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Penalized Euclidean distance regression
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A method is introduced for variable selection and prediction in linear regression problems where the number of
predictors can be much larger than the number of observations. The methodology involves minimizing a penalized
Euclidean distance, where the penalty is the geometric mean of the `1 and `2 norms of regression coefficients. This
particular formulation exhibits a grouping effect, which is useful for model selection in high-dimensional problems.
Also, an important result is a model consistency theorem, which does not require an estimate of the noise standard
deviation. An algorithm for estimation is described, which involves thresholding to obtain a sparse solution. Practical
performances of variable selection and prediction are evaluated through simulation studies and the analysis of real
datasets. © 2018 The Authors. Stat Published by John Wiley & Sons Ltd.
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1 Introduction
High-dimensional regression problems are of great interest in a wide range of applications, for example, in analysing
microarrays (Hastie et al., 2008; Fan et al., 2009), functional magnetic resonance images (Caballero Gaudes et al.,
2013) and mass spectrometry data (Tibshirani et al., 2005). We consider the problem of predicting a single response
Y from a set of p predictors X1, : : : , Xp, where p can be much larger than the number of observations n of each
variable. If p > n, commonly used methods include regularization by adding a penalty to the least squares objective
function or variable selection of the most important predictors.

A wide range of methods is available for achieving one or both of the essential goals in linear regression: accomplishing
predictive accuracy and identifying pertinent predictive variables. There is a very large literature on high-dimensional
regression methods, for example, introductions to the area are given by Hastie et al. (2008, Section 3.4) and James
et al. (2013, Chapter 3). Earlier methods for high-dimensional regression include procedures that minimize a least
squares objective function plus a penalty on the regression parameters. The methods include ridge regression (Hoerl
& Kennard, 1970a, 1970b) with a squared `2 penalty, Lasso (Tibshirani, 1996) with an `1 penalty and the elastic
net (Zou & Hastie, 2005) with a linear combination of `1 and squared `2 penalties. Alternative methods include the
Dantzig selector (Candès & Tao, 2007), where the correlation between the residuals and predictors is bounded; sure
independence screening (Fan & Lv, 2008), where predictors are initially screened using componentwise regression;

aDepartment of Mathematics and Applied Mathematics, Virginia Commonwealth University, Richmond, Virginia, 23284, USA
bDepartment of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, 44195, USA
cSchool of Mathematical Sciences, The University of Nottingham, Nottingham, NG7 2RD, UK
�Email: ian.dryden@nottingham.ac.uk

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution
and reproduction in any medium, provided the original work is properly cited.

Stat 2018; 7: e175 © 2018 The Authors. Stat Published by John Wiley & Sons Ltd

http://orcid.org/0000-0003-4900-3571
http://creativecommons.org/licenses/by/3.0/


D. Vasiliu et al. Stat
(wileyonlinelibrary.com) https://doi.org/10.1002/sta4.175 The ISI’s Journal for the Rapid

Dissemination of Statistics Research

and square root Lasso (Belloni et al., 2011), which involves minimizing an empirical norm of the residuals with an
`1 penalty.

In our method we use the Euclidean distance objective function plus a new norm penalty based on the geometric
mean of the `1 and `2 norms of the regression parameters. The combination of Euclidean loss and geometric mean
penalty is the main contribution of the paper. The advantage of our approach is that we are able to provide a pivotal
recovery property, and in addition gain the grouping property of the Elastic Net (where regression coefficients of a
group of highly correlated variables are very similar). The resulting penalized Euclidean distance (PED) method is
shown to work well in a variety of settings. A particularly strong feature is that it works well when there are correlated
designs with weak signal and strong noise.

2 Penalized Euclidean distance
We assume that the data are organized as an n � p design matrix X, and an n-dimensional response vector Y, where
n is the number of observations and p is the number of variables. The columns of the matrix X are denoted by Xj,
that is, Xj D .x1j, x2j : : : , xnj/

T, j D 1, : : : , p, and the regression parameters are ˇ D .ˇ1, : : : ,ˇp/
T. We assume that

a vector of outcomes Y is modelled linearly as Y D Xˇ� C ��, where ˇ� is the true parameter vector of dimension
p, the expectation of � is zero and its covariance matrix is the identity matrix. Thus, we assume that the expectation
of the response Y D .y1, : : : , yn/

T depends only on a few variables, and so Xˇ� D X� Q̌�, where the columns of the
matrix X� are a subset of the set of columns of the entire design matrix X, so X� is associated with a subset of indices
J� � ¹1, 2, : : : , pº and Q̌� is a subvector of ˇ� with the zero elements removed whose dimension is equal to the
cardinality of J�. In general, if we try to minimize kY � X� Q̌�k over choices of J� and vectors Q̌�, the optimal choice
of J� may not be unique because an under-determined system could have solutions with different sparsity patterns,
even if the degree of the optimal sparsity (model size) is the same. However, in the signal reconstruction problem
that we consider, where a penalty on the parameters is introduced, we will show that under some assumptions we
can approximate ˇ� in probability. The cardinality of J� (denoted by jJ�j) is assumed to be less than the number of
observations, and when p is greater than jJ�j, a real challenge is to detect the set of irrelevant columns, namely, the
variables that correspond to the position of the null components of ˇ� and thus not needed for efficiently controlling
the outcomes Y.

Our method involves minimizing the Euclidean distance (as a loss function, essentially equivalent to the empirical
norm used in the square root Lasso) between Y and Xˇ, with a penalty based on the geometric mean of the `1 and `2
norms. In particular, we minimize

LPED.�,ˇ/ D kY � Xˇk C �
p
kˇkkˇk1, (1)

where � is the scalar regularization parameter, ˇ D .ˇ1,ˇ2 : : : ,ˇp/
T is a vector in Rp (to be optimized over), kˇk2 DPp

iD1 ˇ
2
j is the squared `2 norm and kˇk1 D

Pp
iD1 jˇjj is the `1 norm. The PED estimator Ǒ is defined as the minimizer

of the objective function (1), that is, Ǒ D . Ǒ1, Ǒ2, : : : , Ǒp/T and

Ǒ.�/ D arg min
ˇ2Rp
¹LPED.�,ˇ/º. (2)

The penalty is proportional to the geometric mean of the `1 and `2 norms and has only one control parameter, �.

An alternative, well-established method that involves a convex combination of `1 and `22 penalties is the elastic net
(Zou & Hastie, 2005). The Lasso (Tibshirani, 1996) is a special case for this penalty, and so the elastic net combines
the two methods. Our method also inherits important properties of Lasso and ridge regression but in a radically
different way. The square root Lasso (Belloni et al., 2011) involves minimizing LSQL.�,ˇ/ D 1

nkY � Xˇk C �
n kˇk1,
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and so the first term for the PED estimator is the same as that of the square root Lasso multiplied by n, and it is just
the penalty that differs. Belloni et al. (2011) have given a rationale for choosing the regularization parameter using a
property called pivotal recovery, without requiring an estimate of the noise standard deviation.

The PED penalty is identical to the Lasso penalty for a single non-zero ˇi, and so for very sparse models, behaviour
like the square root Lasso is envisaged. We shall show that for our estimator there is a grouping effect for correlated
variables, which is a property shared by the elastic net. A grouping effect occurs where highly correlated predictors
Xj, Xk will give rise to very similar regression parameter estimates, that is, Ǒj � Ǒk.

With the application of a location transformation, both the design matrix X and the response vector Y can be centred;
here, we say that a vector is centred if the mean of its values is zero. Considering a scaling transformation, each
covariate Xj can be regarded as a point on the unit hypersphere Sn�1 with a centring constraint. Throughout the paper,
we assume that Y has been centred and the columns of X have been standardized as described above.

3 Theoretical results
3.1 General properties
The PED objective function enables variable selection under some mild compatibility conditions. The concept is based
on the simple fact that the sum of the squares of the relative sizes of vector components (as defined by ˇj=kˇk) is
always equal to 1. For any vector in Rp, if there are components that have relative sizes larger than 1p

p , then the other
components must have relative sizes falling under this value. In addition, if many components have similar relative
sizes due to a grouping effect, then the relative size of those components must be small. The new penalty function
that we consider is actually a norm.

Lemma 1
The geometric mean of `1 and `2 norms is also a norm on finite-dimensional Euclidean vector spaces.

The following theorem demonstrates the grouping effect achieved by a minimizer of the PED objective function. The
idea of grouping effect was first introduced by Zou & Hastie (2005). Our version of the grouping effect involves the
relative contributions of the components of the minimizer of the PED objective function. This property enables the
process of eliminating irrelevant variables from the model, and considering the situation of p > n, the process of
selecting and grouping variables is an important priority. Theorem 1 supports the idea of obtaining groups of highly
correlated variables, based on the relative size of the corresponding component minimizers of the PED objective
function.

Theorem 1
Assume we have a standardized data matrix X and Y is a centred response vector. Let Ǒ be the PED estimate given
by Ǒ.�/ D arg min

ˇ
¹LPED.�,ˇ/º for some � > 0. Define D�.i, j/ D 1

k Ǒ.�/k
j Ǒi.�/ � Ǒj.�/j; then

D�.i, j/ �
2.1 � �ij/

1=2

�
�
2�ij

�
,

where �ij D .Xi/
T.Xj/ is the sample correlation and �ij is the angle between Xi and Xj, 0 � �ij � �=2.
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Note that this result is analogous to Theorem 1 of Zou & Hastie (2005) for the elastic net, and the same method of
proof is used in the Appendix. From Theorem 1, if �ij is small, then the corresponding parameters estimated from PED
regression will be similar, which is the grouping effect. When �ij D 0, we have the following corollary.

Corollary 1
Let Ǒ.�/ D arg min

ˇ
¹LPED.�,ˇ/º. If Xi D Xj, then Ǒi.�/ D Ǒj.�/.

The grouping effect means that if we have strong overcrowding on the unit hypersphere around an irrelevant column,
then this would be detected by a large drop in the relative size of the corresponding components of the solution to our
objective function.

We consider the case when the number of variables by far exceeds the number of true covariates. Therefore, the
cardinality of the set S is infinite, and the challenge is to find a sparse solution in it. The starting point of our analysis
will be a solution of the PED problem defined by (2). As before, we let O�j represent the angle between vectors Xj

and Y � X Ǒ. We note that the angle O�j satisfies the equation O�j D
�
2
� arcsin

�
XT

j .Y�X Ǒ/

kY�X Ǒk

�
, 0 � O�j < �, whenever

kY � X Ǒk ¤ 0. Define Ok :D
�
k Ǒk

k Ǒk1

�1=2
; we have 1

4
p

p
� Ok � 1 provided Ǒ ¤ 0Rp . Note that Ok is a measure of sparsity,

with the highest value 1 when there is a single non-zero element in ˇ (very sparse) and with the smallest value when
all elements of ˇ are equal and non-zero (very non-sparse). We assume that 0Rp is not a minimizer of kY � Xˇk.

Lemma 2

If Ǒ.�/ is a solution of (2) and Ǒj.�/ ¤ 0, then
Ǒj.�/

k Ǒ.�/k
D Ok

�
2 cos. O�j/

�
� Ok sgn. Ǒj.�//

�
.

Result 1
We have j cos. O�j/j �

�Ok
2

if and only if Ǒj.�/ D 0.

Result 2
If Ǒ is the solution of (2) and its jth component is non-zero (i.e. Ǒj ¤ 0), then sgn. Ǒj/ D sgn.XT

j .Y�X Ǒ// D sgn.�
2
� O�j/.

The following result helps demonstrate the existence of a minimizing sequence whose terms have the grouping effect
property for the relative size of their components.

Lemma 3

If Ǒ is the solution of (2), then
ˇ̌̌
ˇ Ǒj

k Ǒ.�/k

ˇ̌̌
ˇ < M � 1 if and only if j cos. O�j/j �

�
2

�
OkC M

Ok

�
, where M is a constant.

3.2 Model consistency
In this section, we demonstrate that our method is also able to recover sparse signals without (pre-)estimates of the
noise standard deviation or any knowledge about the signal. In Belloni et al. (2011), this property is referred to as
pivotal recovery. An important aspect is that an oracle theorem also brings a solid theoretical justification for the
choice of the parameter �.

We assume that Y D Xˇ� C ��, where ˇ� is the unknown true parameter value for ˇ, � is the standard deviation of
the noise and �i, i D 1, : : : , n, is independent and identically distributed with a normal law ˆ0 with Eˆ0.�i/ D 0 and
Eˆ0.�

2
i / D 1. Let J� D supp.ˇ�/. For any candidate solution Ǒ, we can use the notation L for the plain Euclidean

distance L. Ǒ/ D kY � X Ǒk, and the newly introduced norm is denoted by kˇk.1,2/, that is, kˇk.1,2/ D .kˇk1kˇk/
1=2.
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The idea behind the following considerations is the possibility of estimating the quotient kXT�k1=k�k in probability
following Belloni et al. (2011). We can use the same general result to show that the method we propose is also
capable of producing pivotal recoveries of sparse signals.

Before stating the main theorem, we introduce some more notations and definitions. The solution of the PED objective
function is denoted by Ǒ.�/. Let kukX denote kXuk, p� the cardinality of J�, M� D kˇ�k, S D kXT�k1=k�k, c > 1 and,
for brevity, Nc D .cC1/=.c�1/. Also, we write u� for the vector of components of u that correspond to the non-zero ˇ�

elements, that is, with indices in J�. Also, we write u�c for the vector of components of u that correspond to the zero
elements of ˇ�, that is, with indices in the complement of J�. We shall initially focus on the case n2 > p. Consider

��Nc D

²
u 2 Rp : u ¤ ¹0Rpº, ku�c

k1 � Ncku�k1 C
c 4
p

p
c � 1

4
p

p�M�
³

. (3)

Assume that Nk�Nc :D min
u2��
Nc

1p
n
kukX
kuk and k�Nc :D

�
1 � 1

c

�
min
u2��
Nc

p
p�kukX

2ku�k1C 4
p

p 4
p

p�M�
are bounded away from 0. We make the

remark that if the first compatibility condition holds, there is a relatively simple scenario when the second condition
would hold as well. If Nk�Nc is bounded away from 0 on ��Nc , we have that kukX must be at least O.

p
n/ on ��Nc . At the

same time, if ku�k is at most O.p�/, we therefore have

k�Nc D
p

p�O
�p

n
�
=
�
O.p�/C 4

p
p 4
p

p�M�
�
D O

�p
n
�
=
�
O
�p

p�
�
C 4
p

p 4
p

p�
�
M�=

p
p�
��

,

and we assume M�=
p

p� is bounded. Thus, the second compatibility condition could be easily achieved in the case
when p D n1C˛1 and p� D n˛2 with ˛1, ˛2 > 0 and ˛1 C ˛2 � 1. We also present a result with certain compatibility
conditions for the case when p > n2 in Vasiliu et al. (2017).

We refer to k�Nc and Nk�Nc as restricted eigenvalues. The concept of restricted eigenvalues was introduced by Bickel et al.
(2009) with respect to the `1 penalty function. Our definition and usage are adapted to our own objective function.
As stated before, our oracle theorem is based on the estimation of kX

T�k1
k�k

. Directly following from Lemma 1 of Belloni
et al. (2011), we have the following lemma.

Lemma 4
Given 0 < ˛ < 1 and c > 1, the choice � D c 4

p
p

p
n
ˆ�10

�
1 � ˛

2p

�
satisfies � � c 4

p
pS with probability 1 � ˛.

Now we are ready to state the main result.

Theorem 2
Assume that � � � 4

p
pk�
Ncp

p� for some 0 < � < 1. If also � � c 4
p

pS, then

.1 � �2/kukX �
2c
p

p� log.2p=˛/L.ˇ�/
k�Nc
p

n
. (4)

If L.ˇ�/ D Op.
p

n/ and
p

p� log.2p=˛/=
p

n! 0, a direct consequence is that Ǒ.�/! ˇ� in probability.

We can use the value of � in Lemma 4 for practical implementation in order to ensure � � c 4
p

pS holds with probability
1� ˛. Note that the rate of convergence is asymptotically the same as rates seen in other sparse regression problems
(e.g. Negahban et al., 2012), although as for the square root Lasso of Belloni et al. (2011), knowledge of � is not
needed. Also, there are some circumstances when we can consider other values of �.
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Corollary 2
Let 0 < 	 < 1 and �� D

°
u 2 Rp,

p
n

4
p

p
ku�ck1	 � ku�k1

�
2
p

n
4
p

p
� 	

�
C kˇ�k1

�
1 �

p
n

4
p

p

�±
. Assuming that k�

�
:D

min
u2��

p
p�
p

n
kukX

2
p

n
� 4
p

p
ku�k1C

kˇ�k1
�

�
1�
p

n
4pp

� > k > 0, and for � D cˆ�10
�
1 � ˛

2p

�
4
p

p
n , with c > 1, if

r
k Ǒ.�/k

k Ǒ.�/k1
�
p

n
c 4
p

p
� 	 > 0 and,

at the same time, we assume � �
� 4
p

pk�
�p

n
p

p�
for some 0 < � < 1, then we also have an oracle property, that is,

k Ǒ.�/ � ˇ�k D O

 r
p� log.2p=˛/

n

!

with probability 1 � ˛.

We use the corollary to suggest a method for choosing the model parameters by maximizing Ok D
�
k Ǒ.�/k

k Ǒ.�/k1

�1=2
, and

this would encourage the selection of sparse models.

For a practical implementation of our method, we make use of the proven theoretical results. From the signal recovery
theorem and corollary, we obtain that k Ǒ.�/�ˇ�k D O.

p
p� log.2p=˛/=

p
n/ with probability 1�˛. Thus, if j is an index

where there is no signal, that is, ˇ�j D 0, then, from the previous equation, we have that j Ǒj.�//j < k Ǒ.�/ � ˇ�k �

const.
p

p� log.2p=˛/=
p

n. If k Ǒ.�/k ¤ 0, we can divide by k Ǒ.�/k and obtain

j Ǒj.�//j

k Ǒ.�//k
< ı.p/=

p
n, where ı.p/ /

p
p� log.2p=˛/. (5)

We will use (5) to inform a threshold choice as part of the PED numerical implementation in the next section. As well
as dependence on n, we also investigate the effect of p on the relative size of the components.

3.3 Theoretical comparisons
In Section 3.1, we presented general properties for the PED estimator without requiring any special assumptions. The
elastic net also shares the grouping effect without any special assumptions, but the Lasso and square root Lasso do
not. The other results in Section 3.1 are particular to our estimator. In Section 3.2, under special assumptions, the
Lasso, square root Lasso, and PED estimators have near-oracle rates of the same order, which is O.

p
p� log.p/=n/.

The main difference is that in the case of the Lasso pre-estimates of the noise standard deviation, � is needed as
well as different restricted eigenvalue assumptions given by Bickel et al. (2009). For the square root Lasso and PED,
the near-oracle rate can be achieved without the pre-estimates of the noise, but with PED, we also do guarantee
the grouping effect that is mitigating multiple correlations. The simulations below show numerical evidence that our
rate could actually be better than the one used as a theoretical benchmark for comparison with Lasso and square
root Lasso.

4 Numerical implementation
The objective function LPED.�,ˇ/ D kY � Xˇk C �.kˇkkˇk1/1=2 is convex for any choice of � and also differentiable
on all open orthants in Rp bounded away from the hyperplane Y � Xˇ D 0. In order to find good approximations for
minimizers of our objective function, as in many cases of non-linear large-scale convex optimization problems, a quasi-
Newton method may be preferred because it is known to be considerably faster than methods like coordinate descent
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by achieving super-linear convergence rates. Another important advantage is that second derivatives are not necessarily
required. For testing purposes, we present a numerical implementation based on the well-performing quasi-Newton
methods for convex optimization known as Broyden–Fletcher–Goldfarb–Shanno (BFGS) methods: limited-memory
BFGS (L-BFGS) (Nocedal, 1980) and BFGS (Bonnans et al., 2006). We also tested a version of non-smooth BFGS
called the hybrid algorithm for non-smooth optimization (Lewis & Overton, 2008) and obtained very similar results.

The idea for the estimation is to use theoretically informed parameters based on Theorem 2 and Corollaries 2 and (5),
in order to choose a suitable value of � and give a sparse estimate of ˇ� after thresholding. We are choosing a lambda

value in the interval between ˆ�10
�
1 � ˛

2p

�
4
p

p
n and ˆ�10

�
1 � ˛

2p

�
4
p

p
p

n
that is maximizing Ok.�0/ :D

�
k Ǒ.�0/k

k Ǒ.�0/k1

�1=2
. We

retain the components of the solution that have higher relative contributions, that is, j
Ǒjj

k Ǒk
� ı.p/=

p
n, where ı.p/ is

a tuning thresholding constant that could be selected by some information criterion such as the Akaike information
criterion (AIC) or by n-fold cross-validations, or we could fix ı, for example, ı D 0.75. The steps for the numerical
approximation of ˇ� by using the PED method are as follows:

1. Use a quasi-Newton algorithm (e.g. L-BFGS) to minimize the convex objective function (1) with � values between
ˆ�10

�
1 � ˛

2p

�
4
p

p
n and ˆ�10

�
1 � ˛

2p

�
4
p

p
p

n
and evaluate Ok.�/.

2. For the solution Ǒ that maximizes Ok.�/ , set Ǒj D 0 if j
Ǒjj

k Ǒk
� ı.p/=

p
n (the choice of ı.p/ is motivated by (5)).

Eliminate the columns of the design matrix corresponding to the zero coefficients Ǒj, with p� columns remaining.
3. Use the quasi-Newton algorithm to minimize the objective function with the remaining columns of the design

matrix and � between ˆ�10
�
1 � ˛

2p

�
4
p

p
n and

4
p

p�
p

n
and output the solution.

For all the numerical simulations and almost all real datasets, a default value of � was used for the last step of the
numerical approximation, namely,

4
p

p�
p

n
.

5 Numerical applications
5.1 Simulation study
We consider a simulation study to illustrate the performance of our method and the grouping effect in the case when
p � n. In this example, we compare the results with the square root of the Lasso method (Belloni et al., 2011)
that uses a scaled Euclidean distance as a loss function plus an `1 penalty term, using the asymptotic choice of
�. We also compare the results with both Lasso and elastic net methods as they are implemented in the publicly
available packages for R, again using the default options. In particular, we used 10-fold cross-validation to choose
the roughness penalty for the Lasso and elastic net using the command cv.glmnet in the R package glmnet, and we
use the command slim in the R package flare with penalty term � D 1.1ˆ�10 .1 � 0.05=.2p//=

p
n. We use the PED

method with a default ı D 0.75 or chosen with the AIC from a range of values between 0.75 and 1.5.

We consider situations with weak signal, strong noise and various correlated designs. In particular, for a range of
values of n, p, and �, the data are generated from the linear model Y D Xˇ� C ��, where

ˇ� D .0.3, : : : , 0.3„ ƒ‚ …
4

, 0, : : : , 0„ ƒ‚ …
50

, 0.3, : : : , 0.3„ ƒ‚ …
4

, 0, : : : , 0„ ƒ‚ …
50

, 0.3, : : : , 0.3„ ƒ‚ …
4

, 0, : : : , 0/T,

kˇ�k0 D 12, � D 1.5 and X generated from a p-dimensional multivariate normal distribution with mean zero and
correlation matrix †, where the .j, k/th entry of † is �jj�kj, 1 � j, k � p.
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The results are summarized in Tables I and II, and the reported values are based on averaging over 100 datasets. The
distance between the true signal and the solution produced is also recorded using root mean square error. Under highly
correlated designs, the method we propose shows a very efficient performance against the “curse of dimensionality”
and overcrowding.

PED (as indicated in Table I) has performed very well, obtaining the highest rate of true positives in many examples.
Also, we compare it with PED when the parameters are selected by AIC, given by PED(AIC) in Table I, which also
performs well. The elastic net is the next best performance, and Lasso (for the strongly correlated case) and square

Table I. Simulation results based on the example in Section 5.1.

� D 0.5 � D 0.9 � D 0.99
TP MS RMSE TP MS RMSE TP MS RMSE

n D 100, p D 200
PED 9.96 20.80 0.775 11.62 26.97 0.664 10.17 39.28 0.862
PED(AIC) 9.37 17.37 0.789 10.57 17.87 0.692 7.07 15.87 1.013
Elastic net 9.34 30.17 0.949 9.43 25.63 1.064 6.2 23.52 1.436
Lasso 8.75 26.18 0.879 7.38 20.15 1.069 3.59 14.34 1.637
Square root Lasso 1.18 1.2 1.015 3.94 4.65 0.927 3.03 8.84 1.291

n D 100, p D 1,000
PED 9.53 47.34 1.049 11.52 35.44 0.706 11.14 72.19 0.847
PED(AIC) 9.34 43.72 1.051 10.48 23.93 0.741 8.87 58.94 1.012
Elastic net 7.93 44.48 1.042 9.46 37.73 1.077 7.51 34.46 1.265
Lasso 7.07 32.27 0.956 6.87 27 1.044 3.3 18.03 1.510
Square root Lasso 0.9 0.94 1.025 2.91 3.42 0.965 2.97 9.07 1.253

n D 200, p D 200
PED 11.71 21.19 0.581 11.97 27.15 0.540 11.46 44.47 0.781
PED(AIC) 11.62 20.31 0.591 11.83 20.3 0.535 10.27 25.09 0.777
Elastic net 11.41 34.3 0.687 10.45 25.57 0.860 7.72 23.53 1.117
Lasso 11.03 30.89 0.653 8.85 21.59 0.900 5.04 15.3 1.396
Square root Lasso 5.42 5.47 0.900 7.26 8.3 0.830 4.84 11.32 1.190

n D 200, p D 2,000
PED 11.21 65.23 0.880 11.76 31.79 0.556 11.99 117.42 0.838
PED(AIC) 11.20 61.35 0.877 11.36 23.95 0.577 9.52 52.21 0.908
Elastic net 10.52 57.22 0.794 10.79 42.47 0.835 9.55 37.03 1.007
Lasso 9.79 44.42 0.752 8.65 31.19 0.856 4.77 19.74 1.280
Square root Lasso 3.57 3.57 0.961 6.45 7.09 0.837 4.8 11.14 1.155

n D 200, p D 3,000
PED 11.17 73.91 0.977 11.79 35.04 0.581 11.7 121.92 0.854
PED(AIC) 11.16 72.10 0.975 11.66 27.69 0.586 9.39 77.3.02 0.934
Elastic net 10.23 64.83 0.834 10.75 44.16 0.839 9.94 37.42 0.993
Lasso 9.61 49.97 0.788 8.48 33.77 0.870 4.62 19.04 1.293
Square root Lasso 2.86 2.87 0.980 6.31 7.05 0.843 4.6 10.79 1.173

Note: The TPs are the average number of non-zero parameters, which are estimated as non-zero and the MS is the
average number of estimated non-zero parameters, from 100 simulations. The RMSE is given for estimating ˇ�.
The best values in the TP and RMSE columns are in bold. AIC, Akaike information criterion; MS, model size; PED,
penalized Euclidean distance; RMSE, root mean square error; TP, true positive.
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Table II. Simulation results based on example 1 and the numerical implementation described in the previous section.

� D 0.5 � D 0.9 � D 0.99
MS D 10 MS D 20 MS D 30 MS D 10 MS D 20 MS D 30 MS D 10 MS D 20 MS D 30

n D 100, p D 200
PED 7.10 9.86 11.21 6.79 9.81 12 4.98 7.33 8.26
Elastic net 6.54 8.55 9.53 6.51 8.27 9.04 3.02 5 6.4
Lasso 6.13 8.14 9.16 5.39 6.75 7.39 2.81 3.42 4.05
Square root Lasso 6.17 8.18 9.04 6.69 7.52 7.58 3.33 4.02 4.05

n D 100, p D 1,000
PED 6.88 8.94 10.24 6.84 9.39 11.34 4.61 7.18 8.15
Elastic net 5.37 6.98 7.84 5.37 6.18 6.93 3.18 5.12 6.51
Lasso 5.11 6.56 7.20 5.42 6.27 6.66 2.85 3.43 3.75
Square root Lasso 5.75 7.01 7.43 5.37 6.18 6.76 3.39 3.67 3.9

n D 200, p D 200
PED 8.82 11.11 11.59 7.51 10.27 11.95 6.57 9.62 11.17
Elastic net 8.19 9.95 10.39 7.82 9.59 10.19 4.88 7.09 8.5
Lasso 7.64 9.21 9.62 7.14 8.27 8.93 3.5 4.37 4.96
Square root Lasso 8.53 10.55 11.11 7.00 8.32 8.85 3.30 4.41 5.19

n D 200, p D 2,000
PED 7.92 9.60 10.04 7.47 10.19 12 6.08 8.76 9.74
Elastic net 7.03 8.34 8.95 7.85 9.48 9.94 4.08 5.98 7.41
Lasso 6.96 8.45 8.99 6.78 7.78 8.15 3.91 4.29 4.57
Square root Lasso 7.47 9.01 9.72 7.02 8.25 8.77 3.89 4.52 4.72

n D 200, p D 3,000
PED 8.99 11.35 11.95 7.2 10.5 12 6.77 9.24 10.07
Elastic net 7.36 8.6 9.09 8.13 9.89 10.21 4.46 6.65 8.14
Lasso 7.13 8.32 8.66 6.49 7.31 7.61 4.09 4.61 4.84
Square root Lasso 7.35 8.86 9.4 7.11 8.15 8.51 4.08 4.65 4.89

Note: The best values for the true positives are in bold. The true positives are the average number of non-zero parameters that are
estimated as non-zero and the fixed MS from 100 simulations. MS, model size; PED, penalized Euclidean distance.

root Lasso have low rates of true positives. Note that the square root Lasso has performed rather differently here from
the others. It is the only method using an asymptotic value of �, where n may not be large enough here. PED has a
lower model size compared to the elastic net. Finally, the root mean square error is generally best for PED, particularly
for the more highly correlated situations. Table II summarizes the true positive rates for fixed model sizes, where the
largest kMS coefficients in absolute value are retained for model size kMS. Again, PED has performed very well in
retaining the highest number of true positives in nearly all cases (42 out of 45), with elastic net being the best in three
cases. Overall, PED has performed extremely well in these simulations.

5.2 Real data applications
For prediction performance comparison, we considered the datasets Air (Chambers et al., 1983), Servo (Quinlan,
1993; Lichman, 2013), Tecator (Borggaard & Thodberg, 1992), Housing (Harrison & Rubinfeld, 1978), Ozone
(Breiman & Friedman, 1985) and Iowa (Draper & Smith, 1998). It is important to note that throughout the simulations
and the real data analyses, both Lasso and elastic net were run with double cross-validation for selecting the model
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Table III. Prediction mean square error rates using 10-fold cross-validation.

PED PED-CV Elastic net Lasso Square root Lasso

Servo 0.3436 0.2977 0.3041 0.3130 0.7393

Pollute 2,334.0 2,197.3 2,334.8 2,778.6 3,066.9
Iowa 89.3389 100.8377 143.8566 122.8793 133.9454
Air 0.2348 0.2413 0.2811 0.2874 0.3962
Ozone 17.8964 15.6248 16.8717 17.1563 21.4246

Tecator 12.0489 10.8289 50.0329 44.3648 131.1065

Note: The smallest values are in bold. CV, cross-validation; PED, penalized Euclidean
distance.

size and the tuning parameter. We used PED with default values, and we also ran PED with a single 10-fold cross-
validation for tuning ı that affects only the model size; the results are reported in Table III. In some cases, such as
the Tecator dataset, the prediction error further improved when the final choice of � was ˆ�10 .1 �

˛
2p /

4
p

p
n . Also, in

the case of the Servo dataset, the variable selection benefitted from searching for lambda in a subinterval of the one
proposed by default, namely, between ˆ�10 .1 �

˛
2p /

4
p

p
n and

4
p

p
p

n
. PED has again performed well, particularly when

using cross-validation.

Melanoma: In this application, we implement PED as a variable selection tool when the response variable serves as
binary classification. We consider an application of the method to a proteomics dataset from the study of melanoma
(skin cancer). The mass spectrometry dataset was described by Mian et al. (2005) and further analysed by Browne et
al. (2010). The data consist of mass spectrometry scans from serum samples of 205 patients, with 101 patients with
stage I melanoma (least severe) and 104 patients with stage IV melanoma (most severe). Each mass spectrometry
scan consists of an intensity for 13,951 mass over charge (m=z) values between 2,000 and 30,000 Da. It is of interest
to find which m=z values could be associated with the stage of the disease, which could point to potential proteins for
use as biomarkers. We first fit a set of 500 important peaks to the overall mean of the scans using the deterministic
peak-finding algorithm of Browne et al. (2010) to obtain 500 m=z values at peak locations. We consider the disease
stage to be the response, with Y D �1 for stage I and Y D 1 for stage IV. Note that we have an ordered response here
as stage IV is much more severe than stage I, and it is reasonable to treat the problem as a regression problem.

We fit the PED regression model versus the intensities at the 500 peak locations. We have n D 205 by p D 500. The
data are available at http://www.maths.nottingham.ac.uk/~ild/mass-spec

Here, we use ˛ D 0.05. The parameter values chosen to maximize Ok are � D 0.5 and ı.p/ D 0.75, selecting 96
non-zero m=z values. Browne et al. (2010) also considered a mixed-effects Gaussian mixture model and a two-stage
t-test for detecting significant peaks. If we restrict ourselves to the coefficients corresponding to the 50 largest peaks
in height, Browne et al. (2010) identified 17 as non-zero as did PED, with eight out of the 17 in common. If we apply
PED(AIC), then seven peaks are chosen out of the largest 50, of which only two are in common with Browne et al.
(2010). The elastic net chose six peaks with five of those in common with Browne et al. (2010), and for the Lasso,
five peaks were chosen from the top 50 largest, with four in common with Browne et al. (2010). Note that here PED
has selected the most peaks in common with Browne et al. (2010), and it is reassuring that the different methods
have selected some common peaks.
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6 Appendix: Proofs
Proof

Lemma 1
For ˇ 2 Rp, let `1.ˇ/ denote kˇk1 and `2.ˇ/ denote kˇk. Consider the set

C D ¹ˇ 2 Rp :
p
`1.ˇ/`2.ˇ/ � 1º.

We notice that C 	 ¹ˇ 2 Rp : `1.ˇ/`2.ˇ/ � 1º, and therefore, C is a bounded, closed and convex subset of Rp,
which contains the origin. Let g.ˇ/ D `1.ˇ/`2.ˇ/, and let Epi.g/ denote its epigraph, that is, Epi.g/ D ¹.ˇ, t/ 2
RpC1 : g.ˇ/ � tº. The set C is convex and orthant symmetric. Indeed, the Hessian of g is positive semi-definite on
each orthant of Rn because, after differentiating g twice with the product rule, it can be written as a sum of three
matrices, which can be argued, by applying Sylvester’s theorem, to be positive semi-definite. We see that in our
case Epi.g/ D ¹t.C, 1/ : t 2[ 0,C1/º, and therefore, Epi.g/ is a convex cone in RpC1 because C is a convex set in
Rp. This shows that

p
`1`2 is a convex function. Because

p
`1`2 is convex and homogeneous of degree 1, it follows

that it must also satisfy the triangle inequality. Therefore,
p
`1`2 is a norm on Rp.

Proof

Theorem 1

Because Ǒ.�/ D arg min
ˇ
¹LPED.�,ˇ/º, we have @LPED.�,ˇ/

@ˇk

ˇ̌̌
ˇ
ˇD Ǒ.�/

D 0 for every k D 1, 2, ..., p if Ǒk.�/ ¤ 0. Thus, we

have

�
XT

k[ Y � X Ǒ.�/]

kY � X Ǒ.�/k
C
�

2

Ǒk.�/

k Ǒ.�/k
j Ǒ.�/j1q

k Ǒ.�/kj Ǒ.�/j1

C
�

2

sgn¹ Ǒk.�/ºk Ǒ.�/kq
k Ǒ.�/kj Ǒ.�/j1

D 0. (6)

If we take k D i and k D j, after subtraction, we obtain
[XT

j �XT
i ][Y�X Ǒ.�/]

kY�X Ǒ.�/k
C �
2

[ Ǒi.�/� Ǒj.�/]j Ǒ.�/j1p
k Ǒ.�/k3j Ǒ.�/j1

D 0 because sgn¹ Ǒi.�/º D

sgn¹ Ǒj.�/º. Then, it follows that

Ǒi.�/ � Ǒj.�/

k Ǒ.�/k
D
2

�

q
k Ǒ.�/kj Ǒ.�/j1

j Ǒ.�/j1
[ XT

j � XT
i ] Or.�/, (7)

where Or.�/ D y�X Ǒ.�/
ky�X Ǒ.�/k

and kXT
j � XT

i k
2 D 2.1��/ because X is standardized and � D cos.�ij/. We have

p
kˇkkˇk1
kˇk1

� 1

for any non-zero vector ˇ in Rp and jOr.�/j � 1. Thus, Equation (7) implies that

D�.i, j/ �
2jOr.�/j
�
kXi � Xjk �

2

�

p
2.1 � �/� 2

�ij

�
, (8)

which proves the grouping effect property for the proposed method.

Proof

Proposition 1
Here, we are going to prove the necessity part of the statement because the sufficiency follows directly from the
previous lemma. Let us assume that
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Ǒ.�/ D . Ǒ1.�/, : : : , Ǒj�1.�/, 0, ǑjC1.�/... Ǒp.�//T D arg min
ˇ
¹LPED.�,ˇ/º

for a given � > 0. Here, we can fix �, and for brevity, we can omit it from notations in the course of this proof. For
any t > 0, we have

LPED. Ǒ1, ... Ǒj�1, t, ǑjC1, ... Ǒp/ � LPED. Ǒ1, ... Ǒj�1, 0, ǑjC1, ... Ǒp/
t

� 0.

Again, for brevity, we can denote Ǒt@j D . Ǒ1, ... Ǒj�1, t, ǑjC1, ... Ǒp/T and also let O�t@j be the angle between x�,j and
Y � X Ǒt@j. With the mean value theorem (Lagrange), there exists 0 < t� < t such that

LPED. Ǒt@j/ � LPED. Ǒ0@j/

t
D � cos. O�t�@j/C �

q
k Ǒt@jkj Ǒt@jj1 �

q
k Ǒ0@jkj Ǒ0@jj1

t
.

If we rationalize the numerator of the second fraction in the previous equation, we obtain

LPED. Ǒt@j/ � LPED. Ǒ0@j/

t
D � cos. O�t�@j/C �

k Ǒt@jkj Ǒt@jj1�k Ǒ0@jkj Ǒ0@jj1
tq

k Ǒt@jkj Ǒt@jj1 C

q
k Ǒ0@jkj Ǒ0@jj1

,

and thus, cos. O�t�@j/ � �
k Ǒt@jkj Ǒt@jj1�k Ǒ0@jkj Ǒ0@jj1

tq
k Ǒt@jkj Ǒt@jj1C

q
k Ǒ0@jkj Ǒ0@jj1

. Also,

k Ǒt@jkj Ǒt@jj1 � k Ǒ0@jkj Ǒ0@jj1

t
D j Ǒt@jj1

k Ǒt@jk � k Ǒ0@jk

t
C k Ǒ0@jk

j Ǒt@jj1 � j Ǒ0@jj1

t
,

and we notice that j
Ǒt@jj1�j Ǒ0@jj1

t D 1 for any t > 0. Letting t ! 0, we obtain cos. O�0@j/ �
�
2

r
k Ǒ0@jk

j Ǒ0@jj1
D �Ok

2
.

Analogously, by starting with t < 0, we can show that cos. O�0@j/ � �
�
2

r
k Ǒ0@jk

j Ǒ0@jj1
D �Ok

2
.

Proof

Proposition 2
By writing the necessary conditions for optimality in the case of problem (2), we have that sgn.XT

j .Y � X Ǒ// D

sgn.�
2
� O�j/ and

Ǒj.�/

k Ǒ.�/k
D Ok

�
2XT

j .Y�X Ǒ/

�kY�X Ǒk
� sgn. Ǒj.�//Ok

�
if Ǒj.�/ ¤ 0. Because Ok > 0, we have sgn. Ǒj/ D sgn.XT

j .Y �

X Ǒ// D sgn.cos. O�j//.

Proof

Lemma 3
The proof follows directly from (2) and (1).

We make the observation that if Ǒ.�/ is a solution of (2), we have cos. O�j/ �
�
2
.OkC M

Ok
/ and therefore cos. O�j/! 0 when

�! 0 because M � 1 and p�1=4 � Ok � 1.

Theorem 2
The proof follows a similar method to that of Theorem 1 in Belloni et al. (2011). Further details and the proof of
the corollary are given in an online supplement of Vasiliu et al. (2017).
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