal-oriented actions? To investigate this, we administered the Test of Ability in 78	

Movement Imagery (TAMI; Madan & Singhal, 2013, 2014) and the Florida Praxis 79	

Imagery Questionnaire (FPIQ; Ochipa et al., 1997). The TAMI involves imagining 80	

moving limbs and involves a comparable scale of movement imagery as the object-action 81	
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imagery task that was primarily of interest. However, actions in the TAMI are not goal-82	

oriented (i.e., intransitive). Thus, any shared processes between the two tasks are related 83	

to the movement imagery features, rather than the goal-directed properties. The FPIQ was 84	

designed for patients with apraxia (Ochipa et al., 1997), and only recently has been 85	

shown to be useful as a measure of movement imagery ability (Donoff et al., 2018; 86	

Madan & Singhal, 2013, 2014). Unlike the TAMI, the FPIQ indexes both transitive (i.e., 87	

goal-directed) and intransitive movement imagery processes, through four subscales. 88	

However, the FPIQ has not yet been used to examine inter-individual differences in a 89	

cognitive task (McAvinue & Robertson, 2008). 90	

To summarize, in the current study we asked participants to imagine the presented 91	

character shown using a specified object for a prescribed action. As the critical 92	

manipulation, actions corresponded to either prototypical or atypical uses of the object. 93	

This influence of action typicality on mental imagery would provide insight into the 94	

functional knowledge on imagery processes, particularly those relevant to motor 95	

simulations. Furthermore, an effect of bizarreness on action-related imagery may be 96	

useful in understanding the degree by which imagined actions correspond to semantic 97	

knowledge. With the additional inclusion of mental imagery questionnaires, namely the 98	

TAMI and FPIQ, we sought to bridge this object-action imagery task with work 99	

examining inter-individual ability in movement imagery. The FPIQ was initially designed 100	

for assessing apraxia, but here we aim to evaluate its use within healthy individuals as a 101	

correlate of motor simulation processes. However, as the FPIQ has yet to be used in this 102	

way, we may find that it is not relevant or sensitive enough for these purposes. Unlike the 103	

object-imagery task and the FPIQ, the TAMI does not involve goal-oriented imagery, but 104	
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does involve body-position imagery and shares processes relevant to motor simulation, 105	

extending the TAMI’s use from only being relevant in assessing movement imagery 106	

ability. 107	

  108	

Methods 109	

Participants 110	

A total of 45 undergraduate students (19.73 ± 1.94 [M ± SD] years old; 23 female; 42 111	

right-handed) enrolled in an introductory psychology course at the University of Alberta 112	

participated for partial course credit. Participants gave written informed consent prior to 113	

beginning the study, which was approved by a University of Alberta Research Ethics 114	

Board. 115	

 116	

Materials 117	

Object images were chosen from a set of normative objects from the Bank of 118	

Standardized Stimuli (BOSS) (Brodeur et al., 2010, 2014; Guérard et al., 2015). Objects 119	

were selected such that they would be relatively high in motoric properties, while also 120	

being amenable to atypical-substitute actions. We selected objects from the 560 objects 121	

where Guérard et al. (2015) obtained ratings for graspability, ease of movement, ease of 122	

pantomime, and number of actions. The first three of these scales were 7-point Likert 123	

scales, , i.e., values ranged from 1 to 7, with higher numbers corresponding to increasing 124	

object manipulability. Number of actions was the mean rating and ranged from 0.05 to 125	

4.60, for the full database of 560 objects. For the 112 selected objects, ratings were as 126	
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follows [M ± SD]: graspability=6.74±0.59; ease of movement=6.74±0.46; ease of 127	

pantomime=5.77±1.05; number of actions=1.47±0.29. 128	

Characters were made in Daz Studio 3 (DAZ 3D Inc., Draper, UT) using the 129	

Victoria 4.2 (female) and Michael 4.0 (male) base models. Each character had a unique 130	

set of clothes and hairstyle. A total of 80 characters were made, and were rendered in 131	

poses corresponding to prototypical actions for each of the 112 selected objects, as well 132	

as a pose where the character was standing straight with their arms at their sides. 133	

 134	

Procedure 135	

The experiment consisted of a computerized imagery task, followed by several pencil-136	

and-paper movement imagery questionnaires.  137	

 138	

Object-action imagery task. Participants were instructed that they would be required to 139	

imagine a scene based on the provided images and instructions, from a third-person 140	

(allocentric) perspective. On each trial, participants were presented with a character, 141	

object, and action instruction for 8000 ms. The name of the object was presented under 142	

the object image to attenuate any potential issues with identifying the object. Across the 143	

80 trials, the character was male for 40 trials and female for the remaining 40 trials. The 144	

screen then went blank for 2000 ms. Next, participants viewed a response screen that 145	

presented them with a 3×3 grid of potential responses, showing three different characters 146	

in three distinct poses. Responses were numbered and participants selected a response by 147	

presenting the corresponding 1-9 key on the number pad portion of the computer 148	

keyboard. Participants were also instructed that they could respond ‘0’ if they were 149	



Object-Action Imagery 8 

unable to form a good mental image. After making their responses, participants saw a 150	

blank screen for 500 ms before the next trial began. See Figure 1 for an overview of this 151	

procedure. 152	

 153	

154	
Figure 1. Illustration of the instruction and response screens. 155	

 156	

Across 80 trials, on 40 trials the action instruction was ‘prototypical’ for the 157	

presented object, and was ‘atypical’ for the remaining 40 trials. When the action 158	

instruction was atypical, it was either ‘substitute or ‘bizarre,’ 20 trials of each. Trial order 159	

was randomized across conditions. As an example of these instructions, consider the 160	

participant was presented with a baseball bat as the object. The prototypical instruction 161	

was: “Imagine this character swinging this object with two hands.” The atypical-162	

substitute instruction was: “Imagine this character using this object as a support to walk.” 163	

The atypical-bizarre instruction was: “Imagine this character biting into this object.” 164	

The nine responses were presented such that each column showed a different 165	

character and each row showed a different manipulation pose (e.g., pantomiming 166	
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swinging a bat, using a cane, and randomly selected pose from the other objects’ 167	

generated poses). Thus, only three options presented the correct character and only three 168	

options presented the correct pose. On the atypical trials, the pose corresponding to the 169	

prototypical instruction was always included as one of the poses. Two of the authors 170	

(CRM and AN) went through the poses to exclude ones that may appear correct from 171	

being selected as the random pose. The different characters were included to increase task 172	

difficulty and increase the likelihood that participants were imagining the object-173	

character-action scenes, rather than just remembering the object image and action 174	

instructions and matching them to the potential response images. 175	

Four practice trials preceded the 80 trials of this imagery task (two prototypical, 176	

one atypical-substitute, one atypical-bizarre). 177	

 178	

Questionnaires. After the computerized object-action imagery task, participants were 179	

given two pencil-and-paper questionnaires: the Test of Ability in Movement Imagery 180	

(TAMI; Madan & Singhal, 2013, 2014) and the Florida Praxis Imagery Questionnaire 181	

(FPIQ; Ochipa et al., 1997). 182	

Briefly, the TAMI consists of 10 questions, preceded by a practice question. For 183	

each question, participants were instructed to imagine a series of five movements 184	

instructions; each involving manipulations of the head, arm/hand, torso, or leg/foot. After 185	

reading the instructions, participants flip to the response page and must select from a set 186	

of five body-positioning images, along with the options ‘none of the above’ and ‘unclear.’ 187	

Each question begins with the instruction to “Stand up straight with your feet together 188	

and hour hands at your sides. The correct answer was provided for the practice question 189	
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and participants were allowed to flip back and ask the experimenter for clarifications, but 190	

for the remaining 10 questions, the correct answer was not provided and participants were 191	

explicitly instructed not to flip back to the instructions nor ask the experimenter for 192	

further clarification. For further details on the TAMI, see Madan and Singhal (2013, 2014, 193	

2015). 194	

The Florida Praxis Imagery Questionnaire (FPIQ; Ochipa et al., 1997) evaluates 195	

movement- and object-related imagery ability, using four subscales: kinesthetic, position, 196	

action, and object. Each subscale consists of twelve questions, with two possible 197	

responses for each. Below are example questions for each subscale. 198	

Kinesthetic: Imagine you are using a handsaw. Which joint moves more, your shoulder or 199	

your wrist? 200	

Position: Imagine you are shaving with a disposable razor. Which finger is higher, your 201	

index finger or your pinky? 202	

Action: Imagine you are using a nail file to file your nails. Does your hand move in a 203	

circle or back and forth? 204	

Object: Is the part of the key you insert into the lock longer or shorter than the part you 205	

hold? 206	

 207	

Data Analysis 208	

Object-action imagery task. For all conditions, we scored the proportion of trials where 209	

the participant chose the image depicting the both the correct character and pose. For the 210	

atypical conditions, we additionally scored how often participants chose the pose 211	

corresponding with the prototypical action (with the correct character). 212	
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TAMI. Responses in the TAMI were scored using the weighted scoring procedure 213	

(TAMIw) proposed in Madan and Singhal (2014) and validated in Madan and Singhal 214	

(2015). Briefly, instead of scoring the ten questions as a score out of ten, questions are 215	

weighted based on their difficulty, such that each question is worth between one and five 216	

points. This approach yields a score out of 24, and has been shown to be more sensitive 217	

to inter-individual differences (Madan & Singhal, 2014, 2015). 218	

 219	

Results 220	

Object-action imagery task 221	

A repeated-measures ANOVA was conducted to compare the correct responses among 222	

the three conditions: prototypical, atypical-substitute, atypical-bizarre. The main effect 223	

of action typicality was significant [F(2,88)=39.16, p<.001, ηp
2=.47]. Post-hoc 224	

comparisons indicated that performance in the prototypical condition was significantly 225	

better than for both atypical conditions [both p’s < .001; prototypical (M ± SEM): 226	

82.4±1.8%, atypical-substitute: 64.1±2.3%, atypical-bizarre: 64.7±2.9%]. Accuracy did 227	

not differ between the two atypical conditions [p=1.00]. Thus, typicality was relevant to 228	

the movement imagery, but it did not matter if the atypical action was bizarre or more 229	

sensible.  230	

The type of atypical condition did not influence how often participants chose the 231	

incorrect pose corresponding to the correct character and prototypical action [t(44)=0.04, 232	

p=.97; atypical-substitute: 17.7±1.8%, atypical-bizarre: 17.1±2.1%]. Thus, it appears that 233	

our differentiation of bizarre or merely ‘substitute’ atypical actions did not bear out in the 234	

current paradigm, and will be discussed further in the Discussion section. 235	
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 236	

Questionnaires 237	

Performance on the TAMI [M ± SD], using the weighted scoring method (TAMIw), was 238	

14.84±4.99 out of 24. This is consistent with prior studies using the TAMI (Madan & 239	

Singhal, 2014, 2015).  240	

Performance on the FPIQ subscales was also consistent with prior work with 241	

healthy adults (Madan & Singhal, 2013) [kinesthetic: 8.98±1.67, position: 10.53±1.55, 242	

action: 10.76±1.25, object: 10.71±1.51; each subscale consisted of 12 questions]. 243	

Numerically worse performance on the kinesthetic subscale replicates prior findings 244	

(Donoff et al., 2018; Madan & Singhal, 2013; Ochipa et al., 1997 [controls]). 245	

 246	

Correlations between object-action imagery task and questionnaires 247	

Mean accuracy in the object-action imagery task (across conditions) significantly 248	

correlated with performance on the TAMI [r(43)=.45, p=.002], suggesting that 249	

participants’ abilities in imagining the posed characters has similar properties to the 250	

imagery processes underlying body movement instructions of the TAMI. Mean accuracy 251	

in the object-action imagery task significantly correlated with the action and object 252	

subscales of the FPIQ [action: r(43)=.35, p=.02; object: r(43)=.41, p=.005]. Correlations 253	

with the remaining two subscales of the FPIQ were not significant [kinesthetic: 254	

r(43)=.18, p=.24; position: r(43)=.25, p=.10]. This pattern of results is not surprising, but 255	

is re-assuring. Given the design of the object-action task, it is apparent that performance 256	

should be related to similar imagery processes as in the action and object sub-scales of 257	

the FPIQ; however, this is nonetheless the first evidence of the FPIQ being useful in a 258	
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sample of young adults, to index task-related inter-individual differences in imagery 259	

ability. 260	

 261	

Discussion 262	

In the current study, we examined how well participants could imagine actions that were 263	

either prototypical or atypical uses of an object and how performance in these imaged 264	

actions related to questionnaire measures of motor imagery. As expected, people were 265	

better at imagining the prototypical than atypical actions. Importantly, rather than asking 266	

participants to subjectively evaluate their imagined actions, we used an objective task. 267	

Specifically, participants were presented with several images of different body positions, 268	

i.e., poses, and asked to choose the correct pose from the presented options. This 269	

approach was inspired by the Test of Ability in Movement Imagery (TAMI; Madan & 270	

Singhal, 2013, 2014), which similarly sought to objectively measure movement imagery.  271	

While objects have many potential functional uses (i.e., prototypical actions), 272	

functional knowledge is inherently a property of semantic memory. However, an object 273	

often has additional manipulation actions where it could be used, but are rarely done (i.e., 274	

substitute actions). This distinction has become a recent topic of study within the 275	

neuroimaging literature (e.g., Mizelle & Wheaton, 2010a, 2010b; Matheson et al., 2017; 276	

Mizelle et al., 2013; Tobia & Madan, 2017). A consideration with these previous studies, 277	

however, is that accuracy is quite high, thus only successful action imagery could be 278	

examined (Mizelle & Wheaton, 2010b; Tobia & Madan, 2017). Using a novel procedure, 279	

here we were able corroborate these findings, while also increasing the difficulty of the 280	

task. As such, future neuroimaging studies using a similar paradigm may be able to 281	



Object-Action Imagery 14 

additionally examine differences in brain activity related to imagery success vs. failure, 282	

rather than solely focusing on successful trials. 283	

We also found that across individuals, mean performance correlated with 284	

questionnaires designed to assess inter-individual ability in imagery, the Test of Ability 285	

in Movement Imagery (TAMI) and the Florida Praxis Imagery Questionnaire (FPIQ). 286	

Here we found that performance correlated with imagery of whole-body movements (i.e., 287	

the TAMI), as well as the action and object subscales of the FPIQ. This is interesting 288	

because it suggests a relationship between imagery for three types of actions: functional 289	

actions, whole body actions, and hand actions. This finding supports the idea that motor 290	

imagery functions hierarchically for the production of action and may incorporate 291	

cognitive processes involved in action simulation (Jeannerod, 1995).  This is the first use 292	

of the FPIQ as a cognitive psychology measure, as it was initially developed for clinical 293	

use. Our findings indicate that the FPIQ can also be useful for indexing ability to imagine 294	

tool-related interactions within samples of healthy individuals and should be considered 295	

when assessing motor imagery ability as a multidimensional ability (e.g., see McAvinue 296	

& Robertson, 2009). Moreover, the FPIQ is an objective measure, and thus cannot be 297	

confounded by traits that may result in response biases, such as motor skill confidence.  298	

An important consideration for the results presented here is the role of 299	

perspective. In our task, participants imagined characters performing actions from a third-300	

person, allocentric perspective. This point-of-view can be used to evoke movement 301	

imagery, however, motor and kinesthetic imagery components require a first-person 302	

perspective (Madan & Singhal, 2012). Moreover, this is in alignment with evidence 303	

suggesting that perspective plays an important role in motor simulations (e.g., Lorey et 304	
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al., 2009; Marzoli et al., 2011, 2013; Ruby & Decety, 2001). Between the atypical action 305	

instructions, if the atypical action was a plausible substitute use of the object (such as 306	

using a baseball bat as a cane) or a bizarre action did not influence participants’ 307	

performance. As such, it is possible that participants did not process action bizarreness 308	

per se, but rather processed the bizarre instruction only semantically and vividly, but did 309	

not engage any degree of motor simulation. This account may also relate to our FPIQ 310	

results, where the action and object subscales related to performance in the object-action 311	

imagery task, but did not relate to the kinesthetic subscale—which is likely more related 312	

to motor processing. A further limitation of our comparison of typicality is that some 313	

actions involved other body parts as the effector, such as the mouth in imaging to bite the 314	

baseball bat, while most actions involved only the hands. We had not considered this 315	

difference when designing the study, but is an important consideration for future 316	

research.  317	
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